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Elastic Fields of Quantum Dots in
Multilayered Semiconductors: A
s.vang' | NOvVel Green’s Function Approach

Structures Technology, Inc.,

543 Keisler Drive, Suite 204, We present an efficient and accurate continuum-mechanics approach to predict the elastic
Cary, NC 27511 fields in multilayered semiconductors due to buried quantum dots (QDs). Our approach is
e-mail: boyang@boulder.nist. gov based on a novel Green’s function solution in anisotropic and linearly elastic multilayers,
Mem. ASME derived within the framework of generalized Stroh formalism and Fourier transforms, in

conjunction with the Betti’s reciprocal theorem. By using this approach, the induced
elastic fields due to QDs with general misfit strains are expressed as a volume integral

N Ej Pan over the QDs domains. For QDs with uniform misfit strains, the volume integral involved

Department of Q'VH E_ngmeenng, is reduced to a surface integral over the QDs boundaries. Further, for QDs that can be
University of Akron, modeled as point sources, the induced elastic fields are then derived as a sum of the

Akron, OH 44325 point-force Green’s functions. In the last case, the solution of the QD-induced elastic field

Mem. ASME is analytical, involving no numerical integration, except for the evaluation of the Green's

functions. As numerical examples, we have studied a multilayered semiconductor system
of QDs made of alternating GaAs-spacer and InAs-wetting layers on a GaAs substrate,
plus a freshly deposited InAs-wetting layer on the top. The effects of vertical and hori-
zontal arrays of QDs and of thickness of the top wetting layer on the QD-induced elastic
fields are examined and some new features are observed that may be of interest to the
designers of semiconductor QD superlatticH30I: 10.1115/1.1544540

1 Introduction cult to perform parametric studies in order to interpret the experi-
(r)m_ental phenomena or to reach an economic design strategy. This

Owing to their great advantages over those processed by lith ficulty is manifested especially in the case of multilayered het-

raphy and etching, self-assembled guantum semiconductor het tructures. Recently, various analytical and semi-analytical
structures have attracted tremendous attention in recent years. T : Y, y y

processing of the heterostructures is based on the spontanégﬁ hoc:]s, in %artlcular, thosz rela:jted tol.thc? ?rettra]ns qunctloré slglu-
growth of small islands from a wetting layer due to its mismatc ons, have been proposed and applied to the QD modeling,

strain to the substrate, i.e., a Stranski-Krastanow growth mec 81§Z Because of thgir robust features _in terms of accuracy and
nism. The islands include quasi-zero-dimensional dotsquan- efficiency, these analytical methods, particularly the Green’s func-

tum dots(QDs)) and quasi-one-dimensional wires, on the scale den method, have been foun_d to be very_usefu_l In th? study_ OT QD
1-100 nanometers. Experimental studies have shown that s ghjctures[ls—zzﬂ. For QDs in a thrge-d|men5|onal Isotropic in-
QD nanostructures possess certain special electronic and opt }e_space, Pearso_n and Fa[lzs]_derlved the exact-clo_sed-form
features, rendering fascinating and novel devices, such as the | iution f_or the QD-|nduc_:e(_1 _straln Wh_en_the QDS arein the form
threshold laser, resonant tunneling device, and huge-capa& yramids. When the infinite domaln_ IS anisotropic, Faux _and
memory media, possibl§l,2]. These features are in part related” arsor{19] and Andreev et al[22] derived the induced strain
to the strain fields induced by the QDs and thus it is important #5iN9, respectively, the Fourier transform method and the series
understand the latter before the design of devigks3). In their ~€XPansion method. More recently, Pan and Yé24| examined
device applications, it is often desirable to fabricate the QDs [R€ €lastic field due to a buried QD in an anisotropic half-space
successive stacks with both vertical and lateral orderipgsg].  Substrate using the point-force Green's function, which is derived
The final product is then a multilayered structure with buried alithin the framework of generalized Stroh formalism and Fourier
rays of QDs and with each layer being anisotropic. Therefore, §&nsforms, in conjunction with the Betti's reciprocal theorem.
efficient and accurate numerical tool for predicting the mechanichi€ir result has shown clearly the effects of material anisotropy
fields, based on the theory of generally anisotropic elasticity f@hd free surface on the elastic fields. _
layered media, would be much appreciated. In this paper, we propose a novel Green’s function approach for
To quantitatively explain and numerically model the QD nandhe elastic analyses of buried QDs in multilayered semiconduc-
structures, various numerical methods have been proposed, tifs, advanced from the authors’ previous work&4,25. The
cluding the continuum finite elemerFE) and finite difference QDs and surrounding matrix are assumed to have the same mate-
(FD) methods[9-14], and the discrete atomic-level simulationsfial property, within the classical inclusion approach of eigen-
[15—17. However, the domain-based FE and FD methods and th&ain, [26]. In this approach, the elastic fields induced by QDs
atomic models are computationally expensive, making them diffvith general misfit straingi.e., eigenstrainsare expressed as a
volume integral over the QDs domains. For QDs with a uniform
To whom correspondence should be addressed. Present address: Materials R&isfit strain, the volume integral can be reduced to a surface in-
s b St o e Co a1 QD3 boundas Furer, o QDS al can be
MEC(:&IIIIICL,{-\L EN)(lBINEERpSpfOIr publicatio:1 in tr|1\:al ASMEOURNAL OF APPLIED ME- moqleled as point sources,_the induced elastic f'elds can then be
CHANICS. Manuscript received by the Applied Mechanics Division, Dec. 16, 20016lerived as a sum of the point-force Green’s functions. In the last
final revision, June 8, 2002. Associate Editor: H. Gao. Discussion on the pamase, the QD solution is ana|yti(;a|, except for the numerical evalu-

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmen Iy ) H
Mechanics and Environmental Engineering, University of California—Santa Barbaté)ﬁon of the point force Green's functions. The proposed approach

I . . . . .
Santa Barbara, CA 93106-5070, and will be accepted until four months after firﬁ‘en 1S .applled to examine a mU|t'|aY¢fed system of QDs with
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. alternating GaAs-spacer and InAs-wetting layers on a GaAs sub-
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Fig. 1 A multilayered heterostructure with embedded islands of misfit strains

strate, plus a “freshly” deposited wetting layer on the top. Thenly in the QDs is in fact the part of a total field induced by the

theory is described in Section 2. The numerical results are pi@DPs. The total field can be obtained by applying the rule of su-

sented and discussed in Section 3. Conclusions are drawn in Sserposition of the induced field to the homogeneous field that is

tion 4. caused by the nonzero matrix eigenstrain aléne, in the ab-

sence of the QDsunder the same boundary and interfacial con-

ditions. For the present multilayered structure, the homogeneous

elastic field can be solved by applying the classical laminate
2.1 Integral Equation Formulation of Quantum Dots. In-  theory, [27].

clusion problem of misfit strain$26], in a heterogeneous, aniso- Under these assumptions, E@) can be simplified. First, by

tropic, linearly elastic matrix can be described in terms of awsing the fact that the misfit strain along the domain boundary

integral-equation formulation with the integral kernel being thé zero, the term of boundary integral in E@) is eliminated,

point-force Green’s function in the same media. This integraWhich yields

equation formulation is a consequence of the Betti’s reciprocal

theorem. Let us assume that there are two states associated with — * (e 0

the matrix domairD: one for the misfit-strain problem due to a Up(Y) JDU”"J(X’y)C”'m(X)S'm(X)dV(X)' 3

given misfit straine?j(x), and the other for the Green'’s function ] ) ] -

problem due to a point force at In these two problems, the Then, reducing the integral domain frond to QY (n

boundary conditions alongD (boundary ofD) are identical. Ap- =1, - - N), Eq.(3) is rewritten as

plying the Betti's reciprocal theorem, we find that the displace- N

ment u,(y) due to the misfit strairs®(x) can be expressed in _ Xy O 0

terms cF;f the following integral-equatlijon formulation, 26, Up(Y) nZl mn)up,,J(x,y)C,”m(x)sm(x)dV(x). )

2 Theory

Further, the domain integrals in E@}) can be reduced to the
surface ofQ(™ for those QDs in which the misfit strain distribu-
tion is uniform. Assuming that all of the islands have a uniform
where u;i(x;y) is the Green'sth displacement component &t misfit strain field, we arrive at
due to a point force in theth direction applied ay, Cyj, is the N
elastic stiffness, heterogeneous in general, and a repeated index ) _om) .
implies the conventional summation over its range. Note that Up(y)=2 Cijim&im (n)upi(X;y)nj(X)dS(X)! %)
indicates the partial derivative with respect to field coordinate n=t a0

while Yo is used for the partial derivative with respect to Sourcﬁ/herecimn ands,%”) are, respectively, theuniform) elastic stiff-

coordinatey,, . Making use of the Gauss theorem, Ef). can be ness and misfit strain in theth island. Note that a uniform distri-

up(y):JDu;i(X;y)[_Cijlm(x)slom(x)],jdv(x)v (1)

rewritten as bution of misfit strain in a QD may occur when the QD and matrix
(generally mismatched in thermal expansion coefficieats sub-
up(y):f U;i,j(X2Y)Cij|m(X)SPm(X)dV(X) jected to a uniform temperature change and if their mismatch of
D elastic constants can be neglected.

~In order_ to find the_ induce_d elastic strain field, the di_splace_ment
,J' u;i(x;y)Cmm(x)st(x)nj(x)dF(x), (2 In Eqg.(5) is dlﬁerentlated with respect to the.observatlo.n pgint
D (i.e., the source point where the point force is located in the cor-

i s functi I@mwhich yiel
wheren; is the outward normal at a boundary point. responding Green's function problgmwhich yields

We now consider a special heterogeneous matrix structure and a N
special misfit strain distribution, as shown in Fig. 1. The special szq(y)=2 Eci(mngﬂ;mj [k, (XY)
heterogeneous matrix structure consists of multiple planar layers n=1 a0 d
of different media. They are homogeneous, anisotropic, and lin- % .
early elastic. The special misfit-strain field is nonzero only in a +uqi’yp(x,y)]nj(x)d8(x). ®)

i i i M (n= ) . .

number of interior islands)™ (n= L... N). To apply the Subsequently, the stress field is obtained as
above theory, we assume that the islands have the same elastic
property as their surrounding layer media. This special system gpq(y):cpqsl(y)[gst(y)_agl(y)]_ (7)
represents a multilayered semiconductor with coherently strained
QDs, [1]. We remark that there should exist nonzero eigenstraiote thatsgt(y) in Eq. (7) is nonzero only ify is within a QD.
field in some of the layersi.e., wetting layers from which the Finally, the above expressions can be further reduced if the
QDs grow, similar to that in the QDs. In this case, the elastic fieldbservation poiny is remote to some or all of the QDs compared
to be derived under the above assumption of nonzero eigenstrartheir individual sizes. These remote QDs can be modeled as

162 / Vol. 70, MARCH 2003 Transactions of the ASME



The equilibrium of a multilayered system subjected to a point

— X3 = Ao .
: force requires that
‘f = P Cpjim(X)Uj mj(x) = —fpé(x=y), (11)
n Layer (1) / _'_hM wheref, is the pth component of a point force applied yat To
Ve solve this problem, the following two-dimensional Fourier trans-

(m) €y form (kq,k») is first applied to the in-plane variableg,(,x,) of

Ui (X1,X2,X3),

X2 % il |( 1,72 3)
Fig. 2 Point-force Green’s function problem of a multilayered ai(klvk21X3):J J Ui(Xq . Xp, Xg) € akad Xy dXp,  (12)

heterostructure (Fig. 1)
wheree stands for theexponentiafunction, and in the exponent
denotes the unit of imaginary number-1, and the Greek index
takes a value in the range from 1 to 2. The integral limits are

8%~ o0,:0) along both the coordinates andx,. Thus, in the Fourier

S transformed domain, the governing E@1) becomes

point sources of misfit strain. Without the loss of generality,
suming the remoteness gfto all QDs, the misfit strain field i
then expressed as

Cpaiali 33~ 1(Cpaiat Cpaia)Kali 3= Cpai

N Bkakﬁﬁi
0 — 0(n)y /() 5y — x(N) i
e2.(X) Zl epMV §(x—x(M), (8) = —feVeked(x3—y3), (13)

whereV(™ andx(" are, respectively, the volume and location ofvhich is valid for each individual homogeneous layer in the sys-
the nth QD, and&(x) is the Dirac delta function. By substituting €M- , ) ) , o )
Eq. (8) in Eq. (3), the induced displacement and strairyatue to  S°Iving this ordinary differential equation in termsaf with f
the point sources of misfit strain are analytically found to be ~ P&ing a unit force in thepth direction yields the general expres-

sion for the transformed-domain Green'’s displacement initthe
direction,ﬁi*p, as

N
up(y)=2 U;i,j(x(n)?y)ci(j%slon(nn)v(n) ) — =
A=1 Un(xa) = €V TL (x3) +im H(Ap(e™ P70 -V,

N )
=2 Ty elmv, ) +An(e P )W) |, (14)
=1

" where the subscriph indicates the association of a quantity to the
N mth layer where the field point residesU?, is a function ofk,,

Spq(y)ZE E[a;|m,yq(x(”>;y)+a’q]m,yp(x<”);y)]eﬂ$1”)V<”). k, andy as well asxs; U5, a special solution, is a given

n=t 10 function ofkq, k, andy as well asx3; andV,, andW, are a pair
(10) of unknown tensors, being functions &f, k, andy;, to be

In the derivation of the right-hand side of E(), the Hooke’s determined by imposing boundary and interfacial conditions. The

law, o, = Cij;imV; ; , was effected. Itis observed in E@®) thatthe dummy arguments in these functions, which are not relevant di-

displacement field in thpth direction aty due to point sources of rectly to the enforcement of boundary and interfacial conditions,

misfit strain with componentsif) at x" (n=1,... N) is are omitted for simplicity. In addition, the overbar denotes the
equivalent to the stress field with componerits) atx™ due to complex conjugate(#,0) are the polar coordinates related to
a point force in thepth direction aty, [28]. (kq1,kp) by k=7 cos6 andk,= » sing, and

We remark that Eq94), (5), and(9) (and their corresponding
expressions for strain and stresan be used whenever and wher-
ever applicable to most efficiently compute the elastic fields dyg addition,p and A= (a, ,a,,as) are, respectively, the eigenval-

to a QD. The idea of applying the point-source approach 10 dfag ang eigenmatrix, related to each other by the following char-
scribe the elastic field remote to a QD, the inclusion approachfr%

(e71Ps)=diad e~ P17s @~ 1P27s @ iPs7Ys] (15)

teristic ei lati 3-35, i bli | db
describe the field in an intermediate distance to a QD, and t| eristic eigenrelatior3 3, in an oblique plane spanned by

— —ci T

imhomogeneity approach to describe the field close to or insid L= cosfn=sin 6,0)" and (00,1, as
QD, has been elaborated recently by Romanov ef2#]]. The [Q+pi(R+RT)+p2T]a=0, (16)
different approaches require different computational tools to effi-
ciently and accurately solve the problem. The present work pr&ith Q;;=C;,;sN.Ng, Rij=Cj,j3n,, andT;;=Cis;3.
poses to apply a special Green’s function for anisotropic multilay- Let us defines as a vector consisting of the in-plane stress
ers to solve the problem of QDs approached as inclusions.cimponents in the horizontal plane, arabs a vector consisting of
enables a simulation of a relatively large system of QDs in muihe corresponding out-of-plane stress components. The combina-
tilayered semiconductors. This special Green’s function is déen of these two vectors represents the full stress tensor because
scribed next. of its symmetry. The corresponding Green’s functions are given
Three- by _S*E(Uf_lp v(_7"1€2p ,a'gzp) _and_t* E(0'1’3p ,.0'33’).,0';3’)), with _sub-
script p indicating the unit point-force direction. By applying the

ooke’s law,t* and s* can be derived from Eq(14), in the
ransformed domain, as

2.2 Green’s Function for Anisotropic Multilayers.
dimensional point-force Green’s function in anisotropic multilay
ers, as shown in Fig. 2, can be solved within the framework
generalized Stroh formalism and Fourier transforf2§,30. The
elegancy of the formulation has been demonstrated by applying

C ! Tk _ aik Y Tx (s) R (a=iPm7(%3—hm_1)
the derived Green'’s functions to the boundary element analyses of tm(Xa) = €%l I ™ (x3) + (Byn(e™Pm ")V

stress around a hole in a composite lamingg&], and the corre- + B Pm7Cs T myw |, (17)
sponding delamination crack problef32]. In the following, we

summarize the Green’s functions for anisotropic elastostatic mul- 3,’;(x3):e‘knya[’é,;(s)(x?,)+(Em(e“5m’7(x3‘hmfl)>vm
tilayers. For details of the theory, one may refer to the authors’ _

previous work[25], and articles cited therein. + Cpp(e™ Pm7a=Mmy\ |, (18)

Journal of Applied Mechanics MARCH 2003, Vol. 70 / 163



s=a

lw =0.1a
L=a InAs-wetting /,,
o GaAs-spacer
wi=f.1a InAs-wetting /,

GaAs-spacer

InAs-wetting /,, InAs-wetting /,,

GaAs-spacer /;
InAs-wetting /,,

GaAs-spacer [,
InAs-wetting /,,

GaAs-substrate

GaAs-substrate

(a) (b)

=a Ly+L;=1la
ly=0.1a ly=0.1a
InAs-wetting /,, InAs-wetting L,
GaAs-spacer /; GaAs-spacer [,
InAs-wetting /,, InAs-wetting /,,
GaAs-substrate GaAs-substrate
(c) (d)

Fig. 3 Four examples of a heterostructure with alternating layers of GaAs-spacer and InAs-
wetting on a GaAs substrate, plus a fresh wetting layer on the top: (a) a single QD; (b) a vertical
array of QDs; (c) a horizontal rectangular array of QDs;  (d) a single QD with varying ratio of
thickness between top wetting and spacer layers

wheret*® ands:(® are derived fromi%(® and matrixB andC ~ physical-domain Green'’s functions are obtained by using the Fou-
are related toA andp, [35]. The matrixC here is different from rier inverse transform, for example, the displacement field, as
the fourth-rank tensor of elastic stiffne€gy . 1
The derivatives ofi*, t*, ands* with respect to source coor-  yi(x,,X,,X3) = —zf fﬁi(kl,kz,xg)e‘ixa"ad kodks,
dinatesy can be obtained from the above expressions, as (2m) (23)
T* —ilk Ti* Tx —il T*
Uy, (Xa) =1KoUm(X3), Ty (X3) =iKatm(Xs), where the integral limits in botk; andk, are (—o,»).
~ T Above, we have only described the key steps in the derivation
sﬁ,yya(x3) ik oSh(Xa), (19) of the three-dimensional Green'’s functions for anisotropic elasto-
T* — aikeYo T* (5) i YA (e Pmr(3=hm_Dy\/’ static multilayers within the framework of generalized Stroh for-
um,yg(xg) € [um,ya(x3)+| 7 (Ane : UV malism and Fourier transforms. For details of the theory and rel-
evant computational issues, one may refef26,30,35,3¢ and

+Ap(e” P70 im W (20) articles cited therein.

Ty (%) = €XYalT2(5) (x5) + (B @™ P70~ hm- )y 1

3 Results and Discussions

—ipmn(Xz—hy) /
*+Bne SImWi)l, (@1) In this section, we apply the integral-equation formulation, de-
% , (XS):eikayal~S§1<ys)(X3) Jr(Em<e—iEmn(><3—hm,1)>Vrrn scribed in the previoius section, to investiga}te the elastic fields due
73 73 to embedded QDs in a multilayered semiconductor system. Ef-
+Cple Pmrs W ) | (22) fects of vertical and lateral orderings of QDs and of thickness of

wetting layer on the elastic fields will be addressed. The multilay-

whereV, andW,, are a new pair of unknown tensors, as a funcered semiconductor consists of up to four sets of alternating
tion of ky, k, andys;. GaAs-spacer and InAs-wetting layers on a GaAs substrate, plus a

The above unknown tensoks,,, W,,, V,, andW,, can be “freshly” deposited InAs-wetting layer on the top. Four different
solved by imposing appropriate boundary and interfacial condixamples as shown in Figsie3-d) are studied. The top surface is
tions provided that the special solutions are given. Yang and Pagsumed to be traction-free while the interfaces are in the perfect-
[25] took the first few terms of the expansion solution of trimatebonding condition. The far-field stress and displacement are zero.
rials, [36], to be the special solutions and solved the problem withhe thickness of the wetting and spacer layers is denoteld, by
traction-free top-boundary and symmetric bottom-boundary co@indl, respectively. It is taken thaf,=0.1a andl;=a with the
ditions and with the perfectly bonded interfacial conditions. Thexception in the last exampl&ig. 3(d)). The QDs are assumed to
special solutions may also be taken as the infinite-space Gredpescuboidal with dimensionaxaxa/2. They are seated on the
function, [37], or the bimaterials solution,30]. The difference top of a wetting layer and embedded in the above adjacent GaAs-
would be in the resulting efficiency in evaluating the physicalspacer, as shown in Fig(&-d). It is mentioned that the sides of
domain Green’s functiond25]. By applying the boundary and the QDs are taken to be along the global coordinaxgsxt ,Xs).
interfacial conditions to the multilayers, a linear system of equé&or simplicity, we also assume that the QDs have the same elastic
tions with the same number of unknowns can be formed afoperty as its surrounding GaAs-spacer, and the misfit strain in
solved for each set ok ,k,) in the transformed plane. Then, thethe QDs is hydrostatic, i.ea?j =e°5ij . The elastic constants for

164 / Vol. 70, MARCH 2003 Transactions of the ASME
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Fig. 4 Elastic fields on top surface induced by a single QD 2 0.1
(Fig. 3a): (a) normalized hydrostatic strain  &,,/£°%; (b) normal- %
ized vertical displacement component  —u4/(£%a) g ]
8 Jp2+—————vT—"T—"T— r
“ 0 0.1 0.2 0.3
x3/a

(b)

GaAs areC,,=118, C4,=54, C4,=59 and for InAsC,,=83,
C,,=45, C,,=40(GPa), with their crystallographic directionsFig. 5 Vertical variation of normalized nonzero strain and
[100], [010], and[001] coinciding with the global coordinateg, stress components over a single QD  (Fig. 3a): (a) €11(&y;
X,, andxs, respectively. We remark that there should exist norr €11) and e33/€°% (b) o13(0,=071y) and o53/€° in 101 Pa
zero eigenstrain in the wetting layers, similar to that in the QDs.
Because of the linearity of the problem, the QD-induced elastic
field discussed below and the homogenous field due to the neated to the electronic and optical behaviors of the semiconductor
zero eigenstrain in the wetting layers can be superposed. In #y&tem, and to the growth direction and vertical correlation of new
present multilayer structure, the homogenous field can be obtaingds, [38,39.
by applying the classical laminate theof7]. Due to the mismatch between the wetting and spacer layer crys-
tals, the out-of-plane strain componert;, and the in-plane
qs,tress components;;; and oy, are discontinuous across the in-
erface, as shown in Fig. 5. However, the other in-plane strain and
ecgyt-of-plane stress components, as well as all the displacement

is first studied. The cuboidal QD is seated on the top of the int . . , .
nal wetting layer and embedded in the spacer, with its cenfefMPONents, are continuous, as enforced in the Green's function
' solution, and in turn reflected in the inclusion solution of eigen-

located at (0,0,0.85. The top InAs layer represents a “freshly” . . ; : ) .
deposited wetting layer where a next generation of QDs is e§t_rf;1t|ns,[|26]. Itt'hs also |n{e(rjest|??hto' notle frorrt] F.'g' 5dth?t in the
pected to grow. Figures(d) and 4b) show, respectively, the con- wetling fayer, theé magnitude of the in-plané strain and stress com-

tour plots of the normalized hydrostatic straig,/e° and normal- ponents increases when the observation point approaches the
. - . 0 . traction-free top surface, a phenomenon that may be explained by
ized vertical displacement u;/(¢"a) on the top surfacé.e., the

free surface of the freshly deposited InAs-wetting layrove the the free-surface bending effect
QD. Figure 5 shows the vertical variation of the normalized non- 3.2 Example 2: A Vertical Array of Quantum Dots. Effect
zero strain and stress components over the center of the QD. lbfsa vertical array of QDs on the elastic fields is examined in this
noted that, in this example, only the diagonal componesits, example. Figure @) schematically shows the geometry of the
eo(=€11), €33, 011, O2o(=0711), @andoss, are nonzero. problem. Simulations were performed with repeated sets of alter-
It is observed from Fig. 4 that due to the coincidence of theating spacer and wetting layers with a QD embedded in each set.
crystallographic orientations of the wetting and spacer crystalfie variation of the normalized hydrostatic strain and vertical
with the side orientations of the cuboidal QD, the normalizedisplacement along a linex{,0,0) on the top surface is shown in
hydrostatic strain and vertical displacement are symmetric relatiFggs. §a) and Gb). In these two figures, the results farQD
to the in-plane axes. They reach their maximum values at therrespond to a semiconductor model mada sét of GaAs/InAs
origin, (0,0,0, right above the QD center on the free surface. Wiplus a fresh InAs on the top and a GaAs substrate on the bpttom
remark, however, that should the Ga#ld1) be used in place of For instance, the results for one QD correspond to a semiconduc-
GaAs(001) for the spacer, the contour plots will be distorted wititor model with only one set of GaAs/InAglus a fresh InAs on
completely different features. The characteristics may be cortie top and a GaAs substrate on the bottom, exactly the same as in

3.1 Example 1: A Single Quantum Dot. A buried single
QD in the layered semiconductor system of top-InAs-wettin
GaAs-spacer/InAs-wetting/GaAs-substrate, as shown in Fa, 3
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Fig. 6 Induced elastic fields along a line  (x4,0,0) on top sur-  Fig. 7 Induced elastic fields along a line  (x;,0,0) on top sur-
face due to a vertical array of up to nine QDs (Fig. 3b): (a) face due to a horizontal rectangular array of up to 9 X9 QDs
normalized hydrostatic strain  £,,/£% (b) normalized vertical (Fig. 3¢): (a) normalized hydrostatic strain &, /% (b) normal-
displacement component —u3/(£%a) ized vertical displacement component  —u5/(£%a)

the previous cageand results for four QDs correspond to a semi-
conductor model consisting of four sets of GaAs/InAs, i.e., to
InAs/GaAs/InAs/GaAs/InAs/GaAs/InAs/GaAs-substrate, with
QD in each GaAs-spacer layer.

It can be observed from Fig.(® that the magnitude of the
hydrostatic strain on the surface increases with increasing num
of QDs and converges quickly to the maximum values. This su
gests that a vertical array of QDs should sum up their effects

Rtrain field decreases and converges to its minimum value. There-
fbre, the surrounding QDs in the lateral directions play a role in
relaxing the induced elastic field due to the central QD, an effect
opposite to that of a vertical array of QDs as observed earlier.
nsequently, the existence of laterally neighboring QDs would
g%ppress the effect of the central QD on the growth of a new QD

lastic rel . he freshiv d ited ing | ove it. The vertical displacement component converges with
elastic relaxation on the freshly deposited wetting layep wet- j,reasing number of QDs, again in contrast to that in the case of
ting layen where a new generation of QDs is expected to 9row yertical array of QDs.

The displacement field, on the contrary, has not shown its ten-
dency of convergence with the number of QDs of the vertical

array so far. 3.4 Example 4: A Single QD With Varied Thickness of Top

3.3 Example 3: A Horizontal Array of Quantum Dots. Wetting Layer. At last, effect of top wetting layer thickness on
Now, effect of a horizontal array of QDs on the elastic fields ihe QD-induced elastic field is studied. The geometry is similar to
studied. Simulations were performed with a horizontal rectangultiyat studied in the first examp{€&ig. 3(a)), but with varied thick-
array of QDs located in the spacer. The semiconductor systé@@ss of the top-wetting layer and spacer layer. The total thickness
consists of only one set of alternating spacer and wetting layers,aighese two layers is fixed at ;alas shown in Fig. @). Similar
shown in Fig. &). The spacing between the adjacent Qfbem to that in the first example, a single QD is located at the bottom of
center to centérin both in-plane directions is& with size of the spacer layer. To distinguish this example from the previous
array varying from X3 to 9x9. Variations of the normalized ones, the varied thicknesses of the top wetting and spacer layers
hydrostatic strain and vertical displacement on the surface abdy€ now indicated by, andL, respectively. On the top surface
the central QD are plotted in Fig. 7. at three location$0,0,0, (0.52,0,0), and &,0,0), the normalized

These results show that, with increasing number of QDs latdrydrostatic straing, /¢, and vertical displacement component,
ally around the central one, the magnitude of the surface elastieu,/(£%), are evaluated with various combinations of thickness
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problem of eigenstrain$26]. The unique feature of the approach
is that the point-force Green’s function used for the multilayer
system satisfies the boundary and interfacial-continuity condi-
tions. By applying the Betti’s reciprocal theorem, the elastic field
induced by QDs with general misfit strains is expressed in terms
of a domain integral with the point-force Green’s function as in-

(=

@w

3

a

g

?é ' tegral kernel. The domain integral is reduced to a surface integral
: v Evaluated at along the boundary of a QD that has a uniform misfit-strain dis-
| 01 (0,0,0) tribution. Further, for QDs that can be modeled as point sources,
s 1 . (053, 0, 0) the induced elastic field is then derived as a sum of the point-force
'§ ] . (a' 0 ’0), Green’s functions. These novel features make the present
Z 0057 T continuum-mechanics approach both accurate and efficient for
g L S ke carrying out a parametric study of QDs-induced elastic field in
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Fig. 8 Variation of elastic fields at three locations on top sur-

multilayered semiconductors.

By applying the Green’s function approach, we have analyzed
the elastic field due to embedded QDs in a system of alternating
GaAs-spacer and InAs-wetting layers on a GaAs substrate, plus a
freshly deposited InAs-wetting layer on the top. The QDs embed-
ded in the spacer layers are assumed to have the same elastic
constants as the spacer medium. The effects of vertical and hori-
zontal arrays of QDs and of thickness of the top wetting layer on
the elastic fields are examined and discussed in detail. The follow-
ing features have been observed:

« First, the QD-induced out-of-plane strain and in-plane stress
components exhibit discontinuities across the interface between
the wetting and spacer layers due to the materials mismatch be-
tween these layers.

» Second, the magnitude of the induced in-plane strain and
stress components increases when the observation point moves
away from the QD source towards the top free surface. This may
be explained by the free-surface bending effect.

 Third, a vertical array of QDs sums up their effects of elastic
relaxation on the freshly deposited wetting layer, where a new
generation of QDs is expected to grow. However, a horizontal
array of QDs plays a role in deducting the elastic relaxation effect
of the central QD on the top wetting layer, in contrast to that of a
vertical array of QDs.

« Finally, when the thickness of the top wetting layer varies, the
induced elastic field on the top surface changes continuously.

face with top wetting layer thickness L, (Fig. 3d): (a) normal-
ized hydrostatic strain £, /£°; (b) normalized vertical displace-
ment component —ug/(g%a). The results for the extreme case
L,=0 are indicated by symbols.

However, when the top wetting layer totally disappears, some of

the elastic strain and stress components exhibit a jump, due to the
difference of elastic property between the wetting and spacer

layers.

of these two layers. In addition, the extreme case without the t%ﬂ:knowledgment

wetting layer(i.e., L,=0) is solved. The results are shown in

Fig. 8. The authors would like to thank Dr. Vinod Tewary of the NIST
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Indentation Problems of
Two-Dimensional Anisotropic
c-k.cnao | Thermoelasticity With Perturbed

Professor -
5.cao | BOUNdDaries
Department of Mechanical Engineering, Complex variable representations in the Stroh formalism are used to analyze the problem
National Taiwan University of Science and of rigid stamp indentation on an irregularly shaped surface of an anisotropic thermoelas-
Technology, tic body. The shape of boundary surface considered in this work includes a cosine wave-
43, Keelung Road, Section 4, shaped surface and a triangular hole that are assumed to be slightly different from a
Taipei, Taiwan straight line and an ellipse, respectively, for which the exact solutions exist. Based on a
perturbation technique, an approximate solution for the punch problem of rigid stamp
indentation on a wave-shaped surface or a triangular hole that is viewed as being per-
turbed from a straight line or an elliptical hole is provided. First-order perturbation
solutions for both temperature and stress functions are given explicitly. Numerical results
of contact stress under the punch face are discussed in detail and shown in graphic
form. [DOI: 10.1115/1.15544 14
1 Introduction ploying the formalism of Eshelby et aJ2] and the method of

gnalytical continuation{Muskhelishvili [3]). As to the problems

In the theory of two-dimensional linear elasticity one of the . L X . . ;
) . Wwith elliptic boundaries, the introduction of conformal mapping
most powerful techniques for the solution of boundary value pro?

. ! . unctions was used by Fan and Hy4]. As discussed in the
lems with awkwardly shaped regions is to transform the regia ove paragraph, the method based on the conformal mapping
into one of simpler shape. For example, the boundary value prg !

lem associated with an elliptic hole or a polygonal hole for isoz nctions is not valid for solving the problem with awkwardly
P polyg haped regions. An alternative approach for solving such prob-

S
ms is based on the perturbation method by introducing a small

tropic materials can be solved by the transformation of the simpl@r
geometry such as a circle hole whose solution is easy 1o aCh'e[E%rameter which denotes the deviation of the opening from that of

The success of the above method lies in the property that Straight line or an ellipséHwu and Far{5]). The solution for

transformation must be conformal and one-to-one. However, th%gee anisotropic media with a straight edge or an elliptical opening

are many cases that a one-to-one mapping function cannot ifi be used as a reference. Then, by the perturbation technique an
found such as the problem with a wave-shaped boundary or, Sp

triangular hole boundary for anisotropic materials. In order to it roximate solution for the anisotropic media with openings
lustrate the above argument, let the hole boundary tend its slightly different from a straight edge or an elliptical opening can

. € . a . ' be found.
i/ngla%es kf)grzggi)sf:tr%a%cbrigt% ;’IV;E %’b(\ffo_ ;i?ﬁ:';ﬂ;ﬁgg?’ The research noted above has considered only the isothermal
u P : USIHAZ, y Ut case. When heat flows between two conducting solids, there will

fi‘lc?r?sﬂa (lrr:]tiggz)a;gﬁnbeé lééfe?rﬁﬁgéeg trl?;rfgfeort_rﬁ?ff%rgegﬂflmg)e some resistance to heat flow across the interface and the con-
ab y 9 9Nt stress will be influenced by the temperature distribution in the

boundary conditions on an elliptic hole onto the unit circle in bodies. In certain conditions, separation will occur at the corners
the {-plane. However, one could not expect that the transform%

. . the punch resulting in incomplete indentation that makes the
functionsf,(m.({)) can be found by transforming the bour'Olaryproblem more difficult to solve. The literature on this subject in-

coEdltlons fon a nonfelllptlc hol€ onto the unit u;cle smci thre?j cludes works by Barbei6,7], Clements and Tog8], and Panek
gn ngwn unctions o(Me(£)) appearing in the transforme and Dundurq9]. More specifically, for the problem with a fric-
ounaary conditions on th_e unit C|rc_le In tr;"eplane_wnl take tionless rigid flat-ended punch, Comninou et @O] indicated
different values at three different points. The relations betwe at, depending on the magnitude and the direction of the total
Itir;)?iiehgll;e; apnczjlri]ﬁseil:r?ptgsosirt;léig ggg’oﬂgﬁﬁg r%zg%ri%;g)asgonﬁéat fI_ux, either perfect ther_mal contact throughout the punch face
that the three image points on the unit circle in @plane be or an |mperfect contact region at the center with adjacent_perfect
contact regions occurs. In this paper, based on a perturbation tech-

always coincident. ique, we like to solve the more complicated problem with per-

When the boundary geometries are simple like the stralan bed boundaries. Two kinds of perturbed boundaries will be

boundary, the main task 1S the development of a systematic Whsidered here. One is a boundary perturbed from a straight line
proach for solving the mixed boundary value problem. For ex-

ample, the punch problem for an anisotropic elasticity wit uch as a cosine wave-shaped surface indented by a rigid flat-

X ; . nded punch, the other is a boundary perturbed from an ellipse
straight edges was solved by Fan and Kgirin detail by em- such as a triangular hole boundary indented by a rigid stamp. In

e— . o order to make an analytical solution tractable in the current work,
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF h . id d | I dh h £ £
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- the s_tamp Is considered to comp e_te y adhere to the surtace or an
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dec. 9glastic body over the contact region such that the displacement
2001; final revision, Sept. 4, 2002. Associate Editor: J. R. Barber. Discussion on fkong the contact region can be assumed to be a constant value.
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmenighyragyer, the magnitude of the total heat flux is properly chosen
Mechanical and Environmental Engineering University of California—Santa Barbara, e . .
Santa Barbara, CA 93106-5070, and will be accepted until four months after fin%VCh th?-t the C.Ondmon.Of perfect thermal .ContaCt IS alW?-ys satis-
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. fied during the indentation. A general solution up to the first-order
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perturbation will be obtained by using Stroh’s formalig8troh N
[11]), analytical continuation, conformal mapping function, anc o
perturbation technique. As to higher-order perturbation solution :
general procedure is depicted in this paper. Two numerical e
amples of punch problems associated with a cosine wave shay p
surface and a triangular hole boundary are studied in detail a

shown in graphic form.

2 Basic Equations for Two-Dimensional Anisotropic
Thermoelasticity o
The basic equations for linear anisotropic thermoelasticity ai

the equations for the stress-strain, the equilibrium, the heat cc
duction, and the balance of energy, which can be expressed as

S*
7ij = CijksUk,s— Bij T
(T”’IZO
§ @2.1) v
hi=—kyT,
X,
h; ;=0

Fig. 1 Arigid stamp indentation on a wave-shaped surface of
whereu;, oj;, h;, T stand for the dlsplacement stress, heat flun elastic half-plane

and temperature, respectively, am , kj;, Cjys are, respec-
tively, the thermal moduli, the heat conduction, and the elastic
constants.

For two-dimensional problems which dependgrandx, only, \here e (x,) is a wave-shaped function. Consider a rigid punch of

the general solution t¢2.1) may be written by means of four yiqh 2a which is pressed into a wave-shaped surface by a com-
holomorphic functions which satisfy all the basic equations given

pressive forcgd and the total heat quQ from the punch to the
In (2.1 as(Ting [12) half plane as shown in Fig. 1. In this section we consider a mate-
T=2Rdg'(z)] rial occupying the lower half-plane,>0 and denote this region
by S*, using the notatiors~ for the half-planex,<0.
Q:f hidx;—hydx, =2 Reikg'(z)] 3.1 Temperature Field. In order to solve such a mixed
(2.2) boundary value problem, we let the temperature funagiqiz) be
u=2 R4 Af(z)+cg(z,)] expanded in the following perturbation form:
$=2RqBi(z)+dg(z)] 0 (=04 +egi(D+e2GyD+ ... . (32)
with A=[a aas], B=[b; b, bs], f(2)

- T N _ For the convenience of formulating boundary conditions along the
_E(fﬁzpl)xf:(iz)_ff(zz%) ]in’ wEichgk;;kéi alr(e12funf:ttio)r(115+o?t(t21 . cf;;n- perturbed boundary, a new variallén place ofzis introduced as
— Al %% ) Ty,

plex variablesz, and z,, respectively. In the above equatiam,
=(uq,Uy,uz) is the displacement vectoh= (1, ¢, d3) Stands

for the stress function vector, which is related to the stresses \wjith the aid of(3.3), each termg/(z) in (3.2) can be expanded
by o11=— ¢ 2, i2=¢; 1, and the additional multipliers i2.2)  into '
are defined by

c=[Q+ 7(R+RN+ 2T Y B, + 78,},

7=7+180(X)), Z=X1+ 1 X—e@(X1)]. (3.3)

(2.3) 9/ (2)=9{(2) + e (X9 (D) + 5 [Tsso(xl)]z "2+ ...,

d=(R™+7T)c— B,

where i=0,12.... (3.4)

Qi=Cizts Rx=Cinz, Ti=Ciotas 2.4 Substituting(3.4) into (3.2), we can obtain
Bi=[BuBupuds o=l BaBafod. 0'(2)=05(2) +e[91(D) + Te(x)g5(D)]

For the latter derivation by means of the analytical continua-
tion, the argument of each component functiorf(@) is written
asz=x;+ pXx, without referring to its associated eigenvalyes (3.5)
Once the solutions of the holomorphic functions are obtained, a '
replacement of;, z,, andz; (or z) should be made foi(z) (or |f there is perfect thermal contact throughout the redigiressed
g(2)) to calculate the field quantities frof2.2). by the punch and the remaining part of the half-plane surface is
assumed to be thermally insulated, the boundary conditions along
the perturbed boundans,— e @(x;) give

1
+e? 92(D)+7e(x1)91(D) + 5 7 20%(x1)0g (2) |+

3 Straight Boundary Perturbation

Let an anisotropic elastic body occupy the lower half-plane daT -
whose boundary is a wave-shaped surface perturbed from the d_><1=d_><12 Rdg'(x,)]=0, xiel
straight linex,=0 which can be expressed in terms of a small (3.6)

paramete as d
h,=— —2Rdqikg'(x{)]=0, X;e&lL.

Xo=g@(Xq) (3.1) dx,
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Note that(3.6); implies that the interface offers no resistance to f'(2)=f)(2) +efy(2)+ %52+ ... . (3.11)
heat flow in the regions with solid to solid contact whi&6),
presumes that no heat is exchanged between the bodies in lfrie introduce a new variable in place ofz by
regions out of contact.
gSubstituting(S.S) into (3.6, we have 2=2tpee(x), 2=xitpeee(x)],  (312)
dT each ternf/(z) in (3.11 can be expanded into
dx, d ——2 Re(go(xy) +e[g1(x]) + (X )go(x7 )]+ ...}

N .1 R
fi (2)=f(2) + peo(x)f{ (2) + 5[D8¢(X1)]2f{”(2)+ ce
=0, x3eL and
(3.7)
i=0,1,2.... (3.13)

d
__ H ! + ! + + " +
hy= dxg 2 Relik(go(x1)F2[9:(x1 )+ 7¢(x1 ) Go(X1)] Substituting(3.13 into (3.11), we obtain

)}:O, X]_GEL

Comparing the coefficients ef* (\=0,1,2...) onboth equa-
tions of (3.7), we obtain

f'(2)=15(2) + e[ F1(2) + pe(x1)f5(2)]

5 "5 1 "
+e% 13(2) + pe(xy)fy(2) + §p2<P(X1)2fo(Z) +

d 3.14
T 2Rdgo(x{)]=0, xeL (3.14)
X1
d Since a rigid punch of width & is pressed into a wave-shaped
I —2Rdikgy(x{)]=0, Xié&l half-plane surface by a compressive force, the boundary condi-
X1

tions for this problem are

d du .
i ——2Rdgi(x])+7e(x])gh(x{)]=0, Xzl . U (), xel
1 (3.15)
d . 1ot N NIt L d¢
ax 2 Reik(91(x1 )+ 7e(X1)9o(X ))]=0, X1 € —=0, Xx;¢l
1 (38) Xm
wherel’(x,) can be expressed in terms ofis
The first set of equations i{8.8) for the zero-order perturbation is 07 (%) = 05 (xq) + £ 0L (xq) + £205(X0) + . . . .

identical to that for the mixed boundary value problems with

straight boundary whose solution has been founédhao et al.
[13)) as Along the perturbed boundamy— £ ¢(x;) the boundary condi-

tions (3.15 become

"nes _é 5
go(Z): z z ! ZES+' (39) du 1ot 1ot + N1t

27k (z—a)(z+a) d—xlzz ReA(fo(x7) +e[fi(x])+pe(x fg(x))]+ ...)
Using g5(2) as a reference solution, the second set of E8i8) +a(gh(x7) +e[gr(x]) + To(x)go(X )1+ .. )}
for the first-order perturbation can be treated in a similar way and d
the final result is =U'(x), x el an (3.16)

d¢ ! 4 "
. d o T =2 Re(B(fo(x1) +a[f1(x1) +pe(x1)fe(x )]+ ...)
0i(2)=— g5 [7e(2)g5(2]. (3.10) 1

+d(go(xl)+8[91 X1 +T‘P(X1 )go(xl I+ )

In a similar way, the higher-order perturbation solutions can be =0, Xxp¢lL.
solved step by step.

3.2 Stress Field. Let the derivative of the complex function By comparing the coefficients ef* (\=0,1,2 . ..) onboth sides
f(z) be expanded in the following perturbation form: of (3.16, we obtain

2 REAf(x1) +cgp(x1)1=Ug(X1), Xl
2 R Bfy(x; ) +dgg(x;)]=0, X L
‘2 ReEA(f1(x)) +pe(x)f5(x1)) +e(g1(X3) + 7o(X1 )gg(X: NI=05(X), X3el

2 REB(T 0} )+ P )5 x)) + (@i (x) +7()g50G )I=0,  xael 317)
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The first set of equations i(8.17) for the zero-order perturbation A=[N1. M2 05], D(2)={(((z—a) ' %(z+a)%)).
is the same as the one corresponding to the mixed boundary value (3.20)
problems with straight boundary whose solution has been found in
(Chao et al[13]) as The angular brackef )) stands for the diagonal matrix in which
each component is varied according to the Greek inde%, and
f6(2)=Bl[%X(i)jé[X+(t)]1M{i0(’,(t) No, @=1,2,3 are the eigenvalues and eigenvectorsTiofg [12])
L

(M~ 1+2mo\ ~ 1)\ =0. (3.21)

+2 Im[c—AB~*d]gg(t)}dt+X(2)po(2) —dgg(2) The polynomial functiorpy(2) in (3.18 has the form

(3.18) . 1 .

N ] . Ay Po(2)=5— A" "Ppo. (3.22)
whereM = —iBA™ " is the impedance matrix ar|(z) is the Ple- 2
melj function for the problem with the straight line boundary R
given by The zero-order solutiofig(z) given in (3.18 can be used as a

A A reference to solve the other unknown functiéf(&) in (3.17. In
X(2)=AT'(2) (3.19) order to employ the method of analytical continuation, the second

with set of equations i3.17) is now rewritten as

{ ALFLOG) +*E10) 14+ g5 () +* 91 () 1+ ALFL () + () 1+ g1 () +*gi(x])]={1(x)), Xiel

’ ! ’ ! or ! ! ar ’ ’ (323)
BLF1(xy)+*f1(x{ )]+ d[g1(x ) +* g1 (x1) ]+ BLfi(x) ) +*f1(x{)]+d[g; (%) +*g1(x;)]=0, X el
where*f1(2)=p¢(2)f5(2) and*g1(2)=7¢(2)go(2).
By using the analytic continuation method, a new holomorphic function is introduced as
_[BIfi@+*f(2)]+dgi(2)+*91(2)],  zeS'
01(2)=) —— TR TR T " . (3.24)
—-B[fi(2)+*f1(2)]-d[g1(2) +*91(2)], 2€S
With the aid of(3.24), (3.23 becomes
01(x7)+MM 1O} (x;) =iM{li;(x1) —2 R (c—AB ) (g1(x;) +*g10; N1}, xpel (3.25)
0(x])—O}(x;)=0, X ¢L ' '

Equation(3.25 is in the form of Hilbert problem whose solutiona,=1, £=0.25, a triangle with rounded corners can be plotted.

is obtained as The other cases can be obtained by setting the different values of
1 1 the coefficients ori4.1).
O = —X(2) | ——1X(DOT1 MO (t An infinite plane with an opening4.1) can be transformed to
(D)= 52X )th—Z[ O] MO the s-plane with a unit circlels|=1. The transform function is
2R AB~1d)(gy(t)+*gi(th))]}Hdt writien as
d(c )(91(tT) +* g (t" )1} 2= teel(s), a=123f @.2)
+X(2)py(2), zeS" (3:26)  wherez,=x,+p,x, and
where the polynomial vectqy,(z) can be determined by the load- 1 1
ing condition. The first-order perturbation solutiéj(z) can be Z=w,(s)= Ea{(l—ipac)g+(1+ipac) —}
immediately obtained by substitutir{g.26) into (3.24). In a simi- s
lar way, the higher-order perturbation solutions can also be solved 1 N
step by step. Pals)= 532 {(an—ibn)(lJripa)G"
n=1
. . 1
4 Elliptical Boundary Perturbation +(apt+iby)(1-ip,) _n}'
S

Next we consider an anisotropic body containing an openin

whose boundary is slightly different from an ellipse which can b0t that the superscripte” denotes that the transformation is
expressed in terms of a small parameters related to the corresponding elliptical opening. With this transfor-

mation function(4.2), all the solutions given in2.2) are ex-

N pressed in terms of the new variabjenstead ofz (or z;). On

x;=a| cosd+e Y, (a,cosnd+b,sinnd) transforming to the regiofs|=1 of thes-plane, the perfect contact
n=1 (4.1) and perfect insulation conditions can then be expressed as
N ~
] ) T.,(0)=0, u,=u'(o), oel (4.3)
Xp=a csm13+sz (—a,sinnd+b,cosnd) |. " "
A1 hn=tm=0, oe¢l (4.4)

Whene=0 an ellipse with semi-axes andac can be described. wherea=e'? denotes the point on the unit circle of thelane;L
In other cases witk=0, c=1, ande=0, c— 0, the contour stands is an arc defined as=(e~'%,e'?), ('(o) is the given function of
for, respectively, a circle and a crack. N=2, a;=b;=b,=0, the displacement gradient along the tangent direatidm,, andt,
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X, 9'(s)=9o(s) +e[g1(s)+e(s)go(s)]

2| §! ” E 2 "
&% gx(s)+ @(s)gi(s) + 5® (s)go(s)|+ ... .
(4.8)

Let an anisotropic body contain an opening as indicated.i
be indented by a rigid stamp under the resultant heat @oand
resultant forcep over a segment, which is mapped onto an arc
L=(e"'*,e') in the s-domain. Along the perturbed boundazy
S* = wy(0) +e@y(0) with o=¢"? the boundary conditiongt.3) and

(4.4) can be rewritten as
ar_ d 2Rdg’'(c")]=0 L
s an " an2Rd9'(¢7)]=0, o€
4
» X, and 4.9
@ d
hh,=—2Rqikg'(c*)]=0, o¢lL.
m dn
Substituting (4.8) into (4.9 and comparing the coefficients of
n ¢ (A=0,1,2...) onboth sides, we have
_19 d -
- gr2Rdgi(07)]=0, o<l
Fig. 2 Arigid stamp indentation on a triangular hole boundary d
embedded in an elastic infinite body — 2 Rdikgy(oc™)]=0, o€l

dn

d
) ) . _ ! + + + " + — L
are the heat flux and the traction function, respectively, along the dn 2R g1(07)He(o7)Go(07)]=0, 7

normal directionm; n"=(cosé,sin#,0), m'=(—sin 6,c0s6,0); d

and@is the angle measured counterclockwise between the tangent —2Rdik{gi(c )+ e(c")gs(c*)}]=0, oel
vectorn and the positives;-axis (Fig. 2). In this section we con- dn

sider a material occupying the regi@i>1 as denoted bg" and

the region|s|<1 by S™.

(4.10)

4.1 Temperature Field. Like the problem of straight
boundary perturbation, the complex functigri(z) can be ex- |n view of (4.10),, the expression for the zero-order perturbation
pressed as is identical to the mixed boundary value problems with elliptical
boundary whose solution has been found@hao and Ga§14])
as
9'(2)=094(2)+91(2)+&%g5(2)+ . . . . (4.5)
go(s)=s""Xo(s)Po(s), seS* (4.11)

With the definition(4.2), each terng; (z) in (4.5 can be rewritten

as whereXq(s) is the Plemelj function for the arc given by

Xo(s)=(s—e™'¥) Vs —e'*)7" (4.12)

9/ (2)=0{(®+e¢(s))=0{(z°) +ee(s)g] (2%
andpo(s) is a polynomial function, which can be determined by

" 5[890(§)]29i'”(29)+ o (4.6) the thermal loading condition, expressed as
-Q
_— . Po(s)= 7 —(1+5s) (4.13)
Substituting(4.6) into (4.5), we have mp
with
9'(2)=05(2°) +8[91(2°) + ¢(s)g5(2%) ]+ £ 5(2°)
p=a\/siF 9+cZcod 9. (4.14)
1
"ee — .2 " e
To(s)0i(Z)+ 2¢ ()90 (Z) |+ - (“.7) Oncegy(s) is obtained, it can be used as a reference to solve the
other unknown functiongj; (s). The second set .10 can be
Sincezi= w(s), we can expresg; (z°) in terms ofg/ (s) as rewritten as
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i
ff[g{(a*wso'(o*)ga(owqo(a*)gz;'(a*n

i
+ p_o_[9’1’(0'+)+<P’(U'+)98(U+)+<P(0'+)98’(0'+)]:0, oel

K (4.15)
g
7[9'1’(0*)+<p’(tf+)98(0*)+<p(0*)98'(0*)]
k ”n + ’ + " + + m +
+ p—a[gl(o )+ (07)gg(07)+e(07)gg(a™)]=0, oel.
I
In view of (4.15, the termse’(2)g5(2) and ¢(2)gg(z) are not and (4.16
holomorphic inS* or S™. In order to employ the analytical con-
t!nu_ation theore_m, we need the following relationship by differen- 2 1 1 1
tiating (4.10, with respect too as gg(o™)= ?gg(?) + Fgg’(?) , oe¢l
2 " + + " +\ — 1 " 1 L
9ol ) +ago(07)==500| 7=|. ©o¢ and introducing
|
N
4 a H H l " "
sg1(s)+ 5 21 (ap+iby)(1-ip) ;}{—ﬂgo(s)ﬂgo (s)}
a=
a < 1
+ EnZl ((an+ ib)(1—ip) o §2{— ngs(s)+295(s) +sgg(s)}, seS"
01(s)= (4.17)
1 H(l +a2 'b 1+' n n " 1 2 H(l 1 n 1
S9il5)H 22 HEnmTb)(HIRSTH 2 86| 5 = G286 5~ 361 5,
a ¢ i in\n " 1 1 m 1 —
—Egl{(an—lbn)(lﬂp)g H —ngg ;—+Zgo ik seS .
I
With the aid of(4.16) and(4.17), Eq. (4.15 can be rearranged to f(2) =fo(2%) + &[f1(2%) + @(s) (2% ]
the following Hilbert problem
1
01(0_+)+ 01(0_—):0, ge L +82 fz(Ze)+<p(g)fi(Ze)+ E(Pz(g)fg(ze) + ... .
'+ P (4.18)
01(07)—01(c7)=0, oelL. (4.22)
The first-order perturbation solution td.18) is found as Sincez,=w,(s), we can expres§(z°) in terms offi(s) as
ai(g)zxo(g)pl(g)l §ES+ (419) f(g):f0(§)+8[fl(g)+@(g)fo(g)]
1
where the polynomial functiop,(s), similar to the previous ap- +&2 fo(s) +¢(s)fi(s)+ zqﬂ(g)fg(g) + ...
proach, can be determined by the thermal loading condition. Thus,
gi(s) can be directly obtained by substitutifg.19 into (4.17). (4.23)

Similarly, the higher-order perturbation solutiog&(s) can also Along the boundaryo=e

¥ the bound diti .3 and
be determined step by step. e boundary condition$4.3) an

(4.4) are written as

4.2 Stress Field. Similar to the problem of straight bound- d

ary perturbation, the complex functid(z) can be expanded into d 2 R4Af(ct)+cg(c™)]=0,,, oel

dn~ dn

2 (4.24)
f(z)=fo(z2)+efi(2)+e“fr(2)+ ... . (4.20) do d
tn=——=—-—2RdBf(c")+d ]=0, L
Each termf;(z) in (4.20 can be written as ™ dn dn 4Bf(o7) +dg(o)] Te
1 where
— — ’ 21

f(2)=f(2+ e (D) =Ti(2%) + s 0(OF (2°) + 5[ (5) 1’ (29) Uun(0) =lon(0) +£liyn(0) + &2lipp(0) + . .. .

+ . (4.21) Substituting(4.23 and(4.8) into (4.24) for s— o and comparing

the coefficients o™ (A\=0,1,2...) onboth sides 0f4.24), we

Substituting(4.27) into (4.20, we have have
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d
an? R Afo(a")+cgo(0)]=lgn(0), o€l

d
2 ReBfo(o™) +dgg(0™)1=0, sel

d A
an? ReA(f1 (") + (o )fg(0)) +c(ga(a ) +e(a")gp(o"))]=01,, oel

d
d_nz REB(fi(c ")+ (o™ )fp(c™))+d(gi(c ")+ e(a)go(c))]=0, &l
(4.25)

Like the problem of straight perturbed boundary, the first set of N 1
(4.29 is the equation for the zero-order perturbation which ig (U)——IPU1n+ 2 {(ap— |bn)(1+|p)gn}|p{_u0n
identical to that for the punch problem with elliptical boundary,

whose solution has been found ({@hao and Gagl14]) as

N
f0(s)=B (s 1@}(s)—dgy(s)) (4.26) +Ugn|— 2 [(an"‘ibn)(l ip) ]'P[(l n)alon

NIQJ

with N
R a
+0%0h ]+ 2i Im[ (c—ABld){ ogi(o7)+ 5 > (a,
1

’ _ 1 1 + _1 ~
@)o(G)—Z—mX(G)LE[X (O] *M{—pUgp

N
+2Im[(c—AB~td)tgy " (t) JHdt+X(s)po(s), +ibp)(1-ip) n[ogo(f) ngo(o 2
seS* (4.27)
1
where X(s) is the Plemelj function for the arc angy(s) is a +ibp)(1—ip) = ((2—n)a?gy(o ™)+ a3gh(a™)) }
polynomial function which can be determined by the loading con- 7

ditions. Oncefy(s) is obtained, it can be used as a reference tphe solution to(4.29 is found as
find the other unknown functiorfg(s).
The second set d#.25 can be expressed as

0(s)= X(s)f—[x (D] MU () dt+X(s)pa(s),
{Alfi (o) +e(a g0 + ¢ (0 )fo(0 )]

.
Fgi(o )+ e(a ) gyt ) + o' (0 )gh(o )]} s<S (4.30)

- _ - — where the polynomial vector can be determined by the loading
—{Alfi (o) +e(a () + o' (07) To(o™)] conditions. Thus®;(s) is completely solved and the first-order

perturbation solutiori;(s) can be obtained by substitutirig.30

+ 4 ¥ Ly T ¥
dgi(o7)+e(o™) gylo M) +e'(07) gelo )]} into (A3);. The higher-order perturbation solutioff{s) can be

=ipoly,, oel also solved in a similar way.
and 429 5 Examples
—o?(B[fi (e )+ @(a)fg(a )+ ¢ (aM)f(a™)] In order to demonstrate the use of the present approach and to
. N . e understand clearly the physical behavior of the indentation prob-
+dlgi(aT)+e(a")gg(oT)+ ¢ (07 )gg(o™) ]} lems, numerical examples associated with a cosine wave-shaped
- m - - boundary and a triangular hole boundary will be discussed in this
+{B[fy(c") +e(c) folo ") +¢' (o) fo(a™)] section.
+d[gy(c ) +e(a?) gyla) +e' (o) gy(a )} 5.1 ARigid Flat Punch on a Cosine Wave-Shaped Bound-

_ ary. We first consider a rigid punch indenting into the cosine
=0, o<l wave-shaped surface of an anisotropic elastic half-plane by a total

Unlike the problem of straight boundary perturbation, due to thresultant forcep=(0,p,0) and a resultant heat flo@ (see Fig. L

form of ¢,(s) in (4.2) ¢(2)f5(2) ande’ (2)f(2) in (4.28 will not The wave-shaped surface is slightly perturbed from a straight line

be holomorphic inS* or S—. To overcome this difficulty, one by @ small amount in amplitude represented as

needs the additional relationshifsee Appendixsuch that(4.28 Xo=e@(Xy), @(X1)=COSX;. (5.1)

can be rewritten as the following Hilbert problem of vector form
The material properties considered in the present study are chosen

0;(c")=0(0c7)=0, oel as
1o+ A —1o o — L~ (429)
0)(c")+MM 10)(0c )=—iMiy(0), oel E,;=144.8 Gpa, Ey—Es—9.7 Gpa,
where G1,=Gy3=G3=4.1 Gpa,
sziBAil, V1o= Vo3= V13:0.3, a11=—0.3>< 10_6 K_l,
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i —o-o— the zero-order solution
1 —a— the first-order solution

-2.5 -] -2.5
1 .
-3.0 - 3.0
Fig. 3 The normal contact stress along a cosine wave-shaped Fig. 4 The normal contact stress along a cosine wave-shaped
surface indented by a rigid stamp with ~ A*=—0.5 surface indented by a rigid stamp for different values of A*
(oy= ag3=28.1x 106 K1, (5.2) 5.2 A Rigid Stamp on a Triangular Hole Bounda_ry With
Rounded Corners. As a second example we consider that an
ky;=4.62 Wmi 'K 2 kp,=kg=0.72 W 1K1, equilateral triangular hole, which is embedded in an infinite body

having the material properties listed {6.2), represented by
During the indentation, we assume that the punch is completely2, a;=b;=b,=0,a,=1,¢=0.25 anda=c=1 in (4.1) is sup-
adhered to the half-plane over the contact redigh<a in such a jected to a resultant forge= (p,0,0) and a resultant heat flo@r
way that no slip occurs. Based on this assumption, the displaegproached from the negativg-axis along the segmemt=30°

ment of the surface of the half-plane is given as (see Fig. 2 Since the stamp completely adheres to the hole
. ) boundary, the displacement along the contact region will be a
U(2)=(c+e cosxy))i, (5.3)  constant value, i.elj(Z) = const. Note that this assumption is dif-
] - ) ) ) ) ferent from that given in(5.3). In that case the punch profile
wherei,=(010)" andc is the relative depth of indentation. differs from the wavy surface on initial contact, while in this

For the purpose of clearly expressing the effect of materighample, the surfaces of the stamp and the hole boundary are
properties, geometric cqnflgur_atlon and applleq loading on th@&sumed to be perfectly matched on initial contact as well as
contact stress, the nondimensional parametedefined as during the subsequent indentation. The nondimensional parameter
A \* for the problem with triangular hole boundary is defined as
~aQEa 54 . ) .
" kyp (5.4) \* = aq1E1Qa(c sing—e sin 2¢) 55)

K . .
is used which must be properly chosen such that the condition of uP
a negative(compressivecontact stress is satisfied. In the preserin the present case, perfect contact is found to maintain through-
case withe=0.1, perfect contact is found to maintain throughoueut the punch face as* ranges from—0.712 to 0.013 up to the
the punch face aa* ranges from—4.965 to 0.020 up to the first-order perturbation solution. The first-order perturbation solu-
first-order perturbation solution. Whext is beyond this region, tion for the contact stress,q,/(p/2a(c sing—e sin Zp)) with
either separation to occur near the ends of the punch or imperfé&e=—0.3 is shown in Fig. 5 that also reveals the stress singularity
contact to occur at the central region will be predict€dmninou behavior at the ends of the rigid stamp. The contact stress for
et al.[10]). Both the zero-order and first-order perturbation soludifferent values of\* is displayed in Fig. 6 which indicates that
tions for the contact stress,,a/p with \* =—0.5 are displayed in imperfect contact will be developed at=*15° if the value of
Fig. 3 which shows that the stress singularity is found near the\* increases and exceeds 0.712. On the other hand, perfect con-
ends of a rigid stamp. We also observed that the contact stresstf@t will be maintained throughout the punch fac@if is suffi-
the first-order perturbation solution with cosine wave-shaped suiently large for either direction of heat flow.
face is larger(or lesg than that for the zero-order perturbation
solution with flat surface near the central péot the edgg of a
rigid punch. The contact stress under the punch face for different .
values of \* is shown in Fig. 4. The result indicates that thd Conclusion
contact stress near the center of the punch face decreases withhe mixed boundary value problems of two-dimensional aniso-
increasing the value of A*. Based on this finding, we anticipatetropic thermoelasticity with perturbed boundaries are solved in
that a central region of imperfect contact will be developed fahis paper. The boundary surface considered in this work is the
\*<—4.965. On the other hand,pf Q is sufficiently large(or \*  one perturbed by a straight line or an ellipse. Based on the Stroh’s
approaches zeypperfect contact will be maintained throughouformulation, analytical continuation theorem, conformal mapping
the punch face for either direction of heat flow. function, and perturbation technique, a general solution up to the

*
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am%p/Z D@ - esin2 )) Fig. 6 The normal contact stress along an equilateral triangu-
a(esing —¢£sin2e lar hole boundary indented by a rigid stamp for different values

— of \*

Fig. 5 The normal contact stress along an equilateral triangu-

lar hole boundary indented by a rigid stamp with A =—03 this case the heat conduction problem will be transient and needs

to be posed in a moving frame of reference. The correct formula-
tion of such physical problems requires an incremental treatment

that is beyond the scope of the present study.
first-order perturbation has been solved explicitly. Two numerical

examples of rigid stamp indentation on a perturbed boundary REknowledgments

an anisotropic elastic body are solved completely and shown i

graphic form. As discussed in the preceding chapter, in order toThe authors would like to thank the support by National Sci-
make an analytical solution accessible in this work, we assurfigce Council, Republic of China, through Grant No. NSC 90-
that the stamp is considered to completely adhere to the surface2d#2-E-011-062.

an elastic body over the contact region during the indentation. }f .

reality, when a rigid indenter is pressed into a half-pléaae a ppendix

triangular hole boundajythe contact area on the half-plane will In order to obtain the Hilbert problem given {#.29), we first
not be stationary, but will move over the half-plane with time. Fosubstitute(4.2) into (4.28), as

NISD

N
—o[Bfi(o ergl(a*)]Jr—[Bfl(a*)erg1 Z { a,—ib,)(1+ip)o" 1+ (a,+ib,)(1—ip) nll}[Bf”

N
+dgh(o )]+ 5 Y, [<an+ibn)<1—imo““+<an—ibn><
1

n=

1][5 o(o ) +dgg(o )]

N N
7; - ((an n)(1+ip)ne"+(a,+ib,)(1—ip) ][Bf0(0'+)+dgo(0'+):|+ 2 (an+ibn)(1—ia)n;n
+(a,—ib,)(1+ip) = }[Bfo a)+dgy(e™)]=0, oel. (A1)

Differentiating (4.25, with respect too yields

-1

—Ugnt+ =04, ocelL
o2 Jon™ “Uon

vl | |- | el el

1
+cgo( )J=—U4[Af6(o+)+cgo(o+)] 203[Af0(a+)+cgo ]+ip[o? u0n+0' uOn] ogel

2[ 1 .
[Af§(oc™)+cgg(a™)]= Afo( +ip

o
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Based on the relationship expressed in the last two equatiq@®pf(Al) allows us to introduce a new holomorphic function expressed
as

) 3ol ]} o
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On the other hand, substitution ¢£.2) into (4.28; and using the first two equations G&2) gives

N

a
—Aj ofi(c™)+ EE

n=1

1
(an+ib)(1-1P) =

N
[afy(a®)—nfy(a™)]+ 22

_1
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N N
a 1 a 1
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Furthermore, Eq(A3) can be rearranged as

=
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Three-Dimensional Green’s
Functions in Anisotropic Elastic
Bimaterials With Imperfect
Interfaces

In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials with
imperfect interface conditions are derived based on the extended Stroh formalism and the
Mindlin’s superposition method. Four different interface models are considered: perfect-

E. Pan‘ bond, smooth-bond, dislocation-like, and force-like. While the first one is for a perfect

Structures Technology, Inc., interface, other three models are for imperfect ones. By introducing certain modified
543 Keisler Drive, Suite 204, eigenmatrices, it is shown that the bimaterial Green’s functions for the three imperfect
Cary, NC 27511 interface conditions have mathematically similar concise expressions as those for the

Mem. ASME perfect-bond interface. That is, the physical-domain bimaterial Green’s functions can be

obtained as a sum of a homogeneous full-space Green’s function in an explicit form and
a complementary part in terms of simple line-integrals overr]Guitable for standard
numerical integration. Furthermore, the corresponding two-dimensional bimaterial
Green’s functions have been also derived analytically for the three imperfect interface
conditions. Based on the bimaterial Green’s functions, the effects of different interface
conditions on the displacement and stress fields are discussed. It is shown that only the
complementary part of the solution contributes to the difference of the displacement and
stress fields due to different interface conditions. Numerical examples are given for the
Green’s functions in the bimaterials made of two anisotropic half-spaces. It is observed
that different interface conditions can produce substantially different results for some
Green’s stress components in the vicinity of the interface, which should be of great interest
to the design of interface. Finally, we remark that these bimaterial Green’s functions can
be implemented into the boundary integral formulation for the analysis of layered struc-
tures where imperfect bond may exig2Ol: 10.1115/1.1546243

Introduction Recently, Shuvalov and Gprkuno{(mB]_ studied the correspond-
Interface modeling has been the subject of numerous studied§ Wave propagation in amsotro'p|c b|m_ater|a|s with smoo_th-bon(_j
material science and composite structure. The importance of lerface where they found certain special features associated with
searches in this topic cannot be overemphasized as it is dire smooth-bond !nterface. Besides various homogeneous inter-

fce models mentioned above, R20,21] has recently proposed

related to the prediction of the overall material properties, dela - 8 ! )
nation, transmission of force, etésee, e.g.[1—13). The most an inhomogeneously imperfect interface model where the inter-

ideal interface model, as is well known, is the so-called perfedC€ Parameters are functions of the position variable along the
bond interface where the displacements and tractions are contiffljérface, instead of constants along the whole interface for the

ous across the interface. However, interfaces are seldom perf@@nogeneous case. ) .
and therefore various imperfect models have been introduced While various interface-related studies have been carried out

such as the three-phase and linear spring-like mogis, i.e., f_or two-dimensionql deformation problems,_ relatively very f_ew
[14-16). Although these models are more capable of represe,l{{erature_s are avallqble fo_r the corres_pondmg three-dimensional
ing the imperfect interface, the associated Green's functions &leformations, especially with a planar interface. An apparent rea-
very difficult to derive ((14—17). Perhaps the most frequentlySOn is that most three-dimensional problems are complicated and
studied imperfect interface model is the smooth-bond interfageed to be solved numerically. Since singular stress field is usu-
where the normal components of the displacement and traction al associated with problems involving interface, a more suitable
continuous across the interface while the shear traction comgwasmerical tool would be the boundary integral equation method
nents are zero on the interface from both sides of the bimateriél®., [22]). However, successful application of the boundary inte-
(see, e.9.[1,2,18). This model is much simpler than the threegral equation method depends upon the variability of the related
phase and linear spring-like models, and has been used to desc@ibeen’s functions. Unfortunately, as far as the three-dimensional
the connection between two materials at elevated temperatbimaterial Green’s functions with imperfect interface are con-
([27]), and to model the bone implants in biomecharid®]). cerned, only those with the smooth-bond interface for isotropic
[1,23,24) and transversely isotropi25]) materials were ob-
Currently at the Department of Civil Engineering, University of Akron, Akron,tained previously. More recently, Y 4] introduced a dislocation-
s e ot e, s ot e sociery o 1Ke model where the interface conditon is simila to the linear
MECHANICAL EN)(lBINEERpSpfor publication in the ASME QURNAL OF APPLIED ME- §pr|ng—llke r_nOdeI but with the o_IlspIacement on one side of the
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May ginterface being assumed to be linearly proportional to that on the
2001; final revision, Mar. 5, 2002. Associate Editor: D. A. Kouris. Discussion on thgther side of the interface. This dislocation-like model enjoys at

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departmen R ;
Mechanical and Environmental Engineering University of California—Santa Barba‘éfiSt two advantage$1) The interface shear stress predlcted by

ra,. . . . .
Santa Barbara, CA 93106-5070, and will be accepted until four months after fir%b's mOdel.agreed qufam{anvely with eXpe”memal measwements
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. ([15)), a suitable description on the effect of an imperfect interface
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on the load transfer an@) For this model, the exact closed-formgreatest variation as compared to the perfect-bond results. These

bimaterial Green’s functions can be derivgd4,15]). features should be of great interest to the composite structure
Besides their application as kernel functions in the boundaanalysis, in particular, to the interface design. Since the bimaterial

integral equation method, the three-dimensional Green’s fun@+een’s functions for the four interface conditions can be obtained

tions, in particular, the three-dimensional bimaterial Green’s funwery efficiently and accurately, they can also be implemented into

tions with various interface conditions, are of special values in ttée boundary integral formulation to investigate the deformation,

numerical studies of strained semiconductor quantum devicgigess, and fracture problems in anisotropic and layered structures

where the strain-induced quantum dot growth in semiconductefth imperfect interfaces.

nanostructures is crucial to the electronic performaihzé—2§).

Whilg u_nder two-dimen_sional deforma_tion, the stra}in-inducggromem Description

elastic fields can be easily analyzed using the analytical solution . . ) o )

([29)), for those in the three-dimensional bimaterial space, the Consider an anisotropic elastic bimaterial full-space where

Green’s functions, as embedded in the Eshelby teff&r,31), >0 andx3<0 are occupied, respectively, by materials 1 and 2

are required in the corresponding studies. Unfortunately, for proWith interface atx;=0 plane. Without loss of generality, we as-

lems with material anisotropy, as for the strained semiconduct$fMe that a point force=(f1,f,,f5) is applied in material 1 at

quantum devices, the involved three-dimensional Green's furgQurce pointi=(d,,d,,d;=d>0), with the field point being de-
tions are very difficult to derive. noted byx=(x4,X,,X3=2)“. Following Pan and Yuaf36], the

In recent years, the Stroh formalism, originally developed oblem domain is now artificially divided into three regions:

stroh ([32,33) for the two-dimensional deformation problemsZ~ 9 ('rl‘ material 3, 0<z<d (in material 3, and z<0 (in
has been extended to certain three-dimensional Green’s functm%t.e”a 2. h L f f the body f th " f
solutions([34—-37). This opens a new door to further exploring Ince each region Is now free of the body force, (he€ equation o

the Stroh formalism. The most promising feature, perhaps, is tﬁg.u'"b”um in terms of the elastic displacemeniscan thus be

application of the extended three-dimensional Stroh formalist e @S

combined with the Mindlin’s superposition meth¢@®8]), as in CijiiUk,;=0 1)

Pan and Yuan37]. In doing so, the three-dimensional bimaterial

Green’s functions can be expressed as a sum of the Kelvin soffffere Cij is the elastic stifiness tensor of the corresponding
tion (the full-space Green's functiprmnd a Mindlin's complimen- region. As a convention, summation is taken for the repeated

. . . index from 1 to 3, and an index following the subscript comma
tary part([37]). While the former has an explicit expressipB89— . . e : )
42]), the latter is expressed in terms of a simple and regular Iirﬁjggfdtﬁ;ltéhe partial differentiation with respect to the field
integral overl0,7]. This is perhaps the most simple and concisé E uatioﬁ(l) needs to be solved for each region with suitable
approach available since a direct application of the Fourier trans- d 9

form would end up with a Green’s function expression in terms (?:Pntmwty conditions along the interface and at the source level.
u

three-dimensional Eourier intearals for the homodeneous f cFthis paper, four different interface models are considered, with
9 9 ane being perfect and three being imperfect.

space and four-dimensional Fourier integrals for the bimaterial
full-space([43)). Model 1. The displacement and traction vectors are continu-
In this paper, we further extend the three-dimensional Str@us across the interface, i.e.,
formalism and Mindlin’s superposition method to the study of the ) @ (1) .2 o
three-dimensional Green’s functions in anisotropic elastic bimate- Y] |Z=0*_”i l2=0- 4 |Z:0*_tj lz=0-; ]=123
rials with imperfect interface. Four different interface models, (22)
namely perfect-bond, smooth-bond, dislocation-like, and forcesere the superscriptd) and(2) are used exclusively to denote
like, are considered. While the first model is for a perfect interfaghe quantities in materials 1 and 2, respectively. It is seen that, for
for which the corresponding bimaterial Green’s functions wengis model, the two half-spaces are perfectly bonded together, and
derived by Pan and Yu&87], other three models are for imper-such an interface is also called perfect-bdied ideal, weldey
fect interfaces for which the corresponding bimaterial Greeniaterface(see, e.g.[1,17,24). We further mention that the aniso-
functions are derived in this paper. Furthermore, the dislocatiomepic bimaterial Green’s functions with this interface condition
like model has been generalized by introducing an interfateve been derived recently by Pan and Y[&H and are included
spring-like matrix, instead of only two parameters, and the forcéere for the purpose of comparison to the bimaterial Green’s func-
like model is a complete new one resembling the recently prtiens with imperfect interface conditions.
posed traction-jump mod€]16,44,45) with its potential applica-
tion yet to be found. We will show that even for the thre
imperfect interface models, the bimaterial Green’s functions ¢

Model 2. The displacement and traction vectors are required
A satisfy the following conditions across the interface:

IHETTE : ; ) )
still enjoy the same simple and concise structure as that for the U o =uP 0t or =tP],—o-

perfect interface model. This is actually achieved by carefully (2b)
introducing certain modified eigenmatrices corresponding to the t], g =t?],o-=0, a=1,2.

imperfect interface conditions. We also remark that while the ge
eralized Mindlin's problem in an anisotropic elastic half-spac erface models and is called smooth-bofd frictionless, slip-
with general boundary conditions has been recently solved by ﬁ\g or sliding interface([1,17,24,25)

author ([46]), the corresponding two-dimensional bimateria ’ o

Green’s functions with the three imperfect interface models areModel 3. Across the interface, the traction vector is continu-
derived analytically in the Appendix of this paper. ous and the displacement vector is discontinuous:

A typical numerical example on the Green’s stress distribution (2 1 2 o
is given for a bimaterial full-space made of two orthotropic half- Ui |2=0+ =K |20 67|20+ =ti7z=0-1 1=1,2.3
spaces with the four different interface models. It is demonstrated (2
clearly that by varying the interface parameters in the dislocatiofhere the constant matrk=[k!] describes the bonding condi-
||ke and fOrCE'“ke mOdels, various |0ad transfer states can B@n along the interface_ Y([14]) recenﬂy proposed th|s imperfect

simulated. It is observed that, for most Green's stresses, the fosferface model for the isotropic bimaterial full-space with the
different interface models affect only their local distribution be-

haviors in the vicinity of the interface, and that among the thr€€zrpereatter, the scalar variableandd will be used exclusively for the third field
imperfect interface models, the smooth-bond model shows th@rdinatex; and third source coordinatiy, respectively.

This is perhaps one of the most frequently studied imperfect in-
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constant matrixk" being diagonal. This new model is called u=(uq,U,,us)

dislocation-like because of its similarity to the Somigliana’s dis- Q)
location ([31]). Yu [14] proved that for this new interface model, t=(013,023,033 = (13,13, t3).

the three-dimensional isotropic bimaterial Green’s function poginally, the Green’s function solutions are required to vanisjx|as
sesses the same simple structure as that for the perfect-b@pgroaches infinity.

model, and that the load transfer at the interface predicted with

this model is quantitatively comparable to the experimental meg. . , . .
surement. Fu?thermore, tzvo sp?acial cases can %e reduced fr%m]at?”al Green's Functions in the Transformed

this model:(a) If ki“j is an identity matrix, implying vanishing of main

the displacement jumps at the interface, the dislocation-like modelTo solve the problem described in the previous section, the
is then reduced to Model 1, i.e., the perfect-bond interface(lnd two-dimensional Fourier transform, i.e., for the displacement,

if ki“j is a zero matrix, then the bimaterial problem is reduced to

two separate half-space problems. With a point force being ap- ﬁk(yllyzyz;d)=f f U(X1,Xp,Z;d)eYeXad X dX,  (5)
plied in material 1, the half-space problem for material 1 can be

first solved subject to a rigid surface boundary condifiog, the is applied to Eq(1) for the three regions. In Eq5), « takes the
surface displacements are zer®hen, the solution in the half- summation from 1 to 2. We point out that, when carrying out the
space of material 2 can be solved using the traction surface calauble Fourier inverse transforms later on, a polar coordinate sys-
dition of Eq. (2c). Therefore, with the element values of the matem that relates the Fourier variablag (y,) as

trix kj; varying from O(for rigid-bond to 1 (for perfect-bong the

dislocation-like model can actually simulate various intermediate

interface conditions between these two extreme cases. Anothélt be used,[37].
interesting feature associated with this model is that when theApplying the two-dimensional Fourier transform to the conti-
matrix kjj is diagonal, the first two elements on the diagonal aruity conditions(2a—d) at the interface=0 and the conditiori3)
related to the interface conditions in the tangential directions agd the source levet=d, the general solution in the transformed
the third one to the condition in the normal direction of the interdomain that satisfies the source level condition can be expressed
face. In the following analysis, we assume that the mekfjixis in terms of the Stroh eigenvalues and the corresponding eigenma-
diagonal with values in the intervaD,1) and that its inverse trices as([34,37):

y1=7cC0s0; y,=mnsing (6)

exists. For z>d (in material 1:
) ) ~ 1T s dn =« 1T

Model 4. In contrast with Model 3, here across the interface, UM (yq,y,,z,d)=—in tAD(e P« 7Z=dyg*—j 5= 1AL
the displacement vector is continuous while the traction vector is _

. . —|5‘1)7]z ~(1)
discontinuous: X (e P+ ")q

u|,_os =u?|,_o, ti(l)|z=0+=kitjt}2)|z:0’; i=1,2,3. *f(l)(yl,yz’z;d):_Ql)<e_@1)ﬂ(z—d)>?_§1><e_i5<*1>nz>a(1)
(2d) @

Similarly, the constant matri)kt:[ki‘j] describes the bonding - 1) (1)

condition along the interface. This new model, being named a8 (Y1 y2,Z:d) = = C(e Px = D)7 — ClH(e Px g,
force-like model, describes a traction jump at the interface. We For 0<z<d (in material 1:
remark that this force-like model resembles the traction-jump ) _
model proposed recently by Benvenidtes], Benveniste and UV (y1,y0,z,d) =i 5 T AN (7P 7z Dyg* —j = IAD)
Chen[44], and Hashin[45] and that it includes two previous
models as its special casda) If ki‘j is an identity matrix, imply-
ing vanishing of the traction jumps at the interface, the force-like L iy, (D)
model is then reduced to Model 1, i.e., the perfect-bond interface; t Y(y1,y2,z;d) =B (e Px 72 d)g* — (e~ Iy 72 gl
and (b) if k}j is a zero matrix, then the bimaterial problem is (®)
reduced to two separate half-space problems. With a point forcexa) )= Wy a-ipPpz-d)\ o= _ o)) a-ip nzy gt
being applied in material 1, the half-space problem for material leg (Y1,Y2,z,d)=C"Xe yar—C e YA
can be first solved subject to a traction-free surface boundary con¥or z<0 (in material 2:
dition. Then, the solution in the half-space of material 2 can be ~2) 1A @) aip P (2)
derived using the displacement surface condition of Ex). u?(y1,y2,zd)=in "A'%(e P+ 7)q
Consequently, with the element values of the malgjxvarying ~ L _ip®?
from O (traction-free to 1 (perfect-bong the force-likellmodel can t2(y1,y2,2,d) =B (e "= 7)q? ©)
actually be used to simulate the load transfer along various inter-
mediate interfaces between these two extreme cases. Furthermore,
similar to Model 3, if the matri>k}j is diagonal, then the first two where
elements on the diagonal are related to the interface conditions in —ipy 72\ — Hi ~ip1mZ a—ipa7Z a—iP3nZ
the tangential directions and the third one to the condition in the (e y=diage P e b, e o] (10)
normal direction of the interface. Again, we assume that the iand
verse of the matrix!. exists. o ANTEalY A = AL\ Tsaiy .d

Besides the interféce conditionszt 0, one will also need the A" =(AD)TfeYel, g7 =(A)TheYutk, (11)
condition at the source level in order to solve the bimateridh Egs. (7)—(9), p; (j=1,2,3), andA, B, andC are the Stroh
Green's functions. It is found that, at the source lexeld where eigenvalues and the corresponding eigenmatrices, and their ex-
the point force is applied, the displacement and traction vectgeeessions, being functions of the elastic stiffness tensor and the
are required to satisfy the following conditions: Fourier angular variabl#, can be found in Pan and YudB7].

Also in Egs.(7)—(9), 7 is the Fourier radial variable defined by

(3) Eaq.(6), ands the Fourier transform of the in-plane stress vestor
t0] o =t = 8(x1 = dp) 8%~ o) defined by

where the displacement and traction vectoendt are defined as $=(011,012,02)). 12)

X (e ip{" 2y

$(y,,y,,z,d)=C (e P 72)g@

u(1)|z:d’: |J<1)|z=d+
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One important feature associated with the extended three; g
dimensional Stroh formalism is that the Stroh eigenvalyeand
the corresponding eigenmatricAs B, andC in Egs.(7)—(9) are
all independent of the Fourier radial variabj¢ This is actually
the key in success of carrying out exactly the infinite integral with
respect to the Fourier radial variablg reducing the bimaterial
Green’s function to an expression in terms of a simple line inte-
gral of 6 over a finite interval0,7] ([37]). Furthermore, as will be
shown next, similar concise expression can also be obtained even
for the three imperfect interface models, upon introducing certain

o B By Bl BY B

BYY B BY|(e" g | BY BR BR |V

g BY BY BY) B BY
-BYY By -By

=| -8B -BY B |q?. (150)
By BE BY

modified eigenmatrics associated with the imperfect interfacelt is very interesting that these two equations have a similar

conditions.

To determine the complex vectags? andq® in Egs.(7)—(9),

structure as that for the bimaterial Model 1 with perfectly bonded
interface conditiong13a) and (13b). Therefore, the solution for

one of the interface models should be applied, and they are dige complex vectorg™ andq® can be found following the same

cussed below one by one.
Model 1.

APy 7y g — AGTD = A2)g(2)

BL(elPy 7dy g — BLigT = B(2)g(2),

Model 2.
the complex vectorg™ andq®® are

For the perfect bond, we foun@37])

procedure as for the perfect-bond interface. We further remark that
this analogue method also works for other well-posed homoge-
neous interface conditions, as long as the displacement and trac-
tion vectors do not coupled in the same interface equation. If the

(13a) displacement and traction components are mixed together in any
interface condition, e.g., the spring-like model with interface dis-
placement jump proportional to the interface traction, the infinite

(130) integral over» cannot be carried out exactly even for the two-

For the smooth bond, the interface conditions fogimensional isotropic bimaterial plane ca$e7]).

Model 3. For the dislocation-like model, we have

= = = AP 7ty g _ AT = KUA2)g(2) 163
B BY BY BY BY BY ( )a q q (169)
- (1) - — oy oy in(1) o =
BY BY BY |(ePmyg —| BY BY BY |q® BL(elPy 7y g — BLGIY = B2)g(), (160)
By BY BY BY BY BY Model 4. For the force-like model, we have
-B2 -BY -BY AP 7y g7 — A = A2 (172)
_| _g@® _g®@ _g®@ |2 _
=| =B -B% By |q (149) B(W(eiP\ 7y g7 — B =K'B@)g?. (17)
BSY BY BY
Since all the equations fa™® andq® have similar structures,
L L Do o —1 =1 the solutions for them can therefore be expressed uniformly as
(A A AZ(ePs g™~ (AY AL AW ED
2 2 2 E”)ZGKe"’(* 77d)"—l00
=(A) A AG)q® (140) 1 (18)
q=Gy(e? 7)q".
i (l) o ol ol = . . . .
(BSY BY BY)(ePx ™)q"—(Byy B B In this equation, the matrice&; and G, for the four different
models are found to be
=(B5} BY B{E)q? (140) o
Gy=—(AD) " {MD+M@)" MO -M@)AD
BL BL W BY BWL BW 19)
( S 13)<eip(1)”d>qx 2 B gag Go= (A1 M@Y=+ O AD
* —| = — — = = - + - +
BY BY BY BY BY BY G2 (A ) ( )
(14d)  whereM (@ are the modified impedance tensors defined by
B B B, . . M@= —iBOAD) T (a=12) (20)
B BY BY a ' with the modified eigenmatrices(®) andB(*) being given below

for the four different interface models.

Itis observed that solving directly these equations for the compleXyjode| 1. For the perfect bond37)),
vectorsq™® andq® is very complicated. However, by performing

certain simple additions and subtractions, these equations can be

grouped equivalently into two matrix equations:

B B B 5 B
B B B | (e mg - | BY B
MY A A Ay AY
8% 82 8
-\ 8% 8% 82 |q®
AG AR A

Journal of Applied Mechanics

AW=A@  B@W=B®; (a¢=1.2). (21)
Model 2. For the smooth bond,
By By By Bl
8% | g Aw=| BY BY BY|; (a=12 (223
A A A A
-8 -BZ -8
(15a) BV=B®; B®=| -BY -BY -BY|. ()
B¢  BY BY
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Model 3. For the dislocation-like model, Assuming thatz#0 or d#0, the 3x3 Green’s displacement
tensor in material 1, with the first index for the displacement

AL=AD;  A@=KUA2) 23) component and the second for the point-force direction, is found
to be

B@=B@; (a=1,2.

1 T
W(x:d)=U™(x: i WG AT
Model 4. For the force-like model, U xid)=U"xd)+ 2#[[0 ATGAT) de} (25)

AD=ZA@: (=12 (Ga)jj

@4 (CM==zm :
. - —pWz+pMd—[(x,—d;)cos+ (x,—d,)siné
BU_BW: B@_KB®, pi P [(xg—dy) (x2—d3) ](26)

Equationg7)—(9) are the bimaterial Green’s displacements anbh Eq. (25), U*(x;d) denotes the homogeneous full-space Green’s
stresses in the Fourier transformed domain. For the four differegisplacement tensor with elastic properties of material 1 for which
interface models, the complex vectars) andq® in Egs.(7)— an explicit expression is availabl{E39-42). In Eq. (26), the in-

(9) have been derived in a unified form. With the exception of théicesi andj take the range from 1 to 3.

perfect-bond interface, the bimaterial Green’s functions for the Similarly, the bimaterial Green’s stressgsaction and in-plane

three imperfect interface models are new. Similar to the perfegtres$in material 1 and the Green’s displacements and stresses in

bond bimaterial Green’s functiog37]), there are several impor- material 2 can be derived as

tant features pertained to these Green’s functions. While a detailed 1 _

discussion can be found in Pan and Y{ia#], we restate only one TOd)=T=(x;d) + _2[ J BUGY(AM)Tde

of the features closely related to the present work and add three 27| Jo

new observations associated with the imperfect interface

conditions: SU(x;d)=S"(x;d) + i{ FEDG“)(A(D)Tdo
T ’ 272 t

1. As has been observed by Pan and Y{@r, for the solu- 0
tions in material 1 £>0), the first term in Eqs(7) and(8) is the 1 -

Fourier-domain Green’s function for the anisotropic full-space. U@ (x;d)=— _2[f A(2>GLZ>(A(1>)Td0
The inverse of this Green’s function, i.e., the physical-domain 2| Jo

solution, has been developed by Tewgs®|, Ting and Leg40],

Sales and Gray41], and Tonon et al[42] in an explicit form. T@(x:d)=— i fﬂB(Z)G(Z)(A(l))Tde
Therefore, the Fourier inverse transform needs to be carried out ’ 272 0 t

only for the second term of the solutions, which is similar to the

complementary part of the Mindlin solutiof38]. 1 &

2. The modified eigenmatrices are introduced only for the pur- SP(x;d)=— 2_#{] C(Z)Giz)(A(l))Tde
pose of determining the complex vectas) andq®. The ma- 0
tricesA, B, andC in Egs.(7)—(9) and later in the final expressionsin Eq. (27), T*(x;d) and S*(x;d) denote the explicit Green’s
for the physical-domain Green'’s functiofEgs. (25), (27), (28)) stresses in the homogeneous full-space with the elastic properties
are the original ones and should not be altered. of material 1([42]) and

3. The methodology is not restricted to the four interface mod-

(27)

(28)

els presented in this paper. The complex vecgts andq® in Gy, = (Go)ij :
Egs. (7)—(9) for other imperfect interface models can be derived U {=pMz+ pPd—[ (%, —dy)cosf+ (x,— dy)sin 0]}
similarly by introducing the corresponding modified eigenmatri- (29)
ces. The only requirement is that the displacement and traction G
components are uncoupled in the interface conditions. (G2, = (Ga)jj
4. Under the assumption of two-dimensional deformation, the = " " —p{®z+p{Md—[ (x,—d;)coso+ (x,—d,)sin 6)]
corresponding anisotropic bimaterial Green's functions in the (30)
physical domain with the three imperfect interface models can be
derived analytically. This is given in the Appendix of this paper. (G2, e ((32))” RERET S
—pi~'z+p;'d—[(x;—dy)cosf+ (x;—dy)sin 6
(31)

Bimaterial Green’s Functions in the Physical Domain Therefore, in material 1, the bimaterial Green’s function is ex-

Egs. (7)—(9). To handle the double infinite integrals, the pol
coordinate transforn(6) is applied. In doing so, the infinite inte- function problem is complicated in nature, the final solution is

grall WTIFE res;;]ec:‘_to It?)? radial lvériabb@: szin be ca_rrieﬁ OUL €X" very concise, indicating that the modified three-dimensional Stroh
3Ct y- Thus, the ma(\j_ lmaterlaf reenls lf_nctl_on n tl ep ySIC%rmalism is truly mathematically elegant and numerically pow-
omain is expressed in terms of a regular line-integral @] op ([34,39)), especially when used jointly with the Mindlin’s

in the source-free half-space, and as a sum of the homogenegise mosition method. Indeed, a direct application of the Fourier

full-space Green's function and a regular line-integral 4Ge2n] té%msform would require a three-dimensional integral for the full-

in the point-force loaded half-space. Furthermore, the line integr, ace Green’s function and four-dimensional integral for the half-
over[0,2m] can be reduced t®,] using certain properties of thes ace Green’s functioj43]). Furthermore, with regard to these
Stroh eigenvalues and t_he corre_sp_onding modified eigen\_/ect Eﬁ/sical-domain bimaterial Green's functié(gEqs.(ZS) (27), and
([46,47). The procedure is very similar to the perfect-bond inte 28)), the following important observations can bé ma{de, with

face([37]) and one needs only to replace the matriGgsand G, : S :
with those corresponding to the given interface conditions. Listesé)me of them being similar to those made in Pan and Y3dh

below are the final physical-domain bimaterial Green’s functions 1. For the complementary part of the solution in material 1 and
for the four different interface models. the solution in material 2, the dependence of the solutions on the
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field point x and source pointd appears only through matrices . L 1 — Dy A (DT
G, M, 6@ andG® defined in Eqs(26) and (29)—(31). SY(x;d)|m—S )(X:d)ll=ﬁ“ CYAGH(AY)Tde
Therefore, the derivatives of the bimaterial Green'’s functions with 0

respect to either the field or source point can be exactly carried Qiere
under the integral sign. These derivatives are required in the

boundary integral formulation for the internal stress and fracture N ((31|m—c;1|1)ij
analyses in bimaterial solid$48]). (AGM)jj=—=5—m -

2. The integrals in Eqs(25), (27), and (28) are regular ifz —pi 'zt p;d—[(x;—dg)cosb+ (X, —dp)sin ]
#0 or d#0, and thus can be easily carried out by any standard (34)
numerical integral method such as the Gauss quadrature. Actually, (Gylm—Gil )i
Pan and Yang49] have recently applied an adaptive integrationAG(!)); = ——+—— tm 21 .
version in order to calculate the perfect-bond bimaterial Green’s {=pi~z+pj d=[(x;—dy)cosd+ (X, —dy)sin 0](}35)
function.

3. If z#0 andd=0, the bimaterial Green's function is still |5 Eqs.(32)—(35), the displacement and stress fields with a verti-
mathematically regular although some of its components may ng{j |ine followed by subscript 1 are the bimaterial Green’s func-
have a direct and apparent physical mear{dg). However, the +{jons corresponding to the perfect-bond interfgice., Model 1,
author([46]) has recently given an indirect physical explanatiog,q those by subscriph (=2, 3, and 4 correspond to the three
using an equivalent relation between the Green’s function due t%\perfect interface models.
point force and that due to a point dislocatior infinitesimal Similarly, for the field point in material Zi.e., z<0), we
dislocation loop. obtained

4. When the field and source points are both on the interface
(i.e.,z=d=0), the bimaterial Green’s function is then reduced to /v 21w 1 ™ DA (2 AT
the interfacial Green's function. For this special case, the lineY Gd)|m—U (X*d)|1:_ﬁ ATAG(AT) o
integral involved in the Green'’s function expression becomes sin- 0
gular and the resulting finite-part integral needs to be handled with 1 -
special approaches. A detailed study for the perfect-bond interfacd @ (x;d)|,— T (x;d)| ;= — —2[ f B?AGH(AM)Td 0}
can be found in Pan and Yaii@9]) and a similar approach can be 21| Jo
followed for the imperfect interface models. (36)

f “c2a G2 (AM)Tde

0

S2(x;d)|m—S?(x;d)| ;= — %{

Effects of Interface Conditions

The effect of different interface conditions on the displaceme
and stress fields was studied by Dundurs and HetgllyiMura (Golm—Gal1)ii
[31], and Yu[14] for the isotropic bimaterial full-space. However, (AG{?)jj=—m-—— : :

a systematic discussion on this issue has not been carried out yet, —pi“z+p;d—[(x;—d;)cosf+ (x;—dp)sing)]

mhere

not to mention the complexity due to the general anisotropy. (37
Based on the extended three-dimensional Stroh formalism and (Galm—Gal1)i

Mindlin's superposition method, we have found that the effect afAG{*);; = ——z——; T : —.
different interface conditions on the displacement and stress fields {=pi"z+p;d—[(x;—dy)cosb+ (x;—dy)sin 0]}
can be studied with a unified formalism. (38)

When studying the difference of the elastic fields due to differ- .
ent imperfect interface conditions relative to those with thBlumerical Examples
perfect-bond interfacéi.e., Model 1, it is noted that the full-  Having derived the bimaterial Green’s functions for the four
space Green’s function has no influence at all to this difference different interface models, and discussed the effect of different
is the complementary part of the bimaterial solution that contritimperfect interface conditions on the displacement and stress
utes to it! We also notice that it is the mati®q or G, that totally  fields, we now present numerical examples for these bimaterial
controls such a difference. This is actually no surprising sin@8reen’s functions. We first mention that the present bimaterial
when deriving the bimaterial solution, it is the complementargreen’s functions have been checked with previously available
part that takes care of the different interface conditions, and it éslutions([1,37]) for some special cases in isotropic and aniso-
the matrixG; or G, that directly accomplishes the task! Theretropic bimaterials.
fore, the difference of the displacement and stress fields due tdn the present examples, materials 1 and 2 are both orthotropic.
imperfect and perfect interface conditions is directly proportionaliaterial 1 is the NASA fabric, a composite material made by
to the difference of the integral involving the mat® or G,.  stacking layers of a carbon warp-knit fabric that was stitched with

In the study presented below, we restrict ourselves to the casevlar-29 thread prior to introducing 3501-6 epoxy refig7]).
where the source poirt is within the material 1 ¢>0) but the Material 2 is a graphite/epoxy composite with strong material an-
field pointx can be anywhere in the bimaterials. Again, the difisotropy([37]). In using these two materials, their principal mate-
ference is relative to the bimaterial Green’s function solution cofial axes €, andE,), originally coincide with thex-y—axes, have
responding to the perfect-bond interfa@e., Model 1. We also been rotated 45 deg counterclockwise with respect taxtheis.
mention that results for the derivatives of the displacements amfus the stiffness tensd2;;, of both materials in the structural

stresses will not be given but can be obtained trivially. coordinates X,y,z) is monoclinic with symmetry plane a=0.
For the field point in material .e., z>0), we found This bimaterial full-space actually corresponds to the case Il in
1 _— Pan and Yuarn([37]), and the elastic stiffness in the reduced and
U(l)(X;d)|m—U(l)(X;d)|1——2[f A(DAGE})(A(l))Tde dimensionless form for materials 1 and 2 are given, respectively,
27| Jo in Tables 1 and 2.
(32) Some dimensionless Green’s stress components in such a bima-
1 _ terial full-space are presented in Figs. 1 to 5. In these figures, the
T<1)(x;d)|m—T(1>(x;d)|1=—2[f BYAGH(AD)Tdg point force of a unit magnitude is applied at (@6,1). The
27| Jo stresses are plotted at field poinisy(,z)=(1,1z) with z varying

(33) from —3 to 3.
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Table 1 Elastic stiffness  C;; in material 1 0.012

.83514624D1 .33934624D1 .57053231D0 .0 .0 .17804512D:
.83514624D1 .57053231D0 .0 .0 .17804512D1
.15949776D1 .0 .0 .65283587D-2 0.008
.605 .035 .0
.605 .0
.34414318D1
~n 0004
(I
L
g
First, the effect of the interface matrich$ andki‘j (in Models g 0.000

3 and 4 upon the bimaterial Green’s stresses is studied. For sir>,
plicity, these interface matrices are assumed to have the sag
diagonal structure, i.e., k=
KY=K'=diadk,k,1] (39)

wherek varies from 0 and 1. Therefore, for Model 3, the norma
displacement component is assumed to be continuous while 1
tangential components are not. Similarly, for Model 4, the norm:
traction component is assumed to be continuous but the shu
components are not.

Shown in Figs. (a) and 1b) are the variations of the dimen- -0.012 N SN N TSN S S
sionless Green'’s stress component due to a point force applied 3 )
in the z-direction for Models 3 and 4, respectively. For both mod
els, the interface parametem Eq. (39) takes the values of 1, 0.5, @
0.1, 0.01, and 0.0001. While=1 corresponds to the perfect-bond
interface(i.e., Model 1, otherk values are for the imperfect bond
with k=0.0001 simulating the tangential zero-displacement ar
shear traction-free interfaces, respectively, for the dislocation-lil
and force-like modeléthe result fork=0.0001 is nearly identical 0.03
to that fork=0.000001). It is observed from Figs(al and 1b)
that this Green’s stress component is discontinuous across the -
terface for both models. Furthermore, it is found that for th
dislocation-like modelFig. 1(a)), the amount of discontinuity is 0.02
the largest for the perfect-bond interface and decreases in gene
with decreasing, reaching a final value when the tangential dis
placements are zer@.e., k=0). For the force-like mode{Fig.
1(b)), however, the amount of discontinuity is the smallest for th
perfect-bond interface and increases with decredsingaching a
final value when the shear tractions are zére., k=0). There-
fore, by varying thek value in the dislocation-like and force-like
models, various load transfer situations across the interface can
simulated.

We now compare the stress distributions for the four models.
Figs. 2 to 5, cases 1, 2, 3, and 4 correspond to the perfect-bol
smooth-bond, dislocation-like, and force-like models, respe:
tively. For models 3 and 4, the interface matrickﬁsand k}j are 002 |—
given by Eq.(39) with k being fixed at 0.5.

The variations of the Green’s stresseg, and o,, due to a B
point force in thex and z-directions are shown in Figs. 2 and 3,

)

-0.004

-0.008

I
—— k=10
~ - ke0.5
—h— k=01
- A k=001
——

0.01 — k=0.0001 —

0.00

Sigma_xx due to Fz

-0.01

.0.03 1 | | f I L | 1 | I

with all of them being discontinuous across the interface. It i 3 2 1 0 1 2 3
observed that the magnitudes of the Green’s stress compone z
due to the point force irx-direction are much larger than those (b)

due to the point force irz-direction (about four-five times It is

also clear that, locally, i.e., in the vicinity of the interface, differrig 1 variation of the bimaterial Green’s stress o, with field
ent interface models can have a great influence on the stress @isnt (1,1,ze[—3,3]) due to a point force at d =(0,0,1) in the
tribution. Among the four models, the smooth interface modet-direction for different interface parameter  k of dislocation-
i.e., model 2, shows the largest influence on the stress field néke model (a) and force-like model (b)

Table 2 Elastic stiffness  C;; in material 2

.71726275D1 .54524875D1 .62233525D0 .0 .0 .51191753D1
.71726275D1 .62233525D0 .0 .0 .51191753D1
.16217043D1 .0 .0 .11350357D0
.64977 —.03046 .0
.64977 .0
.54251991D1
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Fig. 3 Variation of the bimaterial Green’s stress o, with field
point (1,1,z€[—3,3]) due to a point force at d =(0,0,1) in the
x-direction (a) and z-direction (b). Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.

Fig. 2 Variation of the bimaterial Green’s stress o, With field
point (1,1,z€[—3,3]) due to a point force at d =(0,0,1) in the
x-direction (a) and z-direction (b). Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.

the interface. Furthermore, such an influence can be extended telative to the perfect-bond model. We also mention that across
relatively far distance away from the interface, as compared to ttree interface, whiler,, is continuous for models 1-3, it is discon-
perfect-bond mode(Figs. 2b) and 3b)). tinuous for model 4 as assumed in the model.

Shown in Figs. 4a) and 4b) are the variation of the shear Finally, shown in Figs. &) and 5b) are the variations of the
stresso,, due to the point force im andzdirections, respectively. vertical stresso,, due to the point force irx and z-directions,
For this shear stress component, its magnitudes due to the poegpectively. For this case, the magnitude of the stress due to the
force in x and z-directions are roughly the same. Similar to theoint force inz-direction is about three times larger than that due
behavior of the stresses,, ando,, , the most affected region by to the point force inx-direction. An interesting feature is that
the different interface models is found in the vicinity of the interwhile different interface models have nearly no effect on this
face. Again, the smooth-bond model causes the greatest variatstress component, the smooth-bond model, however, has a strong
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Fig. 5 Variation of the bimaterial Green’s stress o ,, with field
Fig. 4 Variation of the bimaterial Green’s stress o, with field point (1,1,z€[—3,3]) due to a point force at d =(0,0,1) in the
point (1,1,ze[—3,3]) due to a point force at d =(0,0,1) in the  x-direction (&) and z-direction (b). Cases 1, 2, 3, and 4 corre-
x-direction (a) and z-direction (b). Cases 1, 2, 3, and 4 corre- spond to models 1, 2, 3, and 4, respectively.
spond to models 1, 2, 3, and 4, respectively.

. . . . which the corresponding bimaterial Green’s functions are derived
influence on this stress component when the point force is {§ the first timein this paper. A remarkable result is that for these

zdirection. Furthermore, such an influence seems to extend t§gherfect interface models, the bimaterial Green’s functions enjoy
larger region away from the interface. the same simple and concise structure as that for the prefect in-
. terface model. For the case of two-dimensional deformation, the
Conclusions corresponding bimaterial Green’s functions are also derived ana-
We have derived the three-dimensional Green’s functions Iytically for the three imperfect interface models. We further men-
anisotropic bimaterials for four different interface models, namelipn that the methodology of deriving the bimaterial Green’s func-
perfect-bond, smooth-bond, dislocation-like, and force-like. Whilgons with imperfect interface conditions is quite general. On the
the first model is for the perfect interface for which the correassumption that the interface displacement and traction vectors are
sponding bimaterial Green’s functions were derived by Pan andcoupled in the interface conditions, one needs only to construct
Yuan[37], other three models are for the imperfect interface fahe eigenmatrices for the given interface model in order to derive
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the cqrrespondlng Green's functions. Therefore, the bimateriglin(z(}) — p(Md))=diad In(z{" — p{"'d),In(z" — pV'd), In(z"
Green’s function corresponding to a more general interface model
that combines the dislocation-like and force-like models together —p(gl)d)]
can be easily derived. However, it is also worthwhile to emphasize
that should the interface displacement and traction vectors b@n(zy"”—p!*'d))=diad In(z{"” —p{*'d),In(z5" —p{*'d),In(z5"
coupled together, one will be unable to carry out the infinite inte- —1
gral overy exactly. Consequently, the bimaterial Green’s function —p )] (A3)
corresponding to such an interface condition would be very com (2) (D) (2) (1) (2) _ (1) (2)
plicated even for the two-dimensional isotropic bimaterial“n(z* b d)) =diad In(z,” = pj"d), In(zz"—p; "), In(z5
case([17]). —pVd)]

Numerical examples have been also carried out to study the )
dependence of the bimaterial Green's stresses on the interfagth the complex variable}“) being defined as
matricesk;; and k}j and the effect of different interface models on
the stress fields. It is observed that by varying the element values
of the interface matriceki‘} and k}j in models 3 and 4, various It is seen that the first term in EGAL) corresponds to the full-
load transfers across the interface can be simulated. It is aglane Green’s functionéwith material properties of material) 1
shown that, among the three imperfect interface models withwéth
middle interface value for the parametef=0.5), the smooth- w
bond model shows the greatest influence on the bimaterial Green’s "= (A T+ (BY)Tb. (A5)
stresses as compared to those for the perfect-bond interface. Sinige second term in EqA1) and the solution in material &&q.
these bimaterial Green’s functions can be obtained very efficient2)) are the complementary parts of the solution with the com-
and accurately, they can be easily implemented into a boundgjjéx constant vector§(® (a=1,2; j=1,2,3) to be determined.
integral formulism ([22]) to investigate the deformation, stressgor 5 perfect-bond interface at-0, these constants are required

and fracture problems in anisotropic and layered structures wigh satisfy the following condition§34]) (for j=1,2,3):
imperfect interfaces.

(a) _ (a)
;' =x+p;"z. (Ad)

1D L A2G12) = AL 77
Al )qj + Al )qj =Al )|jq

o o (A6)
BV + B2 =B q*
Appendix . ’ ' .
with
Two-Dimensional Bimaterial Green’s Functions With .

Imperfect Interfaces. Similar to the three-dimensional bimate- I;=diad 1,0,0]
rial problem presented in the main text, we consider an aniso- l.=diad 0.1.0 A7
tropic full-space made of two anisotropic half-spaces with inter- 2=diad0,1,0] (A7)
face atz=0. Here, however, we assume that the deformation is I;=diad 0,0,1].

independent of thg-coordinate(i.e., the generalized plane-strain . _

deformation in theX,z) plane. We further let a line forcé and a  £quation(A6) has a similar structure as EQ.3a,h. Therefore, the
line dislocation with Burgers vectob be applied at X,2) solution for the involved complex constants are found to be
=(0,d) with d>0 in material 1. ([34,48)

It is known that the general bimaterial Green’s functiddis- D= (ALY MDD+ MOV M@ — MY AD|.T*
placements and stress functipresin be expressed §834,48) a4 =(AT) (l\i M) (M 'ﬂ VAT (A8)
§ 1 1 N N qEZ)Z(A(Z))*l(M(l)jLM(Z))*l(M(1)+ M(l))A(l)|jq°°
u :;"“{A( (In(z,” - pl"d))q”} whereM(®) are the impedance tensddefined as Eq(20)) with
the eigenmatrice8 andB dependent upon the material properties
only.

+ P Im E {A(l><|n(Zil)—ﬁfl)d»qw} Following the same procedure, the complex constants involved
=1 (A1) in the bimaterial Green's solution@l) and (A2) for the three
imperfect interface models can also be determined. Similar to Eq.

3

1 .
¢(1>:;Im{8(l>(ln(zil)— p1d))g”} (A8), they are obtained as
D= (A LMD M)~y (M@ = MYAD]| G
+£Im§ {BY(In(zY —pPd))qM} v . ) (A— . ) )(A —— )A "o
T =1 * | ) qEZ):(A(Z))—l(M(l)_;_M(Z))—l(M<1)+ M(l))A(l)quw
for z>0 (material 3, and whereM (@) (a=1,2) are the modified impedance tensors defined
3 by Eq. (20), and the modified eigenmatrices’® and B(*) (a
=1,2) by Eqs.(22), (23), and(24) for the three imperfect inter-
2 2) (2) _ (1) (2) ° . .
u' ‘w'm; {A®In(z? —pi"d))a”} face models. The difference between the two-dimensional and

(A2) three-dimensional expressions for the modified impedance tensors
1 3 and eigenmatrices is that for the two-dimensional deformation,
d?P=—Im E {B@(In(2?—p{Vd))q(®} they are functions of the elastic stiffness tensor dfly:0); for
(-] o ! the three-dimensional deformation, however, they depend also on
the Fourier transform variablé. We further emphasize that, for
for z<0 (material 2. In Egs. (A1) and (A2), Im stands for the poth the two-dimensional and three-dimensional deformations, the
imaginary part, and the superscrigty and(2) denote, as in the modified eigenmatrices are used only in the process of determin-
text, the quantities in the material domap}® andA(®) andB(®)  ing the involved complex constants.
are the eigenvalues and the eigenmatrices similar to those given iWith the bimaterial Green'’s displacements and stress functions
the main text but depending upon the elastic stiffness coefficidmting given by Eqs(Al) and (A2), their derivatives with respect
only. Also in Egs.(Al) and (A2), to the field and source points can be analytically carried out and
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the resulting Green’s functions can then be applied to various Elastic Media With Sliding Interface,” J. ElastL7, pp. 285-290.

problems involving bimaterial plane with imperfect interfaces. Ag24 Y& H. Y., and Sanday, S. C., 1991, "Elastic Fields in Joined Half-spaces due
. . . . to Nuclei of Strain,” Proc. R. Soc. London, Ser. A34, pp. 503-519.
for the corresponding three-dimensional deformation, the tWous) vy H. v, Sanday, S. C., Rath, B. B., and Chang, C. I., 1995, “Elastic Fields

dimensional bimaterial Green’s functions for the three imperfect  due to Defects in Transversely Isotropic Bimaterials,” Proc. R. Soc. London,
interface models have not been reported in the literature. Ser. A, 449, pp. 1-30.
[26] Davies, J. H., and Larkin, 1. A., 1994, “Theory of Potential Modulation in
Lateral Surface Superlattices,” Phys. Rev.B19, pp. 4800—4809.
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The Initial Post-buckling Behavior
o 1 kartomatens | OF FACE-Sheet Delaminations in
e L Sandwich Composites

H. Huang1 Should an interface crack between the layers of the composite face-sheet or between the
Post-doctoral Fellow core and the composite face-sheet of a sandwich beam/plate exists, local buckling and
o possible subsequent growth of this interface crack (delamination) may occur under com-
School of Aerospace Engineering, pression. In this study, the buckling, and initial post-buckling behavior is studied through
Georgia Institute of Technology, a perturbation procedure that is based on the nonlinear beam equations with transverse
Atlanta, GA 30332-0150 shear included. Closed-form solutions for the load and midpoint delamination deflection

versus applied compressive strain during the initial postbuckling phase are derived. II-
lustrative results are presented for several sandwich construction configurations, in par-
ticular with regard to the effect of material system and transverse shear.

[DOI: 10.1115/1.1532320

Introduction (e.g., Kant and Pat{l9], Hunt and Da Silvd10,11], Frostig[12],
and Frostig and Baruchl3]). Recently, there have been many

Delaminations(layer interface cracsconstitute a common contributions presented at symposia dedicated to sandwich struc-

failure phenomenon in laminated composites and they are m

ilv introduced f - t loads. Th delaminati es, e.g. Rajapakse et gl4].
easlly introduced from Impact loads. 1hese delaminations rn"?‘yAIthough these high-order theories are expected to render most
deteriorate the performance of the structure under compressjy

loading(e.g., Yin et al[1] and Simitses et al2]). A large number €turate results, they involve considerable effort in addressing the

. ’ o : complexities of the formulation of the problem of post-buckling
of studies on the behavior of delamination buckling and posit geaminated beams, and therefore, in the present work, a non-
buckling in composites have been carried out by many researgiear heam equation including transverse shear, properly formu-
ers, e.g., Chai et a[3] by using a one-dimensional model, Whit-|ateq for an unsymmetric sandwich sectiGneaning face sheets
comb [4] and Shivakumar and Whitcomfb] by using finite not of the same geometry and/or material used to model the
elements and Rayleigh-Ritz analysis, Kardomateisby con-  gejaminated, substrate, and base parts. The same approach can be
ducting monotonic compressive tests, Kardomaf@ady using ysed to study either a delamination within the face sheet or a
elastica theory to account for large deformations during posfepond at the interface between the face sheet and the core.
buckling, Kardomateas et 48] by studying both experimentally
and analytically the fatigue growth of delaminations during cyclic
compression, etc. ]

Although the general principles are not very different, delamFormulation
nation failure in sandwich structures is just beginning to be ex- G ina Equati d Bound Conditi Let
plored in detail. In this regard, differences in the behavior of q\éernlng qu_arllobnS an ﬂounhag d or_ld |h|ons. et us
delamination buckling and post-buckling within a sandwich strucc-??v‘f‘l'o ?erlcaessir:aevtvslcof tﬁii?ﬁe%@ Zr:]%tf ’ thgywlsizrgl ﬁ?gjﬁé’?g
21 1

ture from that of a laminated composite structure arise due to tﬁﬁd E;,, and shear modul;, andG,,, respectively. The core,

fact that the substrate in a delaminated sandwich Strucwreeﬁ'thicknessc, has an extensional modulls, , and shear modu-

cludes a much different kind of material, namely a transvers : - ; .
. ' s G, (Fig. 1). The delamination, of length& is symmetricall
flexible core made of foam or low strength honeycomb. To th'l%catéof a? a)distance from the. top. gver the ):egion of t}/]e

extent, the contribution of the shear stresses and shear defo”ﬁ‘é\émination the sandwich beam consists of two parts: the

) . . Y&laminated layer of the upper face shéeiferred to as the
should _be mclude_d in the form_ulanon. . “delaminated part,” of thicknessh) and the part below the
A typical sandwich structure is composed of two thin Compos"@elaminatior(“substrate part,” of thicknes$, —h-+c+ f,, which

laminated faces and a thick soft core made of foam or loW| des the core and the lower face sheBhe region outside the
strength honeycomb. Due to its exceptional properties, mai

X ) - - amination is referred to as the “base part” and consists of the
high stiffness and strength with little resultant weight penaltyniire section of the sandwich beam. ie.. of thicknéss c
sandwich structures have been used in aircraft, marine, and Oth_Eﬂ’zl We shall also denote the base pért wi‘th 1, the delaminated
types of structures. Research into sandwich structural behavigiit with 2, and the substrate part with 3. Let us also assume that
and failure modes can be traced following World War Il in a rathehe peam is clamped-clamped.
sporadic fashion but intensified in the 1990s, especially with re- The characteristic of sandwich construction is that the neutral
gard to proper modeling of the core through high-order theorigsis for the base and the substrate parts is in general no longer at
the middle of the corresponding sections. With respect to a refer-

;Pref%nt{yftbuiﬁergTelﬁih;(’i/llogiﬁ&_ Division OfE A © ence axix through the middle of the core, the neutral axis of the
ontripute: y the Applie echanics Division O MERICAN CIETY OF H H : H H
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- base section is defined at a distamgaFig. 2), as

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septem-

ber 26, 2000; final revision, May 8, 2001. Associate Editor: T. E. Triantafyllijis. 2 C fi ¢
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMeek- e1(Eqrf1+EcctEfofy) =Ef,f, ? + E —Eqnfy E + E ’
ing, Department of Mechanical and Environmental Engineering University of

California—Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until (1a)
four months after final publication of the paper itself in the ASMBUBNAL OF

APPLIED MECHANICS. and that of the substrate part is at a distaeggiven by
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je—— L ———be—— L — (fi—h)® 1~ C
Part ! h f, 3
"’}h ‘ + +E C3+Ece+E e +Es,f, E—e i (2c)
_‘_ T c 12 cv 3 f299 12 f2 2 3] -
1 . . . . . .
11.. B(as)e Sugme éals)e The nonlinear differential equations including transverse shear
Part Part Part _L for the three parts of the sandwich beam-pl&ig. 1), namely the
L base part(1), delaminated part2), and substrate par3), are
/;/ T (Huang and Kardomate&45])
' f;
— !_x;x3 ? d?g P .
X Di—+P —sin 26+sin6 | =0,
ds® | 2AG,

Fig. 1 Definition of the geometry for a delaminated sandwich . . . .
J g y which, after Taylor series expansion of the girbecomes

beam/plate
d?6,(x) [ e P? 2aiP? P
i >—+ ——+P;| 6i(x)— —+ — | 63(x)=0,
dx; AG; G 6
fa

edEnn(f—h)+ Ece+ Enafa]~Euafa| £+ 5| ~En(fa=h) =123 (@)
f—h ¢ where 6;(x) is the rotation of the normal to the cross sectibn,
x( 12 + E)' (1b) is the bending rigiditya; is the shear correction factd®; is the

axial load,A; are the cross-sectional areas &ds the “average”
Moreover, while for the delaminated layer, which is homoge’iheaf modulus of each part, calculated from the compliances of
neous, the bending rigidity per unit width is the constituent phasg¢s5]

o h (25) fitc+f, f; Lc. f, Gt
2= Ef175, a, Y Tt Tt 2= 0415
12 G, G Ge Gp
for the base part, the equivalent flexural rigidity of the sandwich _ . _
section per unit width, igFig. 2) =(firc+fw; Ay=hw (30)
f3 fl C 2 f3 fl_h+c+f27f1_h+ c N fo
Dl—Ef112+Eflf +2+e1 +Ef212+Ef2f2 63 Gfl GC sz’
fo c |2 ¢ Ag=(fy—h+c+fpw. (30)
X|ot+5—e) + 612+E cel, (2b) CR 2
The shear correction factors can be found in Huang and Kardo-
and for the substrat@again, per unit width mateaq 15]. For the base pafil),
f
ll +h/2 B Eqe Mo
e 7 S L " L e -___NAQL<_§
/ hA,////V‘/ delaminated Po
— v ——— part
— T -
Ect_p) -
c —> c/2 <—Ec5
—p j -—
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Fig. 2 Force and moment resultants at the tip of the delamination
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_ ?i 1 Substituting Egs(11) and (12) into Eqg. (3) and (4)—(10) and
a1=G,Aw D, —[ai"fi —-a¥a’-b’)+ =(a’— bf)} rearranging the terms based on the ordef, efe obtain separately
i=1 i S the equations and boundary conditions for the pre-buckling, buck-
ling, and initial post-buckling problem. The asymptotic expansion
(3d) s an efficient way of deriving closed-form solutions for the initial
post-buckling behavior and has also been used previously by Kar-
domatea$5] in the study of delaminations in monolithic compos-

+T2’ f22b+2E2b5+2Ef b}
DG, | T sEZ Y T3 E, ¢

h S X . - !
where ites in conjunction with the elastica theory.
c . c .
a=f+=+(—1)""te;; b=c+(—1)"te; Pre-buckling State, O(£°%). The major characteristic of the
2 2 pre-buckling state for a sandwich section is that under uniform
£ c compressive strain there are nonzero bending mom@stop-
c==+-+(-1)"te, i=12. (33 posed to a monolithic one in which the bending moments are
2 2 zerg but zero bending deflections.
Notice that since the delaminated part is homogenees,6/5, Under a uniformly applied compressive stradg, the resultant

and for the substrate partg is found from (31,e) by substituting forces(per unit width for the base part1), delaminated pait?),
f,—h in place off;, andDs, Az, Gy, e in place ofD,, A;, @nd substrate pa(8), are(Fig. 2

G, e;. PO = eo(E¢yf 1+ EcCt Eqof 16a
The way the geometry was configured, gives the following con- 1= co(EnfitEe r2f2), (162)
ditions atx;=0: P)=eoEqh; PY)= e[ Eq(fy—h)+Ecc+Eqofs).
6,(0)=0, i=1,23. 4) (160)
The above condition is valid fdr=1 because of the clamped-end Thez pre-buckling momentéper unit width) are then found as
and fori=2,3 because of symmetry. (Fig. 2
Furthermore, a kinematic condition of common slope between c
the different parts at the section where the delamination starts or M{D= eq| Efyfy + 5 +e;|+Ecce
ends reads
—a)=0.(—a)=fa(—a)= f, ¢
O1(L—a)=0,(—a) = 05(—a)= b, (5) CEuf, ( 2 E,el) S MO0 (7

The force and momenabout the neutral axis of the base part
equilibrium conditions aréFig. 2)

MO = e Eq1(F,—h) _h+c+ +E
P,=P,+Ps, (6) 3 =€o| Ena(f— 26 cC€s
c h f2 c
Mi—My—M3z—P,| i+ §+el_§ +P3(es—e)=0. (7) —Efzfz 2—e3 . A7)
Finally the axial displacement continuity condition at the tip A These pre-buckling forces and moments satisfy identically the
(Fig. D is force and moment equilibrium equatigabout the neutral axis of
A A 8 the base part Eqgs.(6) and(7). Furthermore, since a state of pure
Uz=Us, (®) axial compressive strain exists without bending deflections, the
where compatibility of shortening, Eq8) is also satisfied.
N P,a h Buckling (First-Order) Equations, O(£Y). From (3) and
U2=§ 050x%,+ ﬁJr 9A§, (9) (11,12, the first-order differential equation for the three parts is
d26M(x) [ P2
Aot (7 p2wes Psa — 2( =+ ——+PO | oM (x)=0, i=1,2,3
372 ) L B [En(fi—h)+Ecc+Epfow dx; AG,
(189)
— gA( es+ ; +f,— h) . (10) and the corresponding boundary conditions fr@nare
M0)=0, i=1,2,3, (1®)

Asymptotic Expansion. Now, let us expandP; and ¢; as
and from(5),

Pi=PO+ P+ 2P 4 3p3ly (11)
o(L-a)=61(—a)=0(—a)=0=1. (1%
0,(x) = £60(x) + E6P0x) + £6000)+ ..., (12) o (e ) ? e ’ %
where the(0) superscript corresponds to the pre-buckling state, The first-order moment equilibrium fror) is
the (1) to the buckling state and tH@), etc., to the post-buckling dg(l) d0(21) d6(31)
state. Also, let us séf to be the common slope of the section at Dy—/—— ax 2 4%, 3 e
X1 2 3

the delamination tip A, i.e., x;=L-a Xz=-a

o y y —PO| fyt+ o +e— 5| +PP(es—e)=0,  (1&)
From (5) and (12), this gives the additional conditions 2 2
0(11)(|__a):1; 052)(|__a): 053)“__&): ...=0, (14) and the first-order force equilibrium,
and O R (189
gi(l)( —a)=1; gi(Z)( —a)= gi(S)( —a)=...=0, i=2.3. Finally, the first-order compatibility equation fro(8) becomes,

(15) sincedP=1,
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Fig. 3 Critical strain versus delamination length for the case of a glass-
polyester /PVC sandwich composite

P{a c PMa h L, a . a
—|leg+z+fi—h|=—"—+ . P -p{M
[Efl(fl_h)+ECC+ Efzfz]W 2 Efth 2 Efth [Efl(fl_h)+ECC+ Efzfz]W
(189) _ [DiNicoth(L—a)+D,\,coth,a+Dshscothzala
Let's set - bl 1 c h
- Efl w( T+ §+el_5
a;P;
A= \/ . P§°>) / D, =123 (19) (23)
A G; By comparing(18g) and(23), we can see that the left-hand side

of (23) can be eliminated. Thus, we obtain the following charac-
where P, P and P{") are given in(16) in terms of the teristic equation:

uniform compressive straig,. Then, the solutions for Eq§18a) DX+ COtAS(L—a)+ Dshs COtA-a+ Da\aCOth-ala
that satisfies the boundary conditiofisb), is [Dihs l ) 272 2 373 gl

c h
Ehw| fi+ -+e— =
oW=CWsin(\x;), 1=1,2,3. (20) T2 T 2)
. c h
Now, the constant€{"), c{), C{) are determined from the +(e3+ S _) =0. (24)
common slope Eq18c), as 2 2

Equation(24) is a nonlinear algebraic equation which can be

cM=1/sinny(L—a); CM=—1/sinn,a; C{Y=—1/simza. solved numerically for the critical straig, (or critical load from
(21) (16). In the numerical procedure, a solution is sought near the

Euler buckling strain of the delaminated layer, which dg

The characteristic equation is found in termsegfy eliminat- = 7?h?%/(12a?).
ing P{, PSY, andP§M from the previous equations. This is done |jtial Post-buckling, Second-order Equations, O(£2).
as follows. o From (3) and (11,12, we obtain the second-order differential
The moment equilibrium Eq18d), becomes equation
(2) (0)2
DAy cOtA;(L—a)+D,\, COtA,a+ Dskg COtAza d?0i2(x) [ &P}
1Ny 1 27\ 2 2 3A3 3 D, i . LA e '_ +Pi(0) t9i(2)(xi)
L c h, dx AG,
=Pl f1+ = +e,— = | —PP(es—ey). (229)
2 2 20,POPM)
. R . =—| ———=—+PP oM (x), =123
By using the neutral axis definitiorida) and(1b), we obtain AG;
P h) Eqh (25)
€= €= T 5 € 2 [Ery(f,—h) T EcctErpfo]’ and from(4) and (14,15,
(220) 6(0)=0, i=1,2,3 (2&)
therefore(22a) becomes oP(L—a)=6P(—a)= 07 (—a)=0. (2&)
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Fig. 4 (a) Comparison of the two material sandwich systems with regard to

the delamination midpoint deflection during the initial post-buckling phase. (b)
Comparison of the two material sandwich systems with regard to the midpoint
delamination-substrate opening during the initial post-buckling phase.

The second-order moment equilibrium fraid is Finally, the second-order displacement compatibility fr(@n-

dagz) d0(22) d0(32) (10) and (11,12 IS

— D —
1 2 3
Xm Xx,=L-a dXZ Xy,=—a dX3 Xg=—a
(2)
c h 1 (0 2 Pi’a
—_p®@ _ __ @p —a)— — (1)
PO\ fit5+e 2)+P3 (es—€;)=0, (27) > ffa% (Xg)dxg+ WIE (T,—M T E.c+Eryf,]
and the second-order force equilibrium is 1 [0 a PPa

PR+ PO=pR). 28) =3 J:aez (X2)dXp+ E.wh (29)

Journal of Applied Mechanics MARCH 2003, Vol. 70 / 195



0515

p @

2 1
o
n

0.505

05

Delaminated layer ioad, P

0.495

R U R SR SN |

06

1.02 1.04 1.08 1.08 1.1

Applied Strain, 9ulec'

(a)

Substrate Load, P_/p @

0.48

Eglass-poliesterlpvb

0.98

1.02 1.04 1.06 1.08 1.1

Applied Strain, eu!ew

(b)

Fig. 5 (a) Comparison of the two material sandwich systems with regard to

the delamination load during the initial post-buckling phase.
the two material sandwich systems with regard to the substrate load during the
initial post-buckling phase.

The general solution for the second-order differential &)

is

6(x;)=C? sin\;x; + B?) cos\,;

1
p)

2a;P®
——+1

AG,

The constant8(?) are zeros due to the boundary conditions

(26a),
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and

(b) Comparison of

B@=0, i=123. (31)
Applying the conditiong(26b), we can find the constanG(®
as
p 2a,P?
CMx cosnix;.  (30) cP=— —1 cL-a)cotry(L—a)| ——+1],
2)\1D1 AlG]_

(32a)
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Fig. 6 Effect of the length over core thickness aspect ratio on the midpoint
delamination deflection during the initial post-buckling phase for glass-

epoxy /polyester
p(1) 24 PO Comparing(34) and(33), we can eliminate the left-hand side of
Cc@=— ' cWacotr;a L4, i=23. the latter equation, which contains the second-order forces, and,
2\D; AG, by using also(32), thus obtain one equation for the first-order
(320) forces, i.e.,
; i 1 sin2\za
Now the displacement compatibility E€R9), becomes azp(zl)+a3p(31)=z[C§1)2( a— 2}\33 7C(21)2
pR_2 __p@ a c h
Ef]_Wh W[Efl(fl_h)+ECC+Ef2f2] sin 2)\2a Eleh fl+§+el_§
. . x| a— ,
= E C(31)2( a— M _C(21)2( a— M . (33) 2\, a
3 2\, (35)
The moment equilibriunt27), by substituting the second-order Where
deflections(30) and again the relationship for the neutral axes of ) [ 24.plO (L—an
a -a
the substrate and the base p@2b), becomes ai:_l l_l +1 ] coshy(L—a)— — 1
2)\1 A].Gl S|n)\l(|_7a)
PR _p@ 2 } cM [ 2a;P(® a
Erawh W[E1(f1—h) +Ecc+Eqafs] — ——+1||———cos\a|, i=23.
2M 1 AG sin\;a
c h
Erawh| f1+ E+91— 5) The second equation for the first-order forces is the first-order
% compatibility Eq.(18g).
a The system of these two linear equatiof®5) and (18g), can
Do o be solved for the first-order forceBS" and P§V .
@) Ci'Pi [ 2a4P; The solution for the higher-order terms can proceed in the same
:Dl Cl )\1 COS}\l(Lfa)‘i“ 2)\1Dl A 6 +1 fashion.
1¥1

The first-order applied load{" is in turn found from the
second-order force equilibrium, E¢R8). Notice that from(11),

X[cosh(L—a)—(L—a)\, sin)\l(L—a)]] sinceP(1°)= P.r, the perturbation parametércan be found from
the applied external load, as

Ci(l)Pi(l)
2\:D;

_,2 D,

i=2,3

C®\; coshja+

(0) _
SR P (36)
AG P&

This, of course, presumes that we only account for the first-order

X(cos\;a—ah;sin\;a) |. (34) load terms.
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Deflections. The deflections can be found by integrating thé&or the graphite-epoxy/honeycomb, the corresponding data are

relationship(Huang and Kardomate§45])

dy, aiP;
D _sin 0+ ——
dx; 2AG;

Introducing the asymptotic expansiofisl) and(12) and the first
and second-order expressia2®) and(30), gives

sin 26; . (37a)

) PO p(0) pl)
%=§ 1+ —— | oW+ | 1+ ——| 6@+ a'_P' oo
dx; GiA GiA GiA

+0(&%), (37)
and therefore by integrating with the boundary condition
y1(0)=0; andy;(-a)=0; i=23 (3%)
gives the first-order deflections as
c =O)
yP="2 114+ = (1—coS\1Xy), (389)
)\1 GlAl
Of PO
M=——| 1+ ——|(cosn;a—Cos\;x;); =23
i GiAi
(380)
and the second-order deflections as
a POV Q® @
y@P=| 1+ — ||| 5 — =] (coshyx,— 1)
G]_A]_ )\l )\l
O ] e apd
+ ——X; SINN1Xq | + —— ——(1—C0OS\ 1X1),
)\l )\l G]_Al
(3%)
aPO\[ QW c@
@=| 1+ ——||| =5 - ——](cos\x;—cos\;a)
GiAi )\i )\i
o | O P
+ ——(X; sink;x;—asin\;a) |+ — ——(cos\;a
)\i )\i GiAi
—Cos\ix); =23 (3D)
where
PUCH [ 24,P(®)
W=l T |1 +1]; i=123. (32)
2)\iDi GiAi

Discussion of Results

For an illustration of the results from the previous analysis,

consider a sandwich beam wiin mm) f,=f,=3, c=25, h
=3, w=20, andL =150. Two types of core were use@ a PVC

core with (in MPa) E.=93, G.=35, and(b) an aluminum hon-
eycomb core withE.=1, G.=200 (data from Gibson and Asby
[16]). The corresponding face-sheets wéag E-glass/polyester

unidirectional with(in GP3 E;;=E;,=26 andG;;=G;,=3 and
(b) graphite/epoxy unidirectional witle;;=E;,=140 andG;,

a1=1.209,a,=1.200, anda3=0.482, whereas the; /G;A; ra-

tios are 0.79410 %, 0.400<10°5, and 0.38& 107 °. The last
set of numbers shows the importance of the low extensional
modulus of the honeycomb core.

Figure 3 shows the critical straie,, for a range of delamina-
tion lengths in the case of sandwich material systemlt is seen
that the critical strain decreases with longer delaminations, as ex-
pected, and that the effect of transverse shear is to lower the
critical strain, again as expected.

The initial post-buckling results which follow are produced for
delamination lengtla=L/3. This solution is an asymptotic solu-
tion, so accuracy is expected to be compromised as we move
away from the critical point. Figure 4j shows the midpoint
delamination deflection versus applied strain for the two material
systems and Fig. #) shows the midpoint delamination-substrate
opening. Both deflections are higher for the glass-polyester/PVC
case, which is expected due to the lower stiffness of the face
sheet. The delamination loddormalized with the critical logds
shown in Fig. 58) and the substrate load is shown in Figbk(

For both material systems the delamination load and the substrate
load increases with applied strain, but no definite trend exists
between the two material systems—the normalizeith P.,)
delamination load being higher in the material syst@nbut the
normalized substrate load being higher in the material syséem

Finally, Fig. 6 shows the effect of the length over core thickness
aspect ratio on the midpoint delamination deflection during the
initial post-buckling phase for glass-epoxy/polyester material sys-
tem. The face sheet thickness and delamination length was kept
constant and the critical strain is essentially the same in both cases
(slightly lower for the higher aspect rajioBut the case of a
thicker core(lower aspect ratipshows a higher delamination de-
flection.
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The orientation distribution function (ODF) is expanded in terms of generalized spherical

harmonics and bounds on the resulting texture coefficients are derived. A necessary and
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Introduction of the global and local coordinate frames, respectively, which are
distinguishable apart from a translation. The Euler anglgsa,

A polycrystal, at a sufficiently large length scale, can a eg} . .
polycry y ag g PP i, are successive rotations about thlg, x;, andxj; axes,

macroscopically homogeneous and isotropic if the anisotro

single crystals which comprise the polycrystal are not prefereﬁe_spectively.. For a graphical .iIIustration see Fig. 1: The Euler triad
tially distributed spatially nor orientationally. If a polycrystal ex-9 thus describes the orientation of the local coordinate frame rela-

hibits a preferential orientation of its grains then it is said to eXive 10 the global coordinate frame. The quantfi§g)dg is the
hibit texture. As a consequence of texture, a polycrystal will, jRrobability of an orientation V;"th,'” the “intervallg,g+dg) be-
general, exhibit anisotropy which can be quantified regardlessBf achieved wherelg=1/(8)sin ¢ di;dedy,. _
material anisotropy1]. If the texture varies spatially then at that 1he ODF, being a probability density function, possess certain
same length scale the polycrystal will be nonhomogeneous. ~ Properties. Namelya) f(g) is a real quantity(b) f(g) is strictly
The texture of a polycrystal may be quantified by the orient&0sitive:f(g)dg=0; and(c) f(g) is normalized such that it inte-
tion distribution function(ODF) which is, in essence, a probabil-grates to unity: § f(g)dg=1, where §(-)dg:=1/(87?) 5"
ity distribution function; the random variable being the orientatio [ 727(-)sin ¢ diy;d¢dys, .
of a single crystal. The texture of the polycrystal can be equiva- Generalized spherical harmoni€@SH) are the matrix elements
lently quantified by texture coefficients which are the coefficientsf the irreducible representation of the three-dimensional rotation
of a harmonic expansion of the ODF. The terms of the expansignoup. They are defined kigee, for example, Bundd])

are the generalized spherical harmor(i@SH) and the expansion ' .
is termed the Viglin expansiofi2]. T"(Q)=T{"(sh1, ¢, h2) :=€™"2P["(Cos )€™ @)

The use of ODFs and texture coefficients are not limited {@here p"(cosd) are the generalized Legendre functions. We
polycry_stals. The anaIyS|s_ of many modem composite materl@igte thatP8°(cos¢):1 and, thus,Tgo(g)zl. We also note that
necessitates the appropriate characterization of the composiigs mn —mn et )
texture by quantifying the orientation distribution of each conli” (0:0,0)=46"™" T"(0,,0)=(—1)'6"" and, finally,

_stituent. Thus, texture, and its quantification, is imp_ortant not qnly P™(cos¢) = P"™(cosé)
in polycrystals,[3—6], but also, more generally, in composite - i
materials[7-10, . . o =P"(cosp)=(~1)""""P[M(—cosg)  (2)

Increasing technological interest in composite materials in the .
areas of, for example, thermal barrier coatirid4], and function- Wherem:=—m. _
ally graded materials;12,13, will lead ultimately to optimally __The GSH form a complete set of orthonormal functioié], p.
designed microstructures of materidlis4,15. If the texture of the 352, meaning that
material is taken as a design parameter then it would be conceiv- ., 1
able to optimize the texture coefficients. As a result of the trunca- 3§ Tl’“”(g)Tl”,‘ n (g)dg==—— 5”,5‘“"" Pulil 3)
tion theorem[6], not all texture coefficients affect the effective 21+1

properties. However, OptlmIZIng those texture coefficients Whiqhhere 5”56“ is the Kronecker delta and an overbar denotes
are relevant necessitates that only physically plausible texture ¢gmplex conjugation. We should remark that, throughout this pa-
efficients be considered. For this reason bounds on the textyk& summation convention i®t invoked.

coefficients are significant. Bounds are also of relevance when viglin expansion,[2], of the ODF is now given in terms of
using inversion techniques to estimate the texture coefficieffe GSH

based on wave velocity measuremenis$,17).

Preliminaries f(g):;) > > CmTMg) 4

I I
m=—| n=—|
The orientation distribution functio(DDF) is denoted byf(g) where C"" are the coefficients of the expansion. These coeffi-

Vlzhgrri%;w:e(Ewalgl ;’/ﬁ) Ieess g(rﬁst)j(g)tgihim?gg'agf apglf le’r g;tr?cr)]do- cients are termed texture coefficients and are given by the inverse
2 N group ot prop 99" relation

nal rotations. Lek; andx{ , i € {1,2,3}, denote the Cartesian axes

—_— mn mn,
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF Cr= (21+1) § f(g)T, (9)dg. ®)
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 200}%
final revision, July 26, 2002. Associate Editor: L. T. Wheeler. Discussion on tl ounds

paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Depart- : . : ‘g : A
ment of Mechanics and Environmental Engineering, University of California—Santa As discussed above, the orientation distribution functtDF)

Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months affer@ real-valued, strictly positive function WhiCh_ is normalized to
final publication in the paper itself in the ASMBURNAL OF APPLIEDMECHANICS.  Unity. Thus, by means of Ed5), these properties of the ODF
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(a) initial relative orientation

T3
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(b) ¥1 rotation

3

(c) ¢ rotation

Fig. 1 The orientation of the local coordinate system

(d) 42 rotation; final relative orientation

(x1Xx5x3) with respect to the global coordinate system

(x1X,x3), as shown in (d), is described in terms of a sequence of Euler angle (g:=(,p,1f,)) rotations as
illustrated in (b), (c), and (d) given the initial relative orientation of the coordinates systems in (a)

must imply constraints on the texture coefficients. For example,
the requirement that the ODF be a real quantity implies that =(21+1) % f(g)|P""(cos¢)|dg (10)

C{?‘F‘=(71)m*”6{“”, [2,4]. We now present another constraint,

namely, bounds on the texture coefficients.
The generalized spherical harmoni@§", for —l<m,n<I
form a unitary matrix. That isSL__, T"STP'S= 6™". It follows that

[ I [
1= 2 TOTe)= X [T~ X [Pcosp)?
(6)
which is a result that can be found[ifi8], p. 89. It follows that
|P"(cos¢)|<1. @)
It follows from Eq. (5) that

lcr””\=<2l+1>\ #5 f<g>ﬁ"”<g>dg‘ ®)
<(21+1) 39 f(9)|T™(g)|dg ©)

Journal of Applied Mechanics

<(21+1) 35 f(g)dg (11)

=21+1. (12)

In arriving at Eq.(9) from Eg. (8) we made use of Hder’s
inequality and the fact that(g)dg=0. Equation(11) follows
from Eq. (10) by use of Eq.7). This concludes the proof, how-
ever, details are given below for more rigorous bounds on some of
the texture coefficients, namely, the coefficie@8" for which
Im[#]n].

Further restrictive bounds 0@80 can be achieved by making
use of the normalization requirement of the ODF. In fact, the
normalization requirement is satisfied if and onlyOf°=1. This
result has been recorded without proofl &} so we shall provide
the proof below.
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To prove necessity, evayatégo using Eq.(5). This leads to

Co=¢ f(g)dg=1 becauser3(g)=1. To prove sufficiency, we
begin by noting that

1,
35 TP’”(g)dg—{O

which follows directly from the orthonormal propert®) of the
generalized spherical harmonit@Sl—D. To complete the proof

1=§ﬁ (g)dg= E E 2 CMMTMM(g)dg  (14)

I=0 m=—1 n=-1

© | |
=2 2 > cr §£ T"(9)dg

|=m=n=0
13
otherwise (13)

(15)
=CY°. (16)

The last result follows from Eq13). This concludes the proof.

Table 1 Bounding coefficients a7 (|C]"|<3a]")

af™
m n

0 +1
0 1 V2
+1 1nV2 1

In closing, we make mention of two additional points. First,
satisfaction of the boundd7) is not a sufficient condition for a
strictly positive ODF. Consider the set of texture coefficients,
C9%=1, Y%= -5 and all othelC]""=0. These texture coefficients

satisfy the boundq17) but yield the functionf(g)=1—5[4l

+ %cos(2¢)], for which, clearly,f(g)dg takes on negative values.
Secondly, if more information on the ODF is known, for example
in terms of its symmetries, then relations among the texture

As mentioned above, more rigorous bounds can be ascertaitegfficients may be deducetsee, for example, Ferrari and
on some of the texture coefficients. We investigate this issue nal@hnsor{9]).

Consider the unidirectional ODK g) =k (1) 6( ) 8(4,) where

S is the Dirac delta function ankl is a normalizing constant de-

termined such thaf f(g)dg=1. Substituting this ODF into Eg.
(5) after evaluating the normalizing constdqtand recalling that
""(0,0,0)=6™", yields C""=(21+1)6™". Thus,C"™=21+1
from which it follows that more restrictive bounds cawot be
determined orC"™
Similarly, by considering the unidirectional ODFf(Q)
:k’é(z//l) S(p—m) () and recalling that T[""(0,7,0)
=(- 1)'6™ it can be determined thaE]""=(—1)'6™". Thus,

without additional information on the ODF.

Closure

This paper has derived bounds, namé@}""|<2l+1, on the
texture coefficient<|"" as deduced from properties of the orien-
tation distribution function(ODF). It has also been shown that
more rigorous bounds can, in general, be proven whar:|n|.
The form of the bounds oil€™" can then be written agC/™
<a"(21 4+ 1) wherea|""is the least upper bound to the modulus

of the generalized Legendre functi&l'"(cos¢). Results fora™"

|Ci"|=21+1 from which it follows that more restrictive boundshave been tabulated for 1, 2, 3, and 4. It has also been proven
can not be determined orC, , or, equivalently,C/"" since —|
<ns=/I, without additional information on the ODF.

This leaves the remaining texture coefficie@§" with |m|
#|n| for which we camot conclude that a maximum modulus of
21+1 can be achieved. In fact, more restrictive bounds are pos-
sible on these texture coefficients. We proceed by bounding the
corresponding generalized Legendre functiRfi'(cos¢) and re-

Table 2 Bounding coefficients a5 (|C7"|<5a3")

ay”

n

turning to Eq.(10) to yield the result 0 +1 +2
0 1 14 [6/4
ICMM<a™(21+1), O<a™<1 an 2, G4 Vo N5

J6/4 3v3/8 1

where ¢"" is the least upper bound {@""(cos¢)|. From the
relations(2) we can conclude, for a givednm, andn, that

Table 3 Bounding coefficients  a3"(|C]"|<7a3")

18)
mn

From those same relations we also conclude tdf=a"". 3

From our previous results we know that"=1 for |[m|=|n|. The ™M n

result(17) yields the most restrictive bounds possible without ad- 0 +1 +2 +3

ditional information on the ODF. 5 I 0596785 0527046 0559017
FOntn= 1 andl .=2 we can consider the closed-form expressions __; 0.596285 1 0601333 0573775

for P""(cos¢) given by Bunge([4], pp. 352-358 Forl=1 we  +2 0.527046 0.601333 1 0.633938

+3 0.559017 0.573775 0.633938 1

have P{*= —(i/y2)sing wherei?=—1. Thus,a{'=1/,Z, and,
with the assistance of E(18), we tabulate the values af]"" in
Table 1. Forl =2 the values ofy|"" are presented in Table 2.
For1=3 we proceed by considering a Fourier series expansien
of P"(cos¢) as given by Bungd4, Section 14.3 It is also
necessary at this stage to implement a numerical procedure Jfor n
determining the least upper bound [t8]""(cos¢)|. Because we

Table 4 Bounding coefficients  a}"(|C]"|<9a]")

ay”

need only consider those cases for whiat+|n|, and because of 0 1 2 -3 =4

the relationg18), it is only necessary to find the least upper bound 0 1 0.590337  0.508223  0.480326  0.522913
2 .o *1 0.590337 1 0.591869 0.516186 0.530690

to I(1+1)/2 functions in distinction from the (2-1)“ general T2 0508223 0591869 1 0597026  0.558088

ized Legendre functions—for a givénResults from implement- 33 7480326 0516186 0597026 1 0.626655

ing such a numerical procedure for 3 andl=4 are presented in  +4  0.522913  0.530690 0.558088  0.626655 1

Tables 3 and 4, respectively.
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Determination of the Local
Stress-Strain Response of Foams

A new specimen for determining the local stress-strain response of foams under uniaxial

T. Wierzbicki compression is presented along with the corresponding theory. The drawback of using
) conventional cubic specimens is that average stresses and strains are calculated, which
M DOVOVO introduces size effects due to structural and material inhomogeneities of commercial

foams. Under compression, foam cubes develop unstable regimes, which involve localized
deformation. The instabilities cause difficulties in establishing the correct stress-strain
response of the material. Tapering specimens can enable controlled motion of the bound-
ary separating the unstable and stable regimes. This concept is exploited in the present
paper in experiments on closed-cell aluminum foam trapezoids. A crushing front propa-
gates down the tapered specimen during compression, while the deformed region develops
a new lateral shape. The experimental results are used along with several assumptions to
extract a more representative stress-strain response of foam. The response is character-
ized by the initial plateau stress, shape exponent and densification strain. The significant
effect of the variable Poisson’s ratio during crushing is also introduced. The results
provide a basis for developing local constitutive behavior of foams.

[DOI: 10.1115/1.1546242

Impact and Crashworthiness Laboratory,
Massachusetts Institute of Technology,
Cambridge, MA 02139

1 Introduction pressed cubes are thus different from the average strains obtained

. . N by dividing the end displacement by specimen height. Therefore,
This paper deals with the determination of local stress-straff, questi%n as to whgt is the pro);;erpreference s?ze to measure

response of foams for finite element applications. In finite eleme& ains in foams must be asked. The Bastawros and Evans' results

modeling of three-dimensional bodies, decisions must be madeiiﬂ;gest that this height must be equal to three to four cell diam-
the size and constitutive equation governing a solid element. lpos g\t 'in finite element application, the size of the solid ele-
continuum mechanics, the physical law is independent of the SRAznts could be much smaller

tial discretization. However, for cellular materials such as foams, 1,5 situation becomes quite different for loading cases involv-

WT";hdatre tlkr:hor.nogefntehous, It'ze rlnecha;nlcal properties are dlreqﬂg strain gradients. An example is indentation of a block of foam

re_?he 0 _f_e S|zedo efshm e imin : ith the heigh WP:h a hemispherical punch. Deformation patterns under the
e significant drop of the peak shear stress with the heig t;f?unch show a clear interface between zones of fully crushed and

the foam specimen has been reporteee, e.g., Andrews et al. uncrushed cell$Fig. 2). This interface propagates down the foam
[1]). Wierzbicki[2] provided a qualitative explanation of this phey i itk increaging punch displacgmepnt.g Each collapsing cell

nomenon in relation to honeycor_nb blocks in shear. l_)ifferent fai velops increasing strains and enters the densification stage until

ure modes were observed experimentally and numerically depefis neyt row of cells starts to deform. The local crushing stress

Il:?g ISI'n block helghlt. Shortdspec;:ngns %(levelloped :ngorcr;j shealn be obtained by dividing the total resistive force by the pro-
uckling patterns. Intermediate height blocks evolved diagonal oy cross-sectional aréBoyoyo and Wierzbicki[6]). How-

shear lbandT. I—élggerdspemn'w_'ens underwaent Qonunlcl;og_r;f comtp &ver, the local strains cannot be measured easily in this type of
sion along loaded edges. Hanssen ef8]. observed differen test. Finite element codes require the correct true stress-strain

stress-séra]n cuf;vets for sler]lder gr}d stocky fofam cubes. A ? irve of the material as an input. This information can be obtained
nouncea size elfect was confirmed In a Series of compression fther from spherical punch indentation tests nor from uniaxial
on ductile and brittle aluminum foam cubé®ierzbicki et al.

[4]). Depending on specimen size, different initial plateau stresses
and different stress-strain curves were obtained. A typical stress-
strain curve obtained from the compression of a regular foam cube
is shown in Fig. 1. One can clearly distinguish an initial elastic
regime up to the yield point, followed by the initial plateau stress
and subsequent hardening all the way to densification and locking.
While the nature of size effect has not been clearly described
and quantified in the literature, a recent study has contributed to
the understanding of this phenomenon. Using digital image corre-
lation analysis, Bastawros and Evad detected formation of
discrete bands of concentrated strain across sections of com-
pressed foam cubes. These bands were spaced at a distance of
three to four cells. The actual local strains in uniformly com- Yield point

Locking—|

Densiﬁcﬁn

Hardening

Average stress

Initial plateau stress

_ . . . "~~~ Elastic regime

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- )
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept. 27, Average strain
2001; final revision, Apr. 16, 2002. Associate Editor: K. Ravi-Chandar. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depatt- . . .
ment of Mechanical and Environmental Engineering University of California—San A9 1 A typical stress_-straln CIJI’V(E" of a closed-pell m_etall!c
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months af@®M cube under uniaxial compression. The plastic regime is
final publication of the paper itself in the ASMEPORNAL OF APPLIED MECHAN-  Characterized by a plateau stress, followed by a hardening re-
ICS. gion, which eventually leads to densification and locking.
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k) Crush Bounda
i z

Fig. 2 A section through a block of Cymat aluminum alloy
foam, which was indented by a hemi-spherical punch (Doyoyo A“"'u— y 3
and Wierzbicki [6]). A distinct boundary /interface separates the
crushed and uncrushed regions.

compression of cubes. To overcome this difficulty, a new type of
test is designed for foams and performed in our laboratory. The
test involves crushing of tapered speciméioam trapezoids In

the compressed specimen, stress at the smallest upper cross sec-
tion is the largest so that a front of crushed cells propagates from (@
the upper edge down the specimen. From the deformed lateral

surface, local stresses and strains can be calculated and the local

TTTTTTTTTTrTrrrryryyX

true stress-strain curve of the foam can be found. A ----- I
The idea of inducing inhomogeneous stress and strain states to B'.d
determine mechanical properties of solids is not new. Marciniak 9 |@Yo

[7] proposed a method of calculating the stress-strain curve of
copper from tensile testing of conical rods. McClintock and Zheng
[8] used slightly tapered specimens to study initiation and propa-
gation of necking and fracture in ductile metals. More recently,
Doyoyo and Weirzbick[9,10] used butterfly-shaped specimens to
determine biaxial yield of brittle and ductile aluminum foams. The
present scheme is a promising way of acquiring local compressive
properties of foams, which can then be used directly in finite
element modeling of complex boundary value problems.

2 Analysis of Nonuniform Crushing of a Foam

Several tests on closed-cell aluminum foam trapez@idsch
will be reported fully in the next sectigrwere performed and the
following observations were made: (b)

* There is always a clear boundary between the continualljy. 3 (a) A schematic of the original tapered specimen (dot-
crushed and uncrushed regions. ted line ) and the deformed specimen  (solid line ). The crushing
 The front separating the above two regions is moving dowfront propagates down the specimen, separating the crushed
the specimen as the load is increased. cells (shaded region ) from the uncrushed cells ahead of the
« The material above the front continues to deform after tHEPNt- The effect of the plastic Poisson’s ratio is shown when )
front has passed and higher stresses buildup in this region. ~ Pont AI m(joyes ve(;;u)cally r(1") and hﬁr'zo.ma”ﬁ’ (“r)] to point | A
. f f rng loaaing. A schematic s owing now the original
b the(iﬁluse I?f tf}e _boulpqtary_tgffect, the g?ntb's ﬁllghtly Cl'lrvegf(‘)lints A and B in the undeformed specimen travel to their cur-
utforthe sake of simplicity, It IS assumed (o be fial. ._rent positions A! and B! in the deformed specimen during
* The width of the front is of the order of the average cell sizg ding.
but for strain calculation, it is assumed to be just a geometricaf‘
line.
« At some load level, the crushing front reaches the bottom of

the specimen. The test should stop at this point or earlier because . . . .
our analysis is not valid beyond this point. pointB* and its mirror reflection of the other side of the symmetry

« A unique feature of the present method is that the entifikis- The width of this cross section ib{ 2x). The correspond-

stress-strain curve is reconstructed from the final configuratighd normal local true stress is
Therefore, there was no need to monitor the position of the trav- P
eling front. Various cross sections of the deformed specimen cor- o= (1)
respond to different stress and strain states. Y wo(b—2x)

* In the following analysis, we will determine the local stress- . . .
strain response o? foan¥s subjected to large crushing displald1eré Wo is the constant thickness of the trapezoid amd
ments. Thus, the elastic regime will be ignored and the analysig’(P): Note that the true stress,, is equal to the engineering
begins at the initial plateau stress. stressS,, . Because the trapezoid is Fruncated, it follows fro_m

geometry thab—b,/2<x. The normal yield stress should remain

We introduce a spatial coordinate systexyy(, which moves constant at the front, thus
with the front wherex is aligned with the front ang is perpen-
dicular to it, Fig. 3a). Consider three points on the original speci- P, P
men; A, B, and C, Fig. 3b). The pointC defines the current Uozwobozwob @
position of the front. The width of the front is denoted byThe
current positions of the points andB are denoted b andB?,  whereP, is the initial peak load. Eliminating between Eqs(1)
respectively. Consider the current cross section defined by thed(2), then
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-1
} 3) 20

which is more convenient becauBes readily measurable while
is not. From geometry of the deformed specimen, the local norm
engineering strait,, is

P
Oyy= P{ wo( bop—of 2x

15
(1+v)y’
E=1-——7— 4y
v Yo @ Z
and the truglogarithmic) e, strain is S 10
, o
RN
where '),=dy,/dx,=tang, and y'(x)=dy(x)/dx, and v is

the local plastic Poisson'’s ratio. Equati(8) has a vertical asymp-

tote when the normal strain reaches the densification stre 75 tapered specimen

(Eyy)a, thus [ L 80° tapered specimen
P ()‘....l.x..ll..‘l.1
bop——2x|g, (€, = O- (6) 0 50 100 150
0 Displ t
isplacement (mm)
The Poisson’s ratiov is defined as the negative ratio of the local
lateral strainE,, to the local normal strai,, Fig. 4 The variation of load with crushing displacement during
compression of foam trapezoids. The load increases linearly
Exx %) with crushing displacement beyond the initial plateau load.
p=—
E

yy

this is not a constant, but varies wil, from the initial valuev,
to v, at full densification. The initial plastic Poisson’s ratig is » The accumulated plastic Poisson’s ratig.. had to be
roughly zero for low-density foams. The variation ofwith E,, measured.

has not been reported in the literature. Hereis assumed to

follow the power law The specimens were composed of ductile closed-cell aluminum

foam of commercial name Alporas. Alporas was manufactured by
v=v,+ B(Eyy)" (8) the Shinko Wire Company, Amagasaki, Japan. The cell walls were

. . made up of an aluminum alloy with small percentages of Ca and

where the two material constanfsand m are to be determined . : .

from the following two conditions. First, it is observed that at fuIIT"I 'I;_he ntomlnzli_lddelnsny of the f(iazn;(\)/\(galf ?%7 k%ﬁ' 9:5 percent

densification the foam becomes a solid for which v relative to solid aluminum dx = g ). € specimens
were extracted from foam blocks supplied by the manufacturers

v =vo+ BL(Eyy)al™ (9) using EDM. The geometry and dimensions of the trapezoids are

Secondly, what is measured at full densification is not the curre%?ézcgfg :‘getrrketrs:ggzrg?glscvf/);rz%ﬁed in an MTS servo-hydraulic
plastic Poisson’s ratio but the accumulated Poisson’s ratio, g'V?ensting machine with a 200 kN load céModel 45G, MTS, Eden

by Prairie, MN). The specimens were placed between parallel platens
(Exx)d (Eyyd m and then compressed. Load and displacement were acquired with
Vac™ ~ (5 ZJ [vot B(Eyy)"dE,,. (10)  Testworks softwaréSintec Division, MTS. The photographs of
yyd 0 the specimens at different stages of crushing were taken with a
From Eqgs.(9) and(10), the two unknown parameters can be exdigital camera.
pressed in terms of the measurable quantiti§s)y , vac., andv, It appeared during testing that the choice of the taper afigle

is important for producing reliable results this study, the taper

angle was not quantified or fully optimizebhstead, only a con-

ceptual definition of the “optimum taper angle range” is made.

This angle should be large enough to override a tendency for
rTHeveloping localized deformation. At the same time, it cannot be
too small because the propagating front ceases to be flat. For the
above foam, specimens in taper angle rafige 75 deg—80 deg
evolved approximately flat crushing fronts. Two specimens of dif-
ferent sizes and different taper angles in this optimum range are
| how presented.

L0 (B and =t (1)
m= ——— an = .
Vacc™ Vo V) ¢ [(Eyy)d]m
Note that for foams made up of metallic alloys, which are inco
pressible, the plastic Poisson’s ratio at full densificatigr- 0.5,
whereas it can lie betweenl and 0.5 for foams made up of
compressible materials.

3 Testing of Tapered Foam Specimens Under Uniaxia
Compression i. First specimen: This specimen had a taper angle

In this section, the results of tests on two different foam trap: /> 969 With top widthb,=100mm, heighth,=300 mm and

ezoids under uniaxial compression are reported. The followi%BiCkness’VO:loo mm. It was cor_npressed at 0.05 mm/s down to
were the measurement objectives: height of 130 mm. The load-displacement curve for the speci-

men is shown in Fig. 4. The load increases linearly with displace-

» The variation of the loaé with displacemen® during speci- ment. If a best-fit line were to be drawn through the data points,
men crushing had to be measured. The initial peak Bgdec- the load at which the line intersects the load axis is the initial peak
essary to propagate the crushing front will be deduced from tHsad P,=0.91 kN, thus the corresponding initial plateau stress
variation. 0,=0.91 MPa.

* The lateral shape function(x) of the crushed specimen at ii. Second specimen: This specimen had a taper armgle
the end of the test had to be measured. The final crushing fron80 deg with top widthb,=75 mm, heighth,=300 mm and
width b, will be deduced from this function. thicknessw,= 100 mm. It was compressed at 0.1 mm/s down to a
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original after 40 mm after 80 mm after 120 mm
(a)

initial

Fig. 5 (a) Photographs of the 80 deg tapered specimen at subsequent stages
of uniaxial compression.  (b) The photograph of the original 75 deg tapered
specimen and the deformed tapered specimen after compression down to a
height of 130 mm. The specimen develops new lateral shapes during compres-
sion.

height of 125 mm. Its load-displacement response is presentedhr load is about §0) times the initial plateau load. The photo-
Fig. 4 with initial peak load®,=0.70 kN ando,=0.93 MPa. graph of the crushed and uncrushed blocks is shown in F&y. 7
The corresponding engineering stress-strain curve for the test is

res- . . . . .
sion is shown photographically in Fig(&. The initial and final 25/;';@;2 :é?mglb )s'tr;hnea\ﬁlrjt'"cgller?;%cma%tgrt]e of this curve is the
configurations of the first specimen are shown photographically in

Fig. 5(b). The photographs of the final shapes are digitized and the
points describing these shapes are plotted in Fi{g). 6Points
along and perpendicular to the crushing front are denotedand ) )
y, respectively. The point of reference is the position at which thEN® cross-sectional area of the crushed block is 54.5 mm by 54.5
front intersects the specimen surface. In the logarithmic scale pfBfn- Therefore, the average lateral strain at full densification is
of Fig. 6b), the points lie in a straight line, suggesting a power-

h f i 50-54.5
type shape function (Et= >  —0.08. (14)

(Eyy)3"~0.91. (13)

y=tanf,x— ax" (12)

wheren=1.21, @=0.98 and the final crushing front width,  The accumulated plastic Poisson’s ratio for the above foam is then
=240 mm for the first specimen while=1.21, «=1.65, andb,

=163 mm for the second specimen. (E ) (-0.09
The parameterg and m defined in Eq.(11) are required in poom o xd 7 ~0.1. 15
. .. . . . acc av ( )
order to determine the variation of the local plastic Poisson’s ratio (Eyy)d (0.99

with local normal strain. These parameters depend on local den-
sification strain, initial and accumulated Poisson's ratios. For the  petermination of the Local Stress-Strain Response
low-density foam under consideration, the initial plastic P0|ssonsf =
ratio is assumed to be zero. The local densification strain is cQt ~0ams
culated directly from the final specimen shape in the next section.In this section, the local stress-strain response of foams is de-
Therefore, the accumulated plastic Poisson’s ratio related termined for two different cases, name(i); the local plastic Pois-
strains at full densification is the only unknown quantity. Thison’s ratiov remains zero during deformation afid) the local
quantity is obtained by crushing a foam block to full densificatiorplastic Poisson’s ratie varies with deformation. Cadg) is typi-

A foam block of height 27 mm and cross-sectional area 50 moally assumed for low-density foanisee, e.g., Gibson and Ashby
by 50 mm is extracted from the same block from which foarfil1]). Although physically realistic, casgi) is a new concept,
trapezoids were cut. The block is compressed at 0.05 mm/s untthich has been previously ignored for foams.
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Fig. 6 (a) Final shapes of the crushed regions of the tapered
specimens obtained from digitized photographs. (b) The evalu-
ation of the power-type function, which describes the lateral
shape of the deformed specimens.

Fig. 7 (a) Foam block crushed to 80 times the initial peak load

is compared photographically to the uncrushed block. (b) The
conventional stress-strain curve corresponding to the crushing

of the foam block to densification and locking.

(i) Local Stress-Strain Response of Foams for Zero Plastic compining Eqs(17) and (18) by eliminatingb,P/P,, one gets
Poisson’s Ratio. When the local plastic Poisson’s ratio remaingne |ocal engineering stress-strain response of foams

zero during crushing, the local normal engineering strain, obtained

by combining Eqgs(4) and (13) is S E |\ttt
—=|1-| = (19)
o . So Ed
Eyy=E= tané, nx* (16)  where the normal local strain at full densification is also uniquely
o _ ) determined,
Eliminating x from Eq. (1) using the above expression, the local
normal engineering stress becomes Ed:tane nbr L. (20)
P [tang,E\M 1)) 1 °
Syy=S=Pjw, bop——2 an . (17) The local true stress-strain curve is obtained by using the strain
[o]

conjugate relation
The above equation has a vertical asymptote when the normal
strain reachesH,,)4=E4 at full densification, so that

tan ﬁoEd> vt 0

an

E=1-exp—¢}. (21)

Note thate,, =& and E,e)=0. Recalling tha,,=o,,= 0o, then
the local true stress-strain response is found by substituting Eq.
(21) into Eq.(19)

b (18)

P_o_
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Table 1 Stress-strain curve parameters assuming zero plastic Table 2 Stress-strain curve parameters assuming variable

Poisson’s ratio for the 257 kg /m® dense Alporas foam. The Poisson’s ratio for the 257 kg /m?® dense Alporas foam
thicknesses and heights:  w,=100 mm and h,=300 mm are the
same for the two specimens. First Specimen Second Specimen
- - : Taper anglef, (in degrees 75 80
First Specimen  Second Specimen ToB widtr?bo 2mm) g 100 %
Taper angled, (in degrees 75 80 Shape exponent 1.21 121
Top width b, (mm) 100 75 Initial plateau stresg, (MPa) 0.91 0.93
Shape exponent 1.21 1.21 Densification strairEy 0.81 0.84
Initial plateau stress, (MPa) 0.91 0.93 First Poisson’s ratio parameter 4.05 4.15
Densification strairEy 0.87 0.89 Second Poisson’s ratio paramejfgr 117 1.08

o -1

0o

and second Poisson’s ratio parametar®. These parameters can
be determined from a single test and were identical for the tested
foam trapezoids.
Although the physical meanings of the initial peak stress and
a densification strain are known, it is not immediately obvious what
1- e nb’L“l). (23) the shape exponent represents. Figure 9 shows the dependence of
0 the local stress-strain response on the shape exponent. It can be
The measured stress-strain curve parametggsn,o,) for the seen that foams that harden during crushing have higher values of
two specimens are given in Table 1. The parameters are identical
for the two specimens.

(22)

1 1—exp—¢g} |12
1— exp{— 8d}
and the local true strain at full densification is

o _ln

(i) Local Stress-Strain Response for Variable Plastic Pois- 05 4
son’s Ratio. When the local plastic Poisson’s ratio varies with o E .
deformation, the local engineering strain is obtained by combining 'T-'v oal
Eq. (4) with Eq. (14), - | :

n [ .
E=—p+(1+v) ——nx"1 (24) 5o :
tané, ' @t .
After substitutingx from the above equation into E¢3) and Eo,e n '
observing that the stress approaches infinity at full densification, o - :
P Eq+v,) tang, |1 BoiL ‘
bo——2 ( d L o] =0. (25) ¢_“ ): '
P, (1+v) an o I :
Simplifying Eq.(3) by eliminatingx andb,P/P,, it can be shown 0 frem LO!E’_L T
that the local engineering stress-strain response is local engineering strain
S E+v(E) |M1) 71
5 - 1- E+—E) (26) Fig. 8 The variation of local plastic Poisson’s ratio with local
o at v(Eq engineering strain during crushing of the 257 kg  /m® dense

wherev(E) is given by Eq.(7). The expression for the engineer-Alporas foam trapezoid
ing densification strain becomes

10

a —
EdZ—VL+(1+VL)mnbE L 27) 9
o

The local true stress-strain response is obtained by substitut 8

The measured stress-strain curve parametegsn,o,,m,3) for
the two specimens are given in Table 2. The parameters are id 2

Eq. (21) into the above equation E f
= 7F

o 1 1—exp(—e&)+ vo+ B(1l—exp —g))m]¥~1) 1 5 F
O'_o_ 1*exp(*8d)+vd :"5’ 6;_
R

and the true densification strain is given by gt
7] [

a n 1) E *F

ggq=—In| 1+v —(1+v ) ——nb' /. 29) o F

a ] O tang; L o) &t

tical for the two specimens. The variation of the plastic Poisson u ——G,¢) plots
ratio with strain for average values &j,m,3~0.83,4.10,1.13 e (S, E) plots
deduced from Table 2 is plotted in Fig. 8. 05,H.|».,,|,‘.,1..”1,..‘l..un...‘ny...u'.u‘l.‘

0 025 05 075 1 125 15 175 2 225
5 Discussions local strain, E or &

The analysis qf the previous sections demonstratgs that a simﬂ[_{f 9 Local stress-strain response in foams for different val-
local stress-strain response of foams can be obtained by testiig of n, according to Eq. (17) for zero plastic Poisson’s ratio.

foam trapezoids. The stress-strain curve depends on the initiak pattern is similar for the variable Poisson’s ratio case in
peak stressr,, densification strairEy, shape exponemt, first Eqg. (23) as the values of n are the same for the two cases.
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~0.91-0.93 MPa for tapered specimens whilg=1.5—-3.0 MPa

for cubic specimens The local stress-strain responses for zero

and variable plastic Poisson’s ratios during crushing are also com-
pared in Fig. 11. The energy absorption capacity for the foam is
underestimated by neglecting the variation of the Poisson’s ratio
with strain.

Finally, it should be mentioned that the optimum taper angle
range is dependent on foam density and cellular structure. Indeed
the taper angle range 75—80 deg obtained in this study is only
valid for the 257 kg/m dense Alporas foam tested.

Conventional Versus New Locally Based Densification
Strain. Hanssen et al[3] defined full densification strain for
cubic specimens as

 ALARE LEARN RRRES RENAY LARAD LUNAS LRSS AERNY LRSS

Conventional stress, S or o (MPa)
w
[¢;]

25F
g p
2k S (30)
H Ps
15§ A . .
> h=167mm h=167mm wherep; and pg are the densities of the foam and solid, respec-

tively. The superscript &v” is used to distinguish between con-

——— (O, 8) pIOts / . . . .
st (S, E) plots ventional strain from gublc specimens and local strain from ta-
I T - pered specimens. This strai®i’ corresponds to a complete
& 0.5 1 closure of all cells so that the density of the foam becomes equal
Conventional strain, E ore to that of the solid. For zero plastic Poisson’s ratio during crush-
ing, the above expression for the locking strain can be derived
Fig. 10 The effect of Specimen size in conventional stress- from the conservation of rate of energy per unit m@gerk con-

strain curves obtained by compressing the 257 kg /m® dense jugancy (Malvern[12])
Alporas foam cubes

1 1
—o?de®=—SVdE®, (31)
n than foams that crush at constant plateau stresses. Thus, the ' Ps
shape exponent is a measure of foam hardening during crushigiull densificationp¢= ps andE* = E3" . Noting that the plastic
beyond the initial plateau point. i Poisson’s ratio is initially zero, and observing thed’ =S* and
Figure 10 gives the conventlon_al stress-strain responses of Ul‘?ng the strain conjugate relation in E@1), then Eq.(30) is
present foam cubes of cross-sectional area 50 mm by 50 mm ggdovered. For the foam under consideration Withips=0.095,
heightsh,=5-167 mm. The responses are clearly dependent g, gav_g 9. This strain compares closely with densification

specimen size. The above conventional str_ess-straln CUVeS Jlins obtained from tapered specimens for zero plastic Poisson’s
compared with the present local stress-strain curves in Fig. 11 (E4=0.87,0.89 in Table )L

Note that the average values of the parameters for the two speci-
mens in Tables 1 and 2 were used for the local stress-strain curves.
The stresses for each specimen were normalized by the initral
plateau stresses. A new procedure to obtain the local compressive stress-strain
It can be seen in Fig. 11 that if a cubic specimen is uséth response of foams has been presented. The method allows one to
the same initial peak stress as the tapered spegjntlieen the calculate local strains and stresses directly from the final shape of
foam would appear to absorb more energy than it is possibmpressed foam trapezoid. Tests were conducted on specimens
Further, the foam material would appear to begin its densificati@@mposed of ductile closed-cell aluminum foam. For the optimum
phase at lower strains. Thus, the two methods already yield diper angle range, a roughly flat crushing front evolved under
ferent results before size effect is consideréed.g., o, uniaxial compression, separating crushed from uncrushed cells,
while a new specimen shape was formed. The local stress-strain
curve depends on several parameters: initial plateau stress, shape
exponent, densification strain, and Poisson’s ratio parameters, all
obtained from a single test. These parameters were identical for
the two specimens of different sizes and different taper angles. It
was demonstrated that the constitutive behavior obtained from the
present method is very different from that obtained from foam
cubes. Further, the effect of the variable plastic Poisson’s ratio
with strain in the stress-strain curve was introduced. An assumed
power-law variation illustrated that an incorrect constitutive re-
sponse is obtained if this effect is neglected. The actual variation
should be incorporated in the scheme. This can be done in two
E,=0.88 ways: by measuring lateral and normal strains during crushing
with digital image correlation analysis; or by finding an analytical

Conclusions

N

-

Local vs. conventional stress, S/S,

— v=0 procedure and/or developing the specimen such that both strain
| n=1.21 ; )
components can be calculated directly from the final shape.
E,=0.83 _ Among future improvements, this scheme should be quantified
v=v(E) — Cubic specimens and fully optimized with respect to specimen size and taper angle.
----- Tapered specimens
TR R W
ol—
0 0.25 0.5 0.75 1 Acknowledgments
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Comparison of Double-Shearing
and Coaxial Models for
Pressure-Dependent Plastic Flow
at Frictional Boundaries

The qualitative difference in solution behavior in the vicinity of maximum friction surfaces
is demonstrated for two distinct models of pressure-dependent plasticity (the double-
shearing and coaxial models) using closed-form solutions for planar flow through an
infinite wedge-shaped channel and plane-strain compression of an infinite block between
parallel plates. Singular velocity fields (some components of the strain rate tensor ap-
proach infinity at the friction surface) occur in the solutions based on the double-shearing
model. This is similar to behavior in the vicinity of maximum friction surfaces in classical
plasticity of pressure-independent materials. A singular velocity field is also obtained in

the solution based on the coaxial model for the problem of channel flow; but, in contrast
to the double-shearing model and classical plasticity, sticking must occur at this friction
surface. For the problem of compression of a material obeying the coaxial model, no
solution based on conventional assumptions exists with the maximum friction law. This is
quite different from both the corresponding solution based on the double-shearing model
and the channel flow solution based on the coaxial mod2Ol: 10.1115/1.1532319

singular at the maximum friction surface. For smooth yield crite-

1 Introduction
Models of pressure-dependent plasticity incoroorating the irip, this result in most general form has been presented in Alex-
p P P y p 9 ndrov and Richmon@13]. Also, such behavior of the velocity

compressibility equation are applicable to soil, granular material Id has been found in the cases of Tresca’s nonsmooth yield

and conventional metals. A brief review of such models has begfyerion (Alexandrov and Richmongi14]) and thermoplasticity
given in Ostrowska-Maciejewska and Harii§ where also a new ajexandrov and RichmongiL5]).

model has been proposed. General properties of equations for difthe gouble-shearing model has been discussed in detail in
ferent models have been investigated by Spent], gpencef2] and the solutions to the aforementioned problems for
Ostrowska-Maciejewska and Harfis], Hill and Wu[4,5], Harris  that model have been found by Pembettb6] and Marshal[17].

[6], and Lubardd7] among others. Most of these studies hav@ prief description of the equations of the coaxial model and the
dealt with the deformation of granular material or soil. Howevekp|utions based on this model are given in the present paper. Also,
pressure dependence of the yield criterion is also a feature ®fme features of the maximum frictional laifiresca’s frictional
conventional metalgéYoshida et al[8], Spitzig et al.[9], Spitzig |aw with the friction factorm=1) are discussed for various con-
[10], and Kao et al[11]). For such materials, the angle of internaktitutive models.

friction (in the terminology of soil mechanigss very small and

one would expect that its influence on solutions of classical plas-

ticity is negligible. Nevertheless, this is not true in some cases. . . .

This paper concerns two models, the coaxial model and tke CoOaxial Model and Frictional Boundary Condition
double-shearing modéin Ostrowska—Mac!e!ewska and Harfi| _Constitutive Equations. A plane-strain yield criterion for
these models are also referred to as Hill's model and Spencegisssyre-dependent materials may be written in the form

model, respectivelyunder plane-strain conditions and emphasizes
the interaction between the constitutive laws and a modified
Tresca frictional law. Note that the original Tresca frictional law is
very popular in the modeling of metal forming procestsee, for where o8 is an arbitrary plane orthogonal coordinate system;
example, Schef12]). Using analytical solutions for flow through 0., 045, and o,z are the components of the stress tensor in
an infinite wedge-shaped channel and compression between tiygse coordinatesr=(o,,+0p5)/2 is the mean stresg; is the
parallel plates, it is shown that the solutions may be qualitativePhesion; and is the angle of internal frictionThe terminology
different for these two models and may not reduce to the corr@r k and¢ is from the theory of granular material$:or conven-
sponding solution of classical plasticity at the vanishing interndPnal metals¢ is a very small parameter. _
friction angle in the case of maximum friction. The reason for this It iS supposed that the principal axes of the stress and the strain
is that the velocity fields in rigid/perfectly plastic materials aréate tensors coincide. This gives

V402 4+ (00— 0 3p)°=2(K COSH— T SN D) (1)
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Since the yield criterioril) depends on the hydrostatic stress, it is
clear that the associated normality flow rule is not satisfied for this
material model. To obtain a closed-form system, one needs to add
two equilibrium equations t61)—(3).

The vyield criterion (1) is automatically satisfied by the
substitution

0 ,e=0+(kcos¢p— o sing)cos 2

A A

0gs=0—(kcos¢p— o singp)cos 24 (4)
0 45=(kCcOsp— o sing)sin 2.

Then,(2) may be transformed to

tan2p- o ©) N
aa BB

Frictional Law. One_of t_he most7popu_lar frictional laws n Fig. 1 Flow in wedge-shaped channel and coordinate systems
the theory of metal forming is Tresca’s which states that the fric-
tion stress is equal to a portion of the shear yield sttsss, for
example, Schey12] p. 16). A particular case of this law is called o o
the maximum friction law if the friction stress is equal to the shear Assume a generalization of Tresca's frictional law for the ma-
yield stress. This law is of special interest because its applicatitftiial defined by(1) and(2) in the form
may lead to sut_:h feat_u_res of soluti_ons as _nonuniqueness, nonex- r=m(k cos¢— a sin ¢) (6)
istence, and singularities. In particular, in the case of rigid/
perfectly plastic materials velocity fields are singular at the frict the friction surface at sliding. Hereis the frictional stress and
tion surface(Alexandrov and Richmond13]). Such a singular m s the friction factor (Bsm=1). At m=1 the maximum fric-
behavior may cause computational difficulty and explain certalion law for the material under consideration is obtained.¢At
physical phenomena in subsurface layers. For other pressured the frictional law(6) reduces to the corresponding law in
independent constitutive models, studies of solution behavior @assical plasticity. If anw (or 8) line coincides with a friction
the vicinity of maximum friction surfaces have been carried owurface then combining (3)Xand(6) gives
by Alexandrov and Richmonfd 3,18, Alexandrov et al[19], and |sin 2| =m )
Alexandrov and Alexandrov$20,21]. These studies show that '
the behavior of the solution is very sensitive to the constitutivRt m= 1 this equation corresponds to the formulation proposed by
model chosen. Computational difficulties with the application ohlexandrov and Druyano{24]. Coincidence of7) atm=1 with
the maximum frictional law have been reported by Rebelo artle formulation proposed by Pember{d6] and Marshal[17] is
Kobayashi[22] and Appleby et al[23]. demonstrated for each problem separately.

A modification of the maximum friction law for pressure de-
pendent mat_erials has been proposed by A_Iexandrov and Dr@- Flow Through a Wedge-Shaped Channel
anov[24]. This law states that a plane of maximum shear stress’in
the plastically deforming material is tangent to the friction sur- A solution to this problem for a pressure-independent rigid/
face. In the formulation of particular problems for the doubleperfectly plastic material has been found by Nadai and (sile
shearing model, another modification of the maximum frictiofill [26]) and modified by Durban and Budiansky7] for a rigid/
law has been applied by Pember{d] and Marshal[17]. This plastic linear-hardening material and by Alexandrov ef 9] for
law states that the friction surface coincides with an envelop &f rigid/perfectly plastic three-layer material. Using the double
characteristics. In this case the plane of maximum shear stresshearing model, Pembertdi6] has solved the problem for a
not tangent to the friction surface, but the frictional stress obtaing@fessure-dependent material. As follows from the general theory
by Pembertor{16] and Marshall[17] is the maximum possible (Alexandrov and Richmond13]) singular velocity fields have
among all solutions to the considered problems. This is an effdigen obtained in the solutions of classical plasticity. A singular
of the pressure dependence of the material. The reason for wedocity field also occurs in the solution for the pressure-
latter formulation is that an envelop of characteristics is a naturg¢pendent material. Since this has not been mentioned in Pember-
boundary of the analytical solution. For pressure-independent ni@n [16], this aspect of the solution is discussed in an Appendix.
terials both formulations of friction coincide with each other andhe solution for the rigid/plastic hardening material obtained for
with the classical formulation. However, for pressure-dependedi arbitrary value ofnis not valid form=1. The reason for this
materials several questions ari&) How can one formulate the is that there would have to be sticking with this frictional law
second law of friction for nonhyperbolic equations? In general {Alexandrov and Alexandrov21]), which is not possible due to
may be possible since isolated characteristics and envelopes rif#g/a priori assumptions. A solution for the coaxial model is given
exist even in the case of nonhyperbolic equations in bulk. Ttd discussed in this section.
conditions for the existence of characteristic surfaces for thelt is convenient to introduce a polar coordinate systeinin-
three-dimensional equations of classical plasticity based on Misgigad ofe3, with its origin at the channel apex (Eig. 1). Since
yield criterion have been derived by Crad@s]. (2) How can one the flow is converginge, ;>0 at the channel wall and, therefore,
formulate the frictional law for models whose equations do nat>0 and(7) should be written in the form
have the property, as in the double shearing model, that the char- sin 2=m ®)
acteristic fields for stress and velocity coincide? The present paper
does not address these and other questions of the formulatiorab®= 6, where 6y is half of the total angle of the channel. More-
the maximum friction law for pressure dependent materials, baver, due to symmetry,
shows that both formulations coincide for the considered prob-
lems. Therefore, the difference in solutions is solely a conse-
guence of distinctive features of the constitutive laws. at 6=0.

$=0 9)
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Fig. 2 Variation of the parameter ¢, with the angle 6, at ¢=0.01
The circumferential velocity is zero at the wall<€ 6,) and at de 2(cos 2f+sin ¢)

the axis of symmetry §=0). Therefore, it is reasonable to as- d_z,//: . 2(cos 2/ 1+ sing) (16)
sume that this velocity is zero everywhere, as in the case of the 1
aforementioned solution@ill [26], Pembertori16], Durban and dp 2c, cof ¢ siné sin 2y
Budiansky[27], and Alexandrov et al.19]). Then, the radial ve- = a7

locity v is determined from the incompressibility E@) as
v=u(o)/r (10)

whereu( ) is an arbitrary function of. Using this solution, Eq.
(5) may be transformed to

1 du

2ude’
Substituting(4) into the equilibrium equations gives

tan 2= (12)

1—si do in 20 si Jdo
r( sm¢cos2¢)§ sin l/fSInd)%

+2 cos 24(k cos¢p— o sin¢) =0

dy

d_0+1
. . do . Jdo

—rsing¢ sin 2¢W+(1+0052¢sm¢)%

+2 sin 24(k COS¢—0’Sin¢)(3—lg+l) =0 (12

where we have taken into account thais independent of as

follows from (11). It is convenient to introduce a new variable b

the equation

g=In(kcos¢—osing). (13)

dyy  c,—2(cos 2y+sing)

where c;=c cog ¢/sin¢. Using the boundary conditiof®) the
solution to(16) may be written as

- ¥ (cosZ+sing)
o= fo [c,—2(cos z+sing)] °°

(18)

wherez is an auxiliary variable. Integration iL8) can be per-
formed analytically, but it is actually easier to deal with the form
of solution given in(18). The value ofc, is determined fron(8)
and(18) in implicit form:

(1/2)arcsinm (cos 2y+sing)
60_2L [c,—2(cos 2+sing)]
At m=1, corresponding to the maximum friction law, the varia-
tion of ¢, with 6, is presented in Fig. 2 fap=0.01. This value of

¢ is typical for metals, for example for a low carbon steel inves-
tigated by Kao et al11]. Equation(17) may be integrated to give

dy.  (19)

p=(1/2)c, cog ¢ sin¢ In|2 sing—c,+2 cos 24| +In p,

wherep, is a constant but cannot be found for an infinite channel.

yCombining(13), (15), and(20) we obtain

o sing=k cos¢— por®|c;— 2 sing—cos 24|° (21)

It is important to mention that this variable can be introduced fa¥hereb=c cos' ¢/2. For the pressure-independent yield condition

any small value ofg, but not for =0 (in this caseq=const)

(¢=0), the mean stress is proportional tor Inather than to a

which corresponds to the pressure-independent yield conditig®wer ofr (Hill [26]). Such a dependence is obtainable fr21)

Substituting(13) into (12) gives

(1-singcos2p) 9q . aq dy
—YTE'FSIHZI,&&—O-FZCOSZ// 1+d_0 =0
) dq (1+sin¢ cos 2p) dq . dy
rS|n21pa—rfTﬁ+25m2¢ 1+ﬁ =0.
(14)
These equations are compatible if
g=clinr+p(6) (15)

wherec is constant ang is a function of§. Combining(14) and
(15), after some algebra we arrive at the following equations:
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as the limit asp—0 if pg=k. A difference between the solutions

for the pressure-dependent and pressure-independent yield condi-
tions is that at =0 the mean stress is bounded in the former case
and is infinite in the latter case. All components of the stress
tensor may be found frort¥) and(21). Of special interest is the
componento 44 Which is given by

k cos¢

= Sng Por °|c1— 2 sing— 2 cos 24|°(1/sing+cos ).

(22)

One can see that,,>0 atr=0 and, therefore, in a vicinity of
this point. This means that the solution is not valid in this vicinity
since any frictional law requires a negative normal stress on the
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friction surface. For a pressure-independent material such incc $ Y
sistency has been mentioned by Alexandrov and Gold§&sh L/ T I
Using (16) the functionu(#) involved in (10) is determined H
from (11) as
. . -L 0 L X
u | C1—2(1+sing)
Ug (cos 2)) C1—2(cos 2+ sin¢) (23) u
where 1 T T |
2sing (o
t=———— and n=——F—— 24) .
c,—2sing c,—2sing Fig. 3 Compression of block between parallel plates and co-
ordinate system
anduy>0 is constant which may be found if a flu®, is given.
Then,
(L2arctanm (cos 2+ sin ¢) (cos 24" Thus, in the vicinity of the maximum friction surface the solu-
Q:2U0j - tion obtained is qualitatively differerisingular velocity field and
0 [c1—2(cos 2)+sing)] sticking from solutions based on other constitutive laws. In the
ci—2(1+sing) " case of the pressure-independent perfectly plastic material the ve-
L i dy. (25) locity field is also singular, but sliding occurs. Moreover, the rate
C;—2(cos 2Zy+sing) at whichdu/d @ tends to infinity in(30) is different from the rate

&)Il’ the pressure-independent material. In the latter case the rate is

To demonstrate that the solution obtained satisfies the fricti . . .
law used by PembertofL6], we mention that the stress characindependent of the shape of the yield surface on the deviatoric

teristi defined by the followi tigiembertorf 16]): plaqe and iglu/d 9= O(1//6,— P.) for the problem under consid-
eristics are defined by the following equatioRembertorf 16) eration, see Alexandrov and RichmofiB]. At m=1, it follows

T ¢ from (16) that in the vicinity of 6= 6, we have
r—=tan ¢+—+—+ (26)
o vz g 2D o o060 0)2 31
whereas the velocity characteristics are defined by y=mla- 2 sing (80— 6)+0(6o=0)". (31)
do r( T Therefore, cos is expressible as
r—=ta 1. 27
dr ¢+4 27 (c1—2sing)
. . - cog2y)= ————(6o—0) (32)
Since is independent of, the envelopes of these characteristic sing
curves are given by to leading order. Substitutingg2) into (29) gives
#=const (28) du/do=0(6,— ). (33)

at == ml4+ /2 and ¢=y, = ml4, respectively. We have |n the case of the pressure-independent hardening plastic mate-
taken into account thay=0. But (7) at m=1 shows thatyr rjal, sticking occurs but the velocity field is not singular. Actually,
=m/4 at the wall and, thereforé28) should be replaced by no solution has been found for radial flow through an infinite
= 0o and this line is an envelope of the velocity characteristicghannel. It is easy to check by direct substitution that the solution
On the other hand, an envelop of the stress characterigi?ss proposed by Durban and Budianskg7] fails for the maximum
not reachable becauseis a monotonically increasing function of friction law. However, for many hardening laws it is possible to
6, =0 at =0 and, <. Thus, for the problem under con-show that there is no sliding and that velocity fields are not sin-
sideration the Only pOSSible interpretation of the friction law Useg_”ar at the maximum friction surfadsee Alexandrov and Alex-
by Pembertor16] is to assume that the friction surface coincidegndrova‘[ﬂ] for axisymmetric flovy.
with the envelope of velocity characteristics. As we have just |n the case of the double-shearing model the radial velocity is
seen, this leads to conditigi) at m=1. _ describable by nondifferential functiorisee Appendix but the

We have mentioned that in the case of pressure-independggie at which its derivative with respect totends to infinity is
perfectly plastic material the velocity fields are singular at thgifferent from (33). In addition, this solution requires sliding at

maximum friction surface. To check the possibility of such a behe friction surface. In general, the qualitative behavior of this
havior in the present solution, we note that it follows fréf®) solution is very similar to that of classical plasticity.

that a singularity in the velocity field may be involved in the

functionu(é) only. Equationg24) and Fig. 2 show that>0 and 4 compression of a Block Between Two Parallel Plates
n>0. Therefore,u=0 andv=0 at ¢y==/4 (maximum friction ) ] ) o
surfacé as follows from(10) and (23). Thus, there is sticking at A solution to this problem for a pressure-independent rigid/
this surface. Nevertheless, substitutif®p) into (11) shows that Perfectly plastic material was found by Prandtl and Naczie

the velocity field is singulafnondifferentiable since Hill [26]) and modified by many authors to include various ef-
) . fects. For example, Collins and Meqi29] have proposed solu-
d—u~2u0(cos 21 ¢;—2(1+sing) sin2y tions for hardening and anisotropic materials, Adams ef3l]

for a viscoplastic material, and NepershBi], for a thermovis-
coplastic material. For the double-shearing model the problem has

de C1—2(cos 2+ sin ¢)

T been solved by MarshdlL7]. The singular behavior of the veloc-
as ¢y— . (29) ity field in this solution is discussed in the Appendix. A solution
for the coaxial model is given in the present section. As in the case
and then of flow through the wedge-shaped channel, the behavior of the
lim (du/dg)—oo. (30) solution in the vicinity of the maximum friction surface depends

on the constitutive law.

Introduce a Cartesian coordinate systeminstead ofa3, with
We have here taken into account that1 <0 as follows from Eq. its origin at the intersection of the axes of symmetry of the block
(24)! and Fig. 2. (Fig. 3. Only a quarter of the block;-L<x<0 and O<sy<H,

Yy—mld
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needs to be considered due to symmetry. Moreover, as in other 2upl  ug (H
solutions to this problem, regions in the vicinity @0 andx L e f(y)dy.
= —L are not covered by the solution and, therefore, the boundary 0
conditions at those positions are not satisfied. Nevertheless, itggpstituting(43) into this equation and usin(8) and (41) we
assumed that the material flows in the negative direction of thgrve at

x-axis. Thereforeg, ;>0 andy>0 at the friction surface an@®)

holds aty=H. Wy 4 (12)arcsinm
Assume the velocity field has the form U (arcsinmsing+m)? |, [sin¢ In(cos 2)
uy=—ugy/H —and u=wo+upx/H+uef(y) (34) + cos 2](sin ¢+ cos 2)dy. (a4)

whereuy>0 is the velocity of the platesy, is constant, and(y)
is an arbitrary function ofy. The velocity field(34) satisfies the
incompressibility Eq(3) and the boundary conditions for velocity

In particular, form=1 integration in(44) can be performed ana-
lytically to give

aty=0 andy=H. Using this velocity field, Eq(5) may be trans- Wo  2(m+4sing) 45
formed to Uy (mwsing+2)% (45)
¢ _ Hdf 35 The components of the stress tensor may be obtained (4om
anp=7 gy (35)  with the use of(13), (37), (41), and(42), in the form
It follows from this equation that/ is independent ok. Then, _ cos¢ 1
substituting(4) into the equilibrium equations gives o=k sing +|cos - sing
1—si do in 2 Jo sin¢ ) . X
(1—sin¢ cos 2) o Singsin lﬂw X ex 24 (arcsinm sin ¢ +m) —cos 27| + po
d
+2coszp(kcos¢—asin¢)d—l/j:0 o :kcg_s¢_ COSQIH_L
(36) W " sing sing
_ do _ _ dy sing ) ] X
(1+sm¢>cos2z,/;)w+2 sin 2¢(kcos¢—asm¢)d—y X ex m (arcsinm sin ¢p+m) ﬁ—COSZ/I +po
. . Jdo (46)
—sing sin 2¢y— =0.
Ix 3 sin . . X in2
Assuming that Oyy= EX m (arcsinm sin ¢+ m) " COS 2| +Pg( Sin 2.
g=cx+p(y) (37) The parametep, may be found from the integral condition

JHo,dy=0 at x=—L which replaces the exact conditian,,

whereq is defined by(13), c is constant ang(y) is a function of =0 atx=—L. Using (46} and(38) we have

y, Egs.(36) reduce to

sing L
dyr Cy 2ex;{— ——— — (arcsinm sin ¢+ m)
dy ~ 2(sing+cos 20) B8 en- cos g H
(arcsinmsin ¢+ m)
d_p = ﬂ (39) (1/2)arcsinm
dy sin¢+cos 2 Xf (1—sin¢ cos 2))(sin ¢+ cos 2))
0

where, as before;; = c cog ¢/sin ¢. Equation(38) may be inte-

grated with the boundary conditior=0 at y=0 (zero shear Yext — sin¢ cos 2 q a7
stress at the axis of symmetyy=0) to give cos ¢ )
yCi =2 Sin¢g+sin 2. (40) The solution for the pressure-independent material is obtainable

from (46) as the limit asp—0 if

= =arcsi +V1-m?+
aresinm sin g+ m po=Ink and dp,/d¢=arcsinm/m++1—m mL/H48
_aresimsing+m @1) (48)

ci=
H at »=0. It is easy to check by direct substitution tl4¥) results
Also, combining(38) and(39) and integrating we find in (48). Thus, the solution for stre€d6) approaches the solution
) for the pressure-independent matefidill [26]) as ¢— 0.
__sing The situation with the solution for velocities is quite different.
P=~ %02 ) €0S 2+ po “42)  of special interest is the distribution of the velocity at m=1
which may be found front{34), (41), (43), and(45) as

The value ofc, is determined from(8) and (40) as

wherepg is constant. Substituting40) into (35) with the use of _ _
(41) and integrating gives U X 2(w+4sing) 4[sin¢ In(cos 2)+cos 2]

B 2[sin¢ In(cos 2f) + cos 2] H

Uo H  (msing+2) (msind+2)
f= - - . (43) (49)
(arcsinmsin é-+m) It follows from (49) that the velocity field found by Naddsee
Since the exact boundary condition for the velocitx&tO cannot Hill [26]) is obtainable ath=0. However, at any small value of
be fulfilled, the constanivy in (34) may be found from Eq(3) ¢+#0 the solution does not have a physical meaning simgce
integrated over the entire area of the block assuming the exagproaches infinity at the friction surfacé < w/4). Moreover,u,
boundary conditions everywhere. This gives is positive there which contradicts the solution for stress. It is
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Fig. 4 Variation of the parameter s, which is involved in the condition of zero
tangent velocity at the interface, with the friction factor m

clear that this contradiction should also appearrferl. It fol- sidered problems based on the same constitutive law show the
lows from (34), (41), and(43) thatu, is positive at the interface if same main features, but the solutions based on the coaxial model

. are quite different.
W singIn(1-m?)+2y1-m? x a
U arcsinmsing+m H

(50)

for anyx in the interval of interest. The value of,/ug in (50) is ;
defined by(44). Variation of the parametes with the friction Conclusions

factormat ¢=0.01 is shown in Fig. 4. Because the solution under Two classical problems of plane-strain plasticity theory, flow
consideration may be in general acceptable for sufficiently largarough an infinite wedge-shaped channel and compression be-
values ofx/H, one can see from this figure that the contradictiofveen parallel rough plates, have been solved analytically for
occurs for values ofn which are very close to 1. For example, forPressure-dependent materials obeying the coaxial model. A com-
x/H=1.5, which is quite a small magnitude,>0 atm>0.999. parison between these solutions and those found earlier for mate-
For larger values of/H the value ofm at which inequality(50) is ~ rials obeying the double-shearing model and pressure-independent
satisfied is even closer to 1. materials has been made with the main emphasis on the solution

To demonstrate that the frictional law) at m=1 coincides behavior in the vicinity of the maximum friction surface. It has
with the law used by Marshalll7], we mention that the stressbeen demonstrated that the qualitative behavior of the solutions
characteristics are defined by the following equatiédMsirshall depends on the constitutive law chosen. In the case of flow
[17)): through an infinite channel, the solutions are sing(dame com-

ponents of the strain rate tensor approach infinibut sticking
ﬂ:ta’_( d/:z:f) (51) occurs for the coaxial model whereas the other models require
dx 4 2 sliding. Moreover, the rate at which the components of the strain
whereas the velocity characteristics are defined b rate tensor approach infinity depend_s on the specific c_onstitutive
y IStcs ! y law, but the same for the pressure-independent material and the
dy T double-shearing model. In the case of compression between par-
a:tal'( l//IZ . (52) allel rough plates, no solution exists for the coaxial model at the
maximum friction condition whereas the solutions for the other
Since ¢ is independent of, the envelopes of these characteristienodels exist, but are singulé&some components of the strain rate
curves are given by tensor approach infinijyand the rate at which the components of
the strain rate tensor approach infinity is the same.

Since the solutions for both of the considered problems based
at == mld+ $I2 and =, = wl4, respectively. We here on the equations of classical plasticity and the double-shearing
taken into account thay=0. But (7) at m=1 shows thatyy model show that same main features, it is expected that the use of
=/4 at the wall and, thereforg53) should be replaced by the latter model with the maximum friction law should not lead to
=H and this line is an envelope of the velocity characteristics. Gany difficulty other than the singularity of velocity field. On the
the other hand, an envelop of the stress characteri&igss not other hand, a possibility of the use of the coaxial model with the
reachable becausgis a monotonically increasing function gf maximum friction law may depend on specific problems.
=0 aty=0 andy,<. Thus, for the problem under consid- It is believed that for successful applications, including numeri-
eration the only possible interpretation of the friction law used bgal simulation, of both models it is necessary to perform a general
Marshall[17] is to assume that the friction surface coincides witlstudy on the solution behavior in the vicinity of maximum friction
the envelope of velocity characteristics. As we have just seen, thigfaces and to clarify the formulation of this frictional law for
leads to conditior(7) at m=1. pressure-dependent materials, as mentioned in Section 2.

The nonexistence of the found solutionrat=1 and ¢#0 is
probably a consequence of the fact that the velocity fi@id)
assumes no sticking. For the same reason the solutions givenAl\Jgk led
Collins and Mequid29], Adams et al[30], and Nepershif31] nowledgment
fail at m= 1. On the other hand, the solutions found by Nadae The author wishes to thank Dr. Owen Richmond who in-
Hill [26]) and Marshal[17]) exist, but involve nondifferentiable itiated this work and contributed into it through many fruitful
functions. It is interesting that the solutions for both of the cordiscussions.

y=const (53)
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The singularity of the velocity field now follows by inspection
from (A4) and (Al1). Using expansion of the right-hand side of
Egs. (A10) and (All) in the vicinity of =, it is possible to

show that

Appendix

The solutions found by Pembert¢@6] and Marshal[17] in-
volve singular velocity fields with very large gradients in the vi
cinity of the maximum friction surfacésome components of the
strain rate tensor are infinite at the surfacthis aspect of the
solutions has not been mentioned by the authors, but has consid-
erable theoretical and practical interest because such velocity
fields may lead to computational difficulty and, on the other hand, Equations/A8) and(A12) show that in the considered problems
are consistent with experimental data that show very large grathe velocity tangent to the surface with maximum friction follows
ents of velocity near the friction surfaces. a square root law near such a surface. The same asymptotic

du,/ldy=0(1/\N\H-y) as y—H. (A12)

Pemberton’s Solution. The radial velocity is given by

B
vt r(\—cos 2y)) (AL)
whereA>1 andB>0 are constant ang is defined by
dé cos2p+sing
W cosa (A2)
dy \—COS 2/
The value ofi at the maximum friction surfacel,,, is
T ¢
z/;w—z + > (A3)
It follows from this equation that
COS 2)r,= —Sin ¢. (A4)

Using (Al) and (A2) the derivativedv/d6 may be found in the
form

v 2B sin 2y
90 r(N—cos 2/)(cos 2p+sing)

(AS)

The singularity of the velocity field now follows by inspection
from (A4) and (A5).

behavior of the velocity has been found in classical plasticity
(Alexandrov and RichmonfiL3]).
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Laboratoire de Détecti(\)n Géophyfiqtéé,F?E/;: Sta b i I izati 0 n Of Fri cti 0 na I S I i d i n g
e % | by Normal Load Modulation

Ecole Normale Supérieure, ) . ) . .
24 tue Lhomond, This paper presents the stability analysis of a system sliding at low velocii&eQ(

75231 Paris, Cedex 05, France um-s %) under a periodically modulated normal load, preserving interfacial contact.
Experiments clearly evidence that normal vibrations generally stabilize the system against
stick-slip oscillations, at least for a modulation frequency much larger than the stick-slip

L. Bureau one. The mechanical model of L. Bureau, T. Baumberger, and C. Caroli validated on the
steady-state response of the system, is used to map its stability diagram. The model takes
explicitly into account the finite shear stiffness of the load-bearing asperities, in addition

T. Baumberger1 to a classical state and rate-dependent friction force. The numerical results are in excel-

e-mail: tristan@gps jussieu.fr lent quantitative agreement with the experimental data obtained from a multicontact

frictional system between glassy polymer materials. Simulations at larger amplitude of

] UMR 7588, modulation (typically 20 percent of the mean normal load) suggest that the nonlinear

Universite Denis Diderot (Paris 7), coupling between normal and sliding motion could have a destabilizing effect in restricted
2, place Jussieu, regions of the parameter spacfDOI: 10.1115/1.1546241

75251 Paris, Cedex 05, France

1 Introduction wide range of materials, such as granftg], paper,[4], polymer
1gIasses[S], and elastomer$6]. The friction force in this model is

dry friction may lead to the instability of steady frictional slidingz:n\{v“ ,\%}ggvg:thitvx ;f;ebrécérnmglolsoseilg[; g?” ,[tg eg;‘\rllgtlg npﬁggif (];;I

against sti_ck-slip oscill_ations, even forasi_ngle degree-of-freec_:lq erpretation of¢ as the average “age” of the microcontacts
system driven at nominal constant velocity through a complia| ich grow while the material creeps under normal load, until

st_age._Slldl_ng '”.S‘?‘b"'ty IS an important issue in me(_:han_lcal eel'lding interrupts the process by renewing the load-bearing contact
gineering since it is an ultimate limitation to the positioning ac:

f - d hi ls. When desi _Bopulation. The dynamical model is closed by specifying a differ-
curacy for precision structures and machine tools. When designifigiia| equation coupling to ¢ so as to account for the renewal of

a sliding mechanism, it is therefore of primary importance to chase microcontact population after a slip lenddl of micrometric
acterize accurately the variations of the friction coefficient withyqer This length is of order the mean radius of the microcontacts
e.g., sliding velocity, keeping in mind that even slight variationgetween surfaces of micrometric roughnei, The resulting

may have a destabilizing effect. This requires to go beyongate-dependent and rate-dependent friction laws will be hereafter
Amontons-Coulomb’s law which assumes a constant friction caferred to as SRF. Among several SRF expressions proposed
efficient. It might be legitimately feared that a more detailed congiginally, the one that we use in this paper are

stitutive law would have a restricted scope, e.g., in terms of ma-

It is well known that nonlinearities in the constitutive laws o

terials and range of sliding velocities. It is thus remarkable that in v Vb

the limit of low velocities(typically lower that 10Qum-s %), and p(v,d)=puo+A In(— +BIn| 1+ —= ) 1)
light enough loads so that the interface is made of a sparse set of Vo Do
microcontacts between load-bearing asperities, a relativel . -

material-independent frictional behavior is found which can H@" the friction coefficient and

accounted for by a simple set of nonlinear constitutive equations.

Such studies have been initiated in the field of rock mechanics by d_¢ ., v >
Dieterich[1] and Rice and Ruing2], motivated by the need for dt Dy 2)

low velocity friction models to investigate fault dynamics and

earthquake nucleation. They have put on a firm phenomenologi¢al the evolution of the state variable, wheug, A, B, Vg, and
basis the idea, already suggested by the work of Rabino\8icz V, are constants.

that friction does not depend only on the instantaneous slidingThis SRF model has been extensively validated by testing
velocity v but also on the whole sliding history. An experimentahgainst numerous experimental situations involving transient dy-
signature is the hysteretic frictional response of the interface wheamical responses of the system. The most stringent test relies
the slider is driven at a nonsteady rate. Rice and R{@gro- upon the nonlinear characteristics of the bifurcation from steady-
posed a family of dynamical equations coupling the sliding velosliding to stick-slip oscillations[10]. The model can be under-
ity to a set of state variables. Subsequent experimental investigéood as resulting from two distinct physical mechanisms, the ef-
tions have shown that a single state variableés sufficient for fect of which can be summarized in the following decomposition
most purposes. These experimental studies were performed oof the friction force, proposed by Bowden and Tafht], in terms

of the real area of contad,, and an interfacial shear strength

1To whom correspondence should be addressed. Og.
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- _
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 24, F(v ' ¢) - O’S(U )Er( ¢) (3)
2001; final revision, Apr. 24, 2002. Associate Editor: K. T. Ramesh. Discussion on
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, Depart-Here, the real area of contact depends on the interfacial age

ment of Mechanical and Environmental Engineering University of California ; _ ; o
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until fbecause it grows due to the creep of the load bea”ng asperities,

months after final publication of the paper itself in the ASMEURNAL OF APPLIED Tlﬂ The velocity-dependent interfacial shear strength has been
MECHANICS. ascribed to the adhesivaanometer thick junctions between mi-
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croasperities. A simple microscopic model has been proposed for
the elastoviscoplastic rheology of the junctions, compatible with
the existence of a finite friction threshold)].

Recently, attention has been paid to the effect of a time-
dependent normal load on the response of a single degree-of-
freedom sliding system. This situation is of practical interest when
the mechanical design allows cross-talking between the normal
(loading and the tangentialdriving) forces,[12], or when exter-
nal vibrations contribute to the loading of the interface, as it may
be the case for seismic faultsl3—15, or bolts and threaded
fastners[16]. The response of the system is not intuitive. First,
since the friction force is directly proportional to the normal load,
the sliding velocity is dynamically coupled to the normal load
modulation, hence feeds back the friction forlde7]. Moreover, it
has been shown that more subtle interplays must be taken into
account. Linker and Dieterichl3] have interpreted the transient
response to a step in normal load by coupling directly the time ) ) )
variations of¢ andW, thus adding a term- constgd In(Wy/dt in ~ ~/9- 1 Main elements of the experimental setup: translation

. R . . tage (Drv); loading leaf spring (Lsp); displacement gauge
Eq.. 2. The. physmal motivation for thls extension of Fhe SRI%GQ); vibration exciter (Vb); weighting spring  (Spr); accelerom-
aging equation is the fact that, according[®, a change in nor- eter (Acc). The labeled parameters (K, V, M, 7) are defined in
mal force creates fresh load-bearing contact area. This certairiy text.
influences directly the age, though probably in a weaker mea-
sure than proposed by Linker and Dieter{d8], as briefly dis-
cussed irf18]. More recently, Bureau et 18] have studied the 2 Experiments
response of a sliding system to a periodically modulated normal ) ] ]
loadW(t) =Wy[ 1+ € cost)] with e<1. They found that the fric- 2.1 Apparatus. The apparatugFig. 1) consists of a slider
tion force, averaged on a modulation period, is significantly low?f MassM driven ali)an a track through a loading spring of stiff-
ered with respect to the situation under constant ldad The NE€SSK=0.21N um = The loading end of the spring is moved at
oscillating part of the force, primarily harmonic atin the limit ~constant velocityV in the range 1-10Qum-s = by means of a
of vanishing e, becomes quickly anharmonic asis increased translation stage driven by a stepping motor. The spring elonga-

while still remaining much smaller than 1. They have shown tthn is measured by an inductive profiElectro, sensor 4937,

the SRF equations can fit accurately all their results provided t{3Pdule PBA200, with a 0.1um resolution over the 10 kHz band-
. . S . width. The average normal loalf, can be set in the range 3—-23
the model is modified to account for the finite interfacial she

3 with the help of a vertical spring attached to a remote point

stiffness « resulting from the elastic deformation of the load- ; . ; ’
: " " L . . Itself translated horizontally at the pulling velocity through a

bearing asperities. This means that the sliding velocity diffe y puting v g

. / K&cond translation stage in order to prevent any tangential cou-
from the velocity of the center of mass of the slider, a statem I'ing. The normal load modulation is achieved by means of a
which is clearly illustrated in the static state, i.e., for tangemfgibration exciter(LDS, model V100 rigidly attached to the slider:
forces well below the static threshold, where the interface r@: harmonic voltage input of given amplitude and frequericy
sponds elastically without sliding19,20. Under constant normal resuits in a harmonic vertical motion of the moving element of the
|0ad and constant driving Velocity, thls "hidden" interfacial exciter on which an acce|erome(8ri]e| & Kjar, type 4371 VIS
degree-of-freedom manifests itself only for nonsteady motion, afiled. An acceleration of amplitude of this moving element of
plays no significant role at the circular frequen@y~V/D, of  massminduces a normal load modulation on the slider of ampli-
the oscillations at the onset of the stick-slip instability. tude my at frequencyf. We thus obtain a normal loa(t)
However, under a modulated loada (), one must take the =W;y[1+ € cosft)] with w=2=f and e=my/W, in the range
finite interfacial compliance into account, all the more so since0.01-0.5. A fixed frequency=120Hz has been used for the
the latter is known to be itself proportional ¥, [20]. This results whole study. Two polgmethylmethacrylate(PMMA) samples are
in a nontrivial and efficient coupling between the normal load arglued, respectively, on the slider and the track. They have nomi-
the sliding velocity. nally flat surfaces which have been lapped together with 400-grit
Of particular interest is the effect of load modulation on th&IiC powder and water to obtain a rms roughnBgs-1.3um,
sliding stability of the system. Dupont and BagiZ] have com- [20]. The intgrface_between the two blogks is made (_Jf a sparse set
puted the critical stiffness of the drive below which stick-slig?f load-bearing microcontact520]. An air layer of micrometric
occurs for a slider-spring system loaded at a constant angle wifickness is therefore trapped between the surfaces and acts as a
respect to the sliding plane. This configuration would provide ¥Scoelastic element, in parallel with the microcontacts, which
direct test for the coupling betweahand W proposed by Linker partlglly bears the normal load. This effect has been stu'dlled in
and Dieterich[13], but the experimental study has nof been pefi€t@ils in Bureau et al.18] who concluded that the remaining
formed so far. effect of t.he load modulatlon on t.he asperities can be described by
The present paper addresses the problem of the stability og%:r:f?r?ttlxg %Té)vl\'ﬁﬁd?ﬁ;gzsw';hvg Ijecv?/tqféﬁ%il(lzlg:eutsotif?éz’
slider-spring system under an externally and harmonically modM- Section 3.3 g ap=0.4s, J
lated normal load. The experimental arrangement is described in "
Section 2 and it is shown that for a circular frequengy () the 2.2 Localization of the Stick-Slip Bifurcation, Effect of the
modulation generally stabilizes the system against stick-slip. Modulation. The bifurcation between steady sliding and stick-
Though the role of vibrations is seemingly part of the empiricallip oscillations under constant lode=0) has been extensively
culture in mechanical engineeringl6], it is, to our knowledge, describedsee, e.g.[4]). WhenK andV are kept constant, steady
the first time that the stabilization effect is investigated expersliding occurs for values of the remaining control param&tgr
mentally. This spectacular effect is accounted for by the SREWg(V) where theK-dependency has been omitted here since
model with modulated interfacial stiffness, as shown by the nthe value oK is fixed in this study. The bifurcation is of the direct
merical study of the bifurcation which is detailed in Section 3. Hopf kind, which means that while the circular frequency of the

track|slider
b—

l—_—_
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Fig. 2 Stability diagram for different values of the modulation . » . L
amplitude. For given V and ey, bifurcation from stick-slip to Fig. 4 Reduced critical load versus €. for different driving
stable sliding occurs when the control parameter KIW, over-  Vvelocities: V(um-s™)=1(A); 5 (®); 10 (C); 30 (W); 50 (O). The
comes the plotted critical value:  e.;=0 (@); 0.045 (A); 0.09 (W); ~Curves are the output of the numerical study ~ (see Section 3.3)
0.13 (0); 0.18 (A). For the sake of clarity, typical standard de- labeled with the corresponding velocities in pm-sh,

viations are plotted as error bars only for €.+=0. The solid line

curves are the output of the numerical study (see Section 3.3).

The larger e the lower the curve at V=1 um-s™1. . . . .

whole set of experiments reported in this paper, we will keep on
representing the stability domain of the system in the parameter
. . _— . . . plane K/W,,V) where it is bounded by the experimental bifur-
slider velocity oscillations tends to a finite vallik,, their ampli-  cation curve(Fig. 2. The experimental Uncertainty on the critical

ltggssgf?grsn iﬂgtiggglzzll¥pt?eé%gnofafhpgoc?;:;ﬁiCthghgg:rg?;igrgynalue K/W§, determined from the standard deviation over at least
(Fig. 2). In addition, the characteristic time of the oscillating tranger;smiialsélﬁgrergel?tt s}satt;pigclgﬁ;+vse lggﬁ;{”i‘fﬁéﬁ? g%l tti?ee ?e::g;r
sients foIIovylng an external perturbatlon_d!verges_on approac_hlﬁglocity sin-ce -the results are_more senéitive to long wavelength
the bifurcation locus from the steady sliding region. A.pra(.:t'c"jﬁregula’rities along the track for large sliding distances
consequence is that in the close vicinity of the bifurcation it be- ’

comes difficult to distinguish between established steady stick-slci)PV\yvhegofrgsrgqn%%c Tgi‘:g[:jons? dlisn Su\;{)teilhrgp\(l)sg ?:i:o g\fvtﬁléje
oscillations of small amplitude and long transient relaxation to-. ;0 p 9 y 9 y

wards steady slidingsee Fig. 3 resulting from the perturbating S&'gg;ﬁ?gﬁ'tl;‘tsglﬁbggﬁtF;is_?ﬁéyn;rét%:g??Lrgosr;ige\r’v?/?//hxtzv?
effect of friction force fluctuations along the track. This is thé p X

main source of uncertainty in the localization of the bifurcation.eragecl over a periodriw is therefore steady. For givanandk,

For e=0, the ratioK/W, is the relevant control parameter, at"® has now to consider two control parameters, namgland

least in the low velocity region where inertia of the slider oscil€ef -

) ; When the DC load\V; is increased while keeping constas;,
lating at the circular frequenc. can be neglected4]. Hence- . 0 ; :
forth, although the external stiffneds is kept constant for the the motion of the slider, averaged over a periedd is found to

become of the stick-slip kind above a critical valWg(V, eqq)
- - i 2. .

°Note that the term “stick-slip” is therefore a misnomer since the sliding velocity f?/\lf)(\/) (Flg |2) g\ normal rl]oadmedlél.?tlonhOf even very s_mall
does not reach zero, i.e., the slider does not “stick” during an oscillation period. €11€CtiV€ amplitude may thereforstabilize the system against
stick-slip as illustrated directly in Fig. 3 where a modulation with

€.=4.5X 1072 is enough to suppress well developed, strongly

anharmonic, large-amplitude and low-frequency stick-slip oscilla-
S tions (the force signal then only shows the remaining small am-
plitude modulation at the forcing frequency
5 0.000 The effect ofe. on the critical value oK/W,(V) is character-
= 0,009 ized in Fig. 4. The higher the velocity, the stronger the stabilizing
= VAVAVAV AV AWV AV Ve b effect of the normal load modulation. The effect is spectacular
o A A N A 0.013 when described in terms of the velocity domain corresponding to
g steady sliding at constait/ W, . For instance, the critical velocity
£ "‘%’“ Smmssees| 0.045 at K/W,=0.026um™ ! is decreased by more than a factor of ten
3 by applying a modulation witle.4=0.09.
Y 171205 The empirical study indicates that, as a rule of thumb, steady-
£ MANAT 02um sliding is promoted by high velocity, high amplitude of normal
31 load modulation, low average normal load, and large stiffness.
—T“* time This is tested in the following against a numerical study of the
S . . .
SRF model including normal load modulation.
Fig. 3 Time evolution of the loading spring elongation for v
=8 um-s~! and different modulation amplitudes € indicated .
at the right end of each trace. A vertical offset has been added 3 Numerical Study

to each trace in order to display clearly the bifurcation se-

guence from stick-slip to stable sliding. The inset is a blow up 3.1 The State and Rate-Dependent Frictio(SRF) Model

of the stable sliding trace showing the remaining oscillating Equations. The SRF lawsEgs. (1), (2)) are incorporated into
response at the frequency of the load modulation (f=120Hz, the equation of motion of the slider, according to the simple model
much higher than the stick-slip frequency ). sketched in Fig. 5. The proportionality constant between the nor-
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K Table 1 Values of the SRF parameters

. $V Parameter Trial Value Optimized Value
slider X
. K (N-um™1) 0.21
interface M (kg) 2.37
Mo(VO:].,U,m'Sil) 0.33
Xpl X A 0.012+0.002 0.0126
B 0.023+0.002 0.0241
Fig. 5 Equivalent mechanical circuit of the slider  /track sys- 30 ((":er_s,l) gé‘gg:?%m 205"(1302
tem. Kis the stiffness of the loading spring, k is the one of the )\S&m) 0.62+0.15 056
interface. p=eetle 0.48+0.10 0.43

mal loadW and the interfacial stiffness is a lengthn of micro-
metric order:k=W/\, [20]. The equation of motion of the slider

thus reads (1), (2), is certainly larger than 10@m-s™* and allows to extract

Mx"=K(Vt—x) = k(X—Xp) (4) a value forB—A and ug at Vo=1 um-s 1, i.e., far below the
Qturatlon of the aging term.
2. Next, the critical value oK/W,, here taken at midrang&0
um-s~Y) where inertial terms can be neglected in E2{), yields
a determination of the memory lengiy, .

3. From the value of the critical stick-slip period at Lfh-s~
} ®) (Eg. (22)), we obtain a value foA.

4. A determination oW gis finally obtained by a best fit of the
wherev = xpI is the relative sliding velocity at the interface atd whole blfurcatlon curve in the pland(W,,V) for V in the 1-50
follows the evolution law(2) rewritten here for the sake of ym.s™ range, treating the inertial term in E@1) as a perturba-

where here and henceforth the prime denotes time derivative. T8
ing a massless interfacial zoi@ reasonable assumption, see ap-
pendix, we also have, according to E@.),

W 1
n

Sc’:ll(lS

(X—=Xp) =W Dy

+BIn| 1+

Mmoot A |I’](V0

clarity: tive one. Since the value ®f.,is out of the experimental velocity
(1) window, this determination is not very accurate. Treating several
@' ()= 5 (6) data set corresponding to different runs yields an uncertainty as

large as*25 percent on the value &fy.

For numerical purposes, we wish to recast those equations irb- The value of the length, defined by the ratio of the load/,
the form of a system of first-order ordinary differential equationgnd the interfacial shear stiffness has been obtained i8]
(ODEs. Noting z=x', u=Vt—x, further differentiatingx— x, from a best fit of the AC response of the slider position to the
with respect to time in(5) using the explicit expression ’for normal load modulation.
W(t) =Wjy[ 1+ €. COS(t)] and solving forw ', we get the follow-
ing ODE system, which we will use for the numerical blfurcatlor?n
analysis:

It is clear that this procedure, though systematic, generates cu-

ulative errors which are difficult to evaluatthe uncertainties
onA, B, andD, given in Table 1 are conservative valuds view

u'=v-z (7) of the high sensitivity of the bifurcation to small variations of the
parameters, we have chosen in the following numerical analysis to

,_ K Wy(1+ e cog wt)) A In( v use the set determined above as a trial one. Namely, the param-
“m M Ko Vo eters which are left free ar®, B, Dy, \, Vsy, and the ratiop
é = €qpt/€.
+Bln B—a” (8) 3.3 Bifurcation Analysis. Technically, the transition from
0 steady sliding to stick-slip, both states being modulated by the
v ABVgo(1—v /Dy) forcing (when €#0), is a Neimark-Saker bifurcatioalso called
vV=yalZTvT (1+VoiDy) } (9)  secondary Hopf which corresponds to two complex conjugate
0 sal 0 . .
values of the fundamental matrix of the ODE system crossing the
v unit circle. The fundamental matritd is defined asdH/dt
¢'=1- Do’ (10)  =J3(x(t))H with H(x,0)=1, with J the Jacobian matrix of the

ODE system andl the identity. The numerical software
3.2 Determination of the SRF Parameters. In order to CANDYS/QA, [21], has been used to track this bifurcation. For a
analyze the data within the SRF framework, we need to determigizen parameter set, a bifurcation curve like in Fig. 2 can be
a set of values for the relevant parameters of the model. Thisdstained as follows: For a given driving velocity, one starts from
performed under constant normal load, according to a web-low enough normal loaw/, in order to be in the steady sliding
established procedure. The values, which will be used in the niggime. Once such a “first point” is indeed found by the software,
merical analysis, some of them as trial ones, are gathered in Tagie variesw, only (one-parameter continuatipontil a bifurca-
1. The useful formulas are established in the Appendix. tion is detected W,=W§); one then follows this bifurcation
1. First, the steady sliding friction coefficiepty(V) is mea- curve by further varying the driving velocity to@gwo-parameter
sured to be veIouty-weakenln% with an almost constant logaritRontinuation. ) )
mic slope over the 1-10pm-s ! range. This indicates thaty, The procedure to detect the bifurcation has been automated.
above whichuy(V) increases with increasing according to Eqs. Starting from the parameter values determined in Section 3.2, the
critical valueswy are determined and compared to the experimen-
3This equation, including the actual sliding velocityin place ofx’ is consistent tal onesWC o . A systematic procedur@Powell’'s method, as de-

with our physical understanding of the agelt has been checked that mistaking
for v, as in[18], has no significant effect on their results, at least for the modulatloﬁcnbed in [22]) is then used that attempts  to minimize

frequencies much larger thafiD, used in their study. Sv.IW5(pe) —Wg p] with p= e /€, for a representative set of

Journal of Applied Mechanics MARCH 2003, Vol. 70 / 223



experimental data. The set of parameters hence determined, whighsons, we think that a full quantitative agreement between the
corresponds to a local minimum of the cost function, reducing éxperimental bifurcation at large.; and the SRF model predic-
by a factor of fifteef), is given in Table 1. tions would be illusive.

The full bifurcation curves are then determined as describedIn addition, we have investigated numerically the effect of the
above, by a two-parameter continuation. The results are showreitra term in Eq(2) proposed by Linker and Dieteridid 3] and
Figs. 2 and 4 together with experimental data covering a rangealfeady discussed ir18]. No significant effect has been found at
€. values wider than the one involved in the adjustmerit20 Hz, where we conclude that this term, if it exists as such, is
procedure. not relevant to the present relatively high frequency study.

5 Conclusion

4 Discussion The stability of a sliding system with a few degrees-of-freedom,
The curves displayed in Figs. 2 and 4 have been calculated withbmitted to a periodically modulated normal load, has been stud-
the optimized set of parameters. However, it is worth noting thid experimentally. The study clearly evidences the role of load
the trial set yields numerical results in good qualitative agreemempdulation, even at moderate amplitude, as a stabilizer against
with the experimental data as well. Namely, the main effect stick-slip oscillations. The results have been compared to the nu-
normal load modulation, at least for moderate valuesegf, merical predictions of a model of the SRF type, relevant to mul-
which is to stabilize sliding against stick-slip oscillations, is welticontact friction at low velocities and low loads, including finite
reproduced by the SRF model. Moreover, the enhanced efficieriojerfacial shear stiffness as a key parameter. Excellent quantita-
of the modulation on increasing the sliding velocity is correctljive agreement has been found as long as the amplitude of load
accounted for. modulation is restricted to about 10 percent of the dead load.
The set of optimized data differs from the trial set essentially Although, as discussed above, the main effect of the normal
for three parameters, namely the elastic lengtithe saturation load modulation is stabilization, the numerical study strongly sug-
velocity Vg, and the ratiop=e.4/e accounting for the air- gests thatestabilizationmay also occur, due to the highly non-
cushion effect. linear features of the model which also gives rise to re-entrent
The final value foix lies within the error bars estimated[ihg].  stability diagram in Fig. 2. More precisely, it can be seen in this
As already mentioned in Section 3.2 the large variatiovVgf figure that thee.4=0.18 curve crosses thes=0.13 one around
during the optimization procedure is attributable to the fact that=7 um-s 1. For a (V,K/W,) point slightly on the right of this
the crossover from a velocity-weakening regime to a strengthesrossing, in between the two curves, increasiggwould result in
ing one for steady sliding friction lies well above the upper exa bifurcation from stable sliding to stick-slip. This effect has not
perimental velocity, whence the goodness of the fit is only weakheen observed directly so far, probably because it corresponds to
sensitive toVg,. small regions of the parameter space, strongly dependent on the
The ratio p= e¢/€ was determined ifi18] by comparison of value of the parameters. Clearly, this point would deserve further
the experimental shift of the steady friction leveL, at 120 Hz experimental study.
and the value predicted by the SRF model. The value taken in this .
reference wap=0.48. Taking into account the error bars s, APpendix
one finds that the relative uncertainty pris about=20 percent.

The optimized value for this parameter lies therefore within thi;nl‘Inear Stability Analysis for e=0. The linear stability

alysis of the SRF equations has been performed previously,

range. L . [2.4]. However, difference between sliding velocity and the veloc-
from%ﬁétréini\?nﬁcgogigylg} Ittt?esi;;)tfefnarﬁr%eetf::sor?:tgr?ttenr?rln%i of the center of mass of the slider was disregarded in these
load is fully predictive as regards the sliding stability of the sy%/_Vhrks. Since the interfacial stiffness is of paramount importance

en the normal load is modulated at relatively high frequency, it
tem under modulated load, at least for the valuegspprobed by ;"o oscary to evaluate its role on the location of the bifurcation
the data of Fig. 2. In turn, the sensitivity of this experiment e

abled us to refine the determination of the parameters. "linder constant load. Moreover, we will derive in this appendix

o . x]pressions for the critical stiffness and the critical pulsation that
The quantitative overall agreement between the experimen al

data and the numerical curves in Fig. 4 is excellent for, sgy, ll_d tfor any stgte and rate-ldependem friction force.

<0.15. Above this value the calculated curves tend to fold and -©' US CONSIAEr & general expression:

correspond to a re-entrent stability diagram; namely, for giggn F=Wou(v,¢). (11)
andV, increasing</W, yields successive bifurcations from stick- he ti luti fth . is ruled b

slip to steady sliding then back to steady-sliding, etc. No expeﬁ-— e time evolution of the age variabigis ruled by

mental evidence of such an unexpected behavior has been encoun- v

tered so far. It is clearly the result of the nonlinear coupling '=1-5" 12)

between the normal load modulation and the stick-slip oscilla- 0

tions. As such, it is expected to depend drastically ordetailsof When the slider is driven at constant velocky the steady
the SRF laws. The importance of the terms which ultimately cusliding values of the dynamical variables ate=V and ¢

off the logarithmic variations in the SRF laws has been stresseds#D,/V. We define
several studieg10,23. The existence o¥,, which accounts for

a short time cut-off in the creep deformation of the load-bearing u :5_'“(\/ Do/V)>0
asperities| 7], yields one of these terms. It should be kept in mind v dlnv 13
that the SRF constitutive layd) retains only the leading terms in m (13)
the expansion of the friction force in powers of diy( For in- #¢=m(V,Do/V)>0

stance, Eq(3) with physically sounded expressions fagv) and
3., (¢) would lead to terms of ordekB In(v)In(¢) which, though The position of the center of mass of the slidex($) so that the
negligible for most purposes, would probably affect the critic&#longation of the loading spring is-Vt. At frequencies of inter-
behavior of the system under a strongly modulated load. For the& the interfacial zone can be assumed massless and essentially
elastic with a frequency independent, real stiffnes$19]. The
“When several critical values faN, can be detected, the one retained in tnollowing relation holds:
evaluation of the cost function is the closest chosen among the oddfosgshird,

etc), corresponding to a transition from steady sliding to stick-slip when increasing 5i¢ has been shown ifil8] that the relevant perturbation parameter is actually
Wy, while even ones correspond to a transition from steading sliding to St'Ck‘Shpﬂoeeﬁ/A»eeﬁ which is already larger than 1 farz=0.1.

224 | Vol. 70, MARCH 2003 Transactions of the ASME



(?,LLSS
=x'+ — - = [ —
UEXT Gt ginv _HeT T IEvIVL,
We will make use in the following of the ratig of the loading Now, let us evaluate the contribution of the finite interfacial stiff-
spring stiffnesK to the equivalent stiffness of the loading springiess« to Eq. (19) by estimating the order of magnitude of

. (14) A>0. (23)

.4 [MX"=K(Vt=x)
K

in parallel with the interface| «: =|C4Q%/Co| with Q. given by Eq.(22), i.e., Q,=V/D,. This
reads
K K+ k (15) )
p=—=—. MV
Kl K
P 24
C My KD% ( )

Finally, the dynamical equation for the motion of the slider reads
o where we have expressed thak/(«Dgy)=\/Dy=1. One can
Mx"=K(Vt=x) = Wou(v,¢). (16)  estimatec<10~3 within the experimental velocity range, hence

The set of dynamical Eq$12), (14), (16) is closed and can be the fourth-order term in Eq19) can be safely discarded. Next, a

linearized about the steady sliding state, setting finite « introduces perturbative terms i@; which are of order
My s Mp= 1072, still well below the relative uncertainty on the
x=Vt—=F(V,Do/V)IK+ 8%, [6x|<F(V,Do/V)IK experimental determination of the critical parameters. Since the
¢=Dy/V+ 8¢, |8¢p|<Dy/V ' correction to the drive stiffness due to the interfacial elastic ele-

(17) mentis of orderp—1= K/k=10"2, it can be concluded that for
i ) the purpose of calculating the values of the critical parameters, the
The linearized system becomes finite interfacial stiffness has no practical effect, and one can make
M use of Eqs(21) and(22).
M ox" = —Kﬁx—Wo[(,uv /V)( nox' + ” 8x”’)
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Transient Study of Mode lli
Fracture in an Elastic Solid
With a Single Plane

of Material Symmetry

Diffraction of a plane SH-wave causes semi-infinite mode Il crack extension in an un-
bounded linear elastic solid. The solid is nonorthotropic, with a single plane of material
symmetry that is perpendicular to the crack edge. The crack plane itself lies at an arbi-
trary angle to the axes of material symmetry, the SH-wave direction is largely arbitrary,
and extension is not necessarily instantaneous or at a constant speed. An exact transient
study produces the fracture energy release rate, and uses a full-field analytical solution to
derive the dynamic stress intensity factor on any plane radiating from the moving crack
edge. A crack path stability analysis of the factor indicates that crack extension in the
original plane can occur in directions associated with maximum and minimum values of
the shear wave speed. The energy release rate for such extensions shows that, if an
isotropic solid subjected to the same type of loading has the same specific fracture energy,
then the nonorthotropic solid may fracture fir§DOI: 10.1115/1.1533807

L. M. Brock

Fellow ASME

Mechanical Engineering,
University of Kentucky,
Lexington, KY 40506
e-mail: brock@engr.uky.edu

suggest that, if the specific fracture energy is the same for an
isotropic and a nonorthotropic solid, fracture initiation would oc-
cur first in the nonorthotropic material.

Introduction

The classical theory of anisotropic elasticity], and its appli-
cation to wave propagatioh?—4], are well developed. Studies of
rapid (dynamig fracture in anisotropic elastic solids also exist and
have, in general, focused on crack extension parallel to a princiggd sjc Equations
axis of material symmetry, and upon orthotropic or transversely i i )
isotropic materials, e.g[5,6]. More recently[7], rapid Mode 1l A homogeneous linearly elastic solid has only #&,-plane as
semi-infinite crack growth in an unbounded solid with only & Plane of material symmetry, where,(x,,xs) are Cartesian
single plane of material symmetrg], was considered. Crack coOrdinates. Hooke's lay12], is, therefore,

extension in any direction with respect to the principal material [cyy C1p Ciz O 0 Cy)

axes in the symmetry plane was allowed, and conditions examined o1 0 0 £n
for which such extension might be likely. The fracture process O Ca C22 Cas Ca6 €99
was driven by forces moving on the crack faces, and a dynamic o33 Cap Cx Czz 0 0 Cge|| &4
steady-state assumed, i.e., the forces and crack extend at the same o | = 2 @)
32 0 0 O Cus Cys O €32
constant speed. - 26
In this article, a transient study of a similar situation is made. 13 0 0 0O Cg Cs5 O 5 13
Fracture is now triggered by diffraction of a plane horizontall T2 €21
99 y P y [Ce1 Ce2 Cez O O Cgg

polarized sheafSH) wave, and is not necessarily instantaneous or _ : ) )
at a constant speed. Orientations of the crack plane and princip8l Cik are the elastic constantsy=cy;, and discussions of their
material axes are again arbitrary, and crack path stability cond@lation to crystallographic properties is found [ib3,14. The
tions are again examined. In addition, comparison with isotropferm of (1) shows thatx, define the principal material axes. The
results,[9-11], is made on the basis of fracture energy releasdrainse;x and stresses; satisfy, in the absence of body forces,
rate. Indeed, the same solution methods are used. the standard equations

The study begins with introduction of basic equations and the Y

. . . Tik k= PUj,
problem statement. The solution process gives first the crack- ] i ) ) )
plane quantities required for calculating the energy release rdt€re p is the mass densityy; is the displacement in the
The full-field solution is then examined for crack path stabilityi-direction, (' );=4( )/dx;, and(-) denotes time differentiation.
requirements. Consistent with the steady-state stfifly, these Eduations(1) and(2) support the antiplane state
suggest that crack extension in the original plane might well occur Ui=U>=0. Uaxs=0
L. . . . 1 2 ’ 3,3 ’

when that plane coincides with the directions of extremal shear '
wave speeds. Crack path stability in directions of maximum sheiid reduce to the system

2gj= 2= Uj i+ Uy, ox=0wi- (2

0117 0= 033= 0=0 )

wayv however | recl when th r f — _
ave speed, however, cou d. be prec uded. whe the degree o T30=Caalig o+ Casllg 1, 013= Coglls 1+ Caglis » (4a)
nonorthotropy of the solid is increased sufficiently. Results also )
_ 01311 0327~ pU3 (4b)
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF pm - .
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4 Y into o (C44,C55)>0,  CysCs5— C45>0. (5)
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©6) Ax] (s>s,)

.S

_ 1 _
n= E(C44+Css), v=

\
and the dimensionless ratios \ N
2
Css Caa Cs5
a=7, ,3=7, '}’:7- (7)
AW
Equation(5) does not restrict the sign af;s, and(6) defines an x
average shear modulysand shear wave speedin the plane of
material symmetry. In the isotropic limitg) then gives the single )
modulus and wave speeld,5]. In view of (5) and (6), ( 0 P X (s —5.)
$ <
at+B=2, (a—1)?+9°=(B-1)>+9*=1-T (8) )
where the dimensionless quadratic (b)
I'=aB—vy? (0<I'<1) 9)
Fig. 1 (a) Schematic of SH-wave incident upon crack; (b)

is useful in characterizing material behavior. The quantitiey)  schematic of wave diffraction and crack extension
control, in effect, the degree of nonorthotropy: the upper bound in

(9) arises becausgy,3,y) must be real and, indeed, occurs only

when y=0, a=B=1, i.e., the isotropic limit,s=0, C44= Css.

define the plane wave spe@g,v_, and s=s, locates the wave
front for all s. Form (13) satisfies(10b) and, in light of (10a),

Problem Formulation gives the traction
An unbounded solid of such a material contains a semi-infinite giyZ: EA¢U(s+ kyxcosy), c,st+xcosy>0 (15a)

crack, defined in terms of the Cartesian coordinaxeg,¢) as the

regiony=0x<0. Thexy-plane coincides with th&;x,-plane of C A =sind+ 2 (B=a)sin(2d—+ &)+ v cos 2 b+

material symmetry, but the-axis, i.e., crack plane, makes an ar- vy Y+ 2(B-a)sin2ety)+y cod24+y) (150)

bitrary angle¢ with the x,-principal axis. In view of this rotation,

the field equations that is induced on the crack plang=0). This wave reaches the
1 P P 1 P 3 crack edge as=0, and is diffracted. As=s.>0 the crack begins
o =C_W+ B_W i =A_W+C_W (10a) to extend in the positive-direction, so that its edge is located at
w YE T ox ay’ X2 ox Y% y=0, x=X(s—s.), where
PPw e Pw PPw _ X=0(s<s,) (169)
R - —_ =p X 1 c/ 1

A g +2C axay +B pY A=y s=vXtime (1)

S ) ] 0<X'<c(s=s,) (16b)
emerge from4)—(9). Heres, with its dimension of length, is the
temporal variableyw(x,y,s) corresponds tai;, and and( )’ signifies differentiation with respect to the argument. The
dimensionless parameters

A=1+ %(a—B)cos 2+ ysin 2¢ (11a)
1 r
B=1+ 3(B—a)cos 2— ysin 2¢ (11b) CZEZ\/; 7
C= 3(B—a)sin2¢+ ycos 2 (11c) define the shear wave speed along the crack plane; thugl6b)

] _ precludes supersonic crack growth and crack retreat. In addition,
define the arrayA,B,C) that represents the tensor transformatiothe crack edge location functioX is finite and continuous for
of array (e,8,7) due to the aforementioned rotation, c[B]. The finite s>s_. The incident/scattered wave field and crack exten-

formulas sion is depicted schematically in Fig(k. In light of (10), the

dA dB dc expanding elliptical region

—=-—=2C, —=B-1=1-A 123

4@ 4 @ o k\/( c 2+ L2 (18)

s= X— = —
A+B=2, AB-C2=T (12b) BY) " B?Y
are also useful, and it is noted tHatis an invariant of the trans- is formed by the scattered waves. Its semi-major and semi-minor
formation. axes tilt with respect to the crack plane due to thelependent
This cracked solid is at rest when a plane horizontally polarizesfope paramete€/B. Scattered waves also occur in the wedge-

shear(SH) wave, characterized by the displacement, shaped region whose apex moves with the incident wave/crack

s, plang intersgction, and whpse plane fronts form tangents with the
Wi:f U(tdt, s,=s+kyxcosy+k,ysing>0 (13) elliptical region. As seen in Fig, (), the part of this wedge-

0 shaped region iry>0 represents incident wave reflection from
the crack; the pary<0 creates a shadow zone through incident
wave cancellation.

Linearity of (10) allows the superposition

is for s<0 incident upon the crack with attack anghg0<<90

deg, as depicted schematically in Fig(al. The dimensionless
function U=0(t<0) and is bounded above and piecewise con-
tinuous for finitet>0. The dimensionless parameters w=w'+ws. (19)

1 1
c.,,:k—w: \/1+ E(a—,B)cos AP+ )+ ysin2(p+ )

Here w® is the displacement field engendered by the scattered
waves. It satisfies in addition tGl0) the initial condition w*®
(14) =0(s<0) and, in view of(15), the condition
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n=N(£),&=K(n) K(7)=n—2kX
\n(é:o 1)

n+K(7)
T SC) . (25)

These functions are, in view of the requirementsplso piece-
wise smooth, withN’(£)<1K'(#)=1. For 0<s<s, (25) re-
duce to the explicit forms

SGED

\/:f Sc Sc
N(&) =€l 0<é<—]|, K(np)=n9<|0<nyp<—|. (26
(H)=¢ f\/z) (m=mn 7/\/5()
n+x&=0 - o
Ie When (5o>0xy>X,) we have, as seen in Fig. 2£(>0,79
>N(&o)). Thus, S has regions §>0,— xé<7n<N(¢§)) and ¢
Fig. 2 Schematic of integration region  (y=y,=0) >0,7>N(&)) in which, respectivelyT= —/.LA¢U(§ 7) and T
=7(&,7m), where, in light of(23),
— CyS
o.,=— uA,U(s+kyx cos ( 0,— ——<x<X A
yz— — mAU(sTK, ¥) |\y= cosJ/ O(ém)=U (77 & n- gkwco&p)
(20) Z k2
It should also be finite for finite=0, and continuous everywhere
except perhaps the region defined(20). Its gradient, however, Hem)=7 n—¢& nté 27)
may be discontinuous along the wave fronts depicted in Fig, 1 kv2 ' o2
and singular at the crack edge=0x=X.
] i Equation (23) also shows thats—s)2—k?(xo— X)?=2(&o— &)
Scattered Field Solution X (19— 7), so that(22) can be written as
The scattered wave, in addition t20), produces a crack plane
stressr(x,s)(y=0X<x<us) ahead of the crack edge. were 1 b d¢ A fN(&) U(&, 77)
known, and the complete scatt?red wave traction alon® de- . wk\/f 0 Véo—¢€ v e N0~ ,’
noted asT (x,s), standard Green'’s function techniques would give
the scattered wave displacement field for a giveg,¥y,So) as 1 (70 7(&7)
+= n|= (28)
. Jj T(x,s)dxds K INneoN0— 71
W =
277#\/— V(so—9)?—k?R’ Setting the term in brackets to zero gives a standard Abel integral
equation[9-11,16, whose solution is, c.f[9-11],
2 ~
Ro= \/(Xo_gyo_x) +éy§ (21) M) = o JN@)U(&U) N(E) —udu
. . o =N Sy 17U
for yo>0(+) and y,<0(—). The integration regiors in the
xs-plane is the intersection of a wedge-shaped aregs/cosy (§>0,7>N(§)). (29)

<x<vs due toT(x,s) with the conesy—s>kR, of elliptical cross
section. Equatior{21) does not have the antisymmetry with re-
spect toy,=0 of the corresponding isotropic ca$é-11].

The unknown portionr(x,s) of the field T(x,s) follows by
requiring that(21) be continuous in the plane ahead of the crack
edge. That is

In light of (13), (19), (21), (23), and(29), the scattered field and
the complete solution has been obtained. Its properties are now
examined in view of classical fracture mechanidd,,17.

T(x.5)dxds Crack Edge Stress Field, Energy Release Rate

(Wt =— JJ =0 (22 An integration variable change {29) gives in view of(23) and
7T V(so—5)?—k?(xg—x)? (25)_(27)9 ge@9g (23)

for yo=0, x>Xo, whereXo=X(so—s) and[ 1F signifies the _ A, (kX K uky \/kx* —u q
jump as thex-axis is crossed in the positivedirection. The in- 7(x.8)= NS B S)U Ut s—kxt = =cosi|— - = u
tersection now passes through the cone axis&odn, as shown e (30)
in Fig. 2, be described simply in terms of the characteristic vari-
ables whereX* = X(s* —s.) and
_s— kx st kx - Cy(s—kx)
7z 7= 2 (23) u,(x,s)= C,Fccosy’ (31a)
as the shaded trapezoid-  £< 7< 70,0< £< &), Where s* —kX* =s—KX. (31b)
= cy—¢C COS¢(0<)(<1) (2a) We chooses>s, and a pointx ahead of but very near the crack
c,+Ccosy ' edge as, i.e.,x—X—0+, X=X(s—s;). Then fors* —s one can
In Fig. 2 the crack edge trajectosy-0x=X can be expressed asWrite in view of (31b)
tghzq‘g;mg? or n>0,6=K(7), where (N,K) are obtained from e wk(x—x) e w(x—X)
A(kx) ' a(kx) '
+N (32)
= &4 2kX g_(g)_sc , _ _ - L .
2 Performing the differentiation and combining witB0) gives
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- ~ ~
T<x,s>~’*A¢' ver X Ut s—kX n=NE.E=Kp)
7u¢(Xs)
+Uk¢ ) du a3 ) (S +C§03n0 /CQVO)
—Ycos
k v vkX—u (33) n

for (s>s.,x—X+), c.f., [9-11]. The corresponding result for
(0<s<s.,x—0+) follows by setting ¥,X")=0.

On the newly formed crack surface we have=(x,, y=0, s
=s,), where 6;>5s.,0<x<X(s;—S¢)). In light of the discussion
of (22), these values correspond to the poiéf,(,) in Fig. 2.
Region S is again a trapezoid, but it now has the partsy¢

kx
<7<71,0<E<K(71)) and (= xE<n<n1,K(7)<E<E). In
view of (28) the contribution from the first part vanishes, so that
(21) gives, c.f.,[9-11], |
. cA, (& dé [m U&7 kx, -J2c¢,
[wS]l= dn. (34)
77\/_ K(77) \/51 —Xg\/nl— i Fig. 3 Schematic of integration region  (y=y,>0)

The corresponding particle velocity discontinuitgrack slip
speed for (s>s.,x—X—), i.e., just behind the moving crack
edge, follows by differentiation and a similar limiting process:

EntN(én)
aws]t 2A, X' 1 (KX y o N(&n)=éntV2kXy,  Xy=X(sn—So), N
— == u+s—
s | T e+ X X=xJ-u,xs9 (3%)
) du a5 The intersection{, , — x¢,) of the curves Co, 7+ x§) =0 is ob-
o (35) tained explicitly as
With (33) and(35) available, thdfracture energy release ratper _i 2 7
unit length of crack edgecan be obtained,7,9-11), as the posi- &= 2x Q. 2xQ=VP% +4xCo(0.0 = VP% ~4xT (s
tive quantity (40a)
G2 2 pa 0 [ X P = x(¢0+Clo)* (10— Clo).- (400)
c+Xx'
\/f It is noted that§,= £y, even when £+ C{g, 79— C{p) lies on
s+k X cosy U(u)du the other side of the crack edge trajectory than the one depicted in
| = —J ——-  (36) Fig. 3. Thus,Scan be broken into the two regions {&<¢y,
Ve, tccosy Jo vs+k,Xcosy—u —xé<n<L(§)) and (En<&<é,,—xE<py<L(§)), where 5

=L (¢) is the relevant solution of the equati@q(&, ) =0. Equa-

where an integration variable change, d.2], is introduced for tion (21) gives

simplification.

The coefficient of 1yx—X in (33) is the dynamic stress inten-
sity factor. Both it and36) are derived on the assumption that the,s—
crack extends in its original plane. For some insight into the va- 277\/f
lidity of this assumption, the scattered field and the traction that it

[_A fw (&, mdy
") xe 2Co(&m)

develops on planes radiating from the crack edge is considered. 1 (L@ 7(&n)dy CA, f JL@) U(g 77)d77
N@V2Co(€, )]  2m\T ~x& V2Co(€,7)

. 41

Full Scattered Field “1)
Consider(21) for the more general situatioxq,y,>0,s,). The N light of (29), the bracketed term can be written as
intersection of the region filled by (x,s) and the elliptical cone
does not include the cone axis, aBds now the region bounded A N(g)o d -1
by the linesy+x£=0, Cy(&,7)=0 and range €< ¢, depicted vl (¢&,u)du L2Cy (&)
. . X xé 0(§,U)
in Fig. 3. There §£y+CZy,m9—CZy) correspond to Xp,Yo
>0,s,) where, c.f.,(23), L(®) dy
+— \/N(g) J . (42)
so—kxo so+kxo kYo N V2Co(&,m)Vn—N(§) 7~u
gOZTl nO_T' 0__\/— (37)

2 2 B By use of the Cauchy residue theory, the second integration yields
and are the intersection of hyperbolic asymptotes. The hyperbola
branchCy(¢, ) =0 defines one boundary & where ™ (43)

Colé.m)=(é0+ Clo— &) (0~ Clo—m)-T.  (38) V2Co(£,u)VN(&)—

The intersection & ,N(&y)) of this curve and the crack edgewhereupon(42) vanishes. Thus, only the second term (#i)
trajectory is given by the implicit formulas arises, whose integration involves the shaded area in Fig. 3—a

) result that is consistent wit{84). The step-stress puldé=r7,/u
(€01 Clo— (10— CLo—N(én)) —T'5=0 (3%) s now examined, and standard tablgkg], give for (41)

230 / Vol. 70, MARCH 2003 Transactions of the ASME



SZCAl/f_Ti 1 eX(e+feN)7 B P, 4 2T —V2xI'Ven—e Ve, —ey 79
ws=—-"12| ¢y cos 1 cos |1 oh,= cosé sing
T Qey 2xT AyTi V2ey eN B
k(Xo=Xp)+ T~ V2C4o
eX_eN CAI//TI N
+ 3 ) \/ \/eN e e, —ey (44a) . sin @ } ﬂ . eX(e+—eN)_1}
B(1—kX}) Qey
P

P
:—_Q e+:§+Q1 en=¢£0+Clo—én (44b)

P
X (1—X)§—;sin 6+ 2x(B cosf—C sin6)

when ,>0.ey>e,). If, in the limit as{,— 0 the point &, 70) r ) B
remains on the positive side of the crack edge trajectory, then + Z(l—X)S”WCOS
en—e, asCy(&,7)=0 collapses onto the asymptote$<¢,, 7
=10). If the point lies on the other side @5— 0, however, then for ey>e,. Now consider the three points,,c) in Fig. 3:
ey>e, even as collapse occurs—unlegs—K (7o) as well. This  Point(a) is the intersection of the curvé&=0 andn=N(¢); its
behavior is consistent with that in Fig. 2. coordinates in thek(x,s)-plane are, therefore kiKy,sy). Point
(b) is the intersection of the curv€y,=0 and the crack edge
location linekx=kX,=kX(sq—s.), while point(c) is the inter-
. L section of the curveC,=0 and the linekx=kx,. Their coordi-
Traction on Planes Radiating From Crack Edge nates are thenk(Xo,s,) and (xo—2Clo,So— \2¢o), respec-
Envision in Fig. 1b) the polar coordinatesr () affixed to the tively. In Fig. 3 p is the distance between the crack edge location
moving crack so that>0 defines radial planes from the edge(kXy,S;) and point (c). The polar coordinates for a given
and 0<#<180 deg corresponds to the regige-0. In light of (Xg,Y0,So) are
(10a) the traction on a given radial plane is

11+ —ex(_ge”) (49)

—Xo=Tr cosf, Yo=rsiné (50)
1 oW oW i
;cr,,z (C cosf— ASInH)—-i-(BCOSH Csm@) and it follows that
(45) ko
=—-—=rsiné, 51a
IO B\/z ( )

Because it is likely to be singular at the crack edge, only the
scattered wave contribution t645 need be considered. For \/(
po=Kr

2

Cc
(Xg,Y0>0,50) differentiation of(44a) can be performed in terms cosf— Esine

r
+ ¥S|n2 6. (51b)
of (&5,70,{0>0) by using(37), so that

Asr—0, therefore, the pointsa(b,c) and kX,,s,) collapse onto
each other. Then, one can write in view of Fig. 3 that

\/7\/e,\l ene. —en— aOeN

Al/,.Tl S
kXN=kXO—kJ X"ds~kXy—kX5(so—sn) (52a)
1 x 1 _le(ei—ey) ) SN
2 N1 g—COS Q——l do(P%
X 0 N Sp— SN ds(kXo) sy -
) 1 . een kK(Xo—Xp)  d(kx)  d(kx) (52)
—2xI' o)+ cos | 1+ doP ., (46)
2x\x Q The functions=s(kx) follows from Cy=0 as, c.f.,(51b),
for ey>e, , where the gradient operator cC_ \* T
N7 Ex g P krn, A \/( cosf— o sin6| + gsm2 6. (53)
d Cc
dp=(C cosf—Asin 6)(—— — | +| cosf— = sin 9) Its differentiation allowg52) to be solved for §;,,sy), and(52b)
Iy &0 B 9o then yields
(47)
XN_XOQ _kQX6r, (546.)
From (39) and (44b) follow the results
)\2
Q= . (54b)
V2en=k(Xy—Xo) + 2C{o+ \/[k(XN_Xo) +2C )2 +2r 82 A— kxé( cosf— %sin 0)
(48a)

Use of (50) and (54) in (49) then gives for —0 the asymptotic
den 8& B - \/EeN result

Im0 I€0 (1—kX[K(Xo—Xp) — V2CLo]+ V2ey
(4

A K(6)
UZz%ﬁJX(C%_Xo)+C%+Xo N (55)
98N _ 2 cen+I'(1-kXg)do (480) whereK(6) is the dimensionless dynamic stress intensity factor
e (1= KkX)[K(Xo—Xn) — V2C o]+ \2ey coefficient
The other operations witfd7) are readily performed, ant6) K(6)=+p+q|1- Qkxo(l_k,xo) (56a)
becomes pP—akXy
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Table 1 Parameters for maximum /minimum shear wave
speeds and path stability limit speeds

r . Cc )
p= q+?sm20, q:COSH—§SIn0+QkXO.

(56b) T c- X X' lc_ Cy X X' /c,
Examination of(21) for y,<0 gives the same results. F6+=0 it 0 0 0 1.0 14142 O 0
can be shown that 0.1 0.2265 0.1726  0.762 1.396 0 0
0.2 0.325 0.2322 0.7145 1.3764 0 0
K(0)=+/2(1—kX. 57a) 0.3 04041 02751 0.6808 1.3552 0 0
© ( o (572) 0.4 0.4748 0.3101 0.6531 1.3321 O 0
dK(0) C 0.5 0.5412 0.3401 0.6284 1.3066 0 0
= A—kx (570) 06 06062 03668 06051 12777 0 0
do B\/E 0 0.7 0.6725 0.3912 0.5817 1.2441 0 0
0.8 0.7435 0.414 0.5568  1.203 0 0
dZK(O) 1 0.9 0.8269 0.436 0.5273 1.1473 0.447 0.3896
1.0 1.0 0.4608 0.4608 1.0 0.4608 0.4608
— = ———J1—kX}| C3(4kX,—1)—2
d62 282\/§ X0|: ( 0 )
2Tk I'(1—kX})? 57
+ + —kX5)“l. C

. . . In Table 1 values of . for all " and values of X'. ,X’./c..) for
The results prior to crack extension<&<s,) follow by setting (allowable T are given. The entries far. show that the maxi-

Xp=0. Absenting a branching study, insight into whether or n¢hym shear wave speed exceeds the isotropic valeel], and
ing when(57a) is a local maximum with respect t#@ i.e.,(570) _, 7 T—.0). Those forc_ show that the minimum shear wave
vanishes and57c) is negative. Clearly, the former occurs f0r  speeds lie below the isotropic value, and vanish in the limit as
=0, whereupon(57c) gives the stability condition I'—0. For the minimum-speed case, not only does a finite path
T'(1—kX})3+ 2Tk X)—2(1—kX4) <O. (58) stability spee_d always e>§i_st; _decreqsilﬁgincreases the ratio
. ) . ) X" /c_. That is, path stability is possible for a larger portion of
In view of (12) and(17), C=0 implies that crack growth in the {he sybsonic speed range as nonorthotropy is increased. It should

original plane occurs when the principal material axes form one i noteq, finally, that although a steady-state analysis is approxi-
the four angles ¢, ¢, —180 deg¢_ + 180 deg) with the crack mae. the conclusions drawn [iii] are essentially the same.

plane, where fory=0

1[1
qh-tan‘l;[z(ﬁ—a)i\/l—l“} (59)

An Isotropic/Nonorthotropic Comparison

Corresponding to these orientations are the extremal shear wavgor the step-stress pulse caé§) gives the energy release rate

speed<..v, where

L=V1x1-T, c2+c?2=2. (60)
In view of (59) and (60), the path stability requiremerib8) is
satisfied fory=0 when the crack speedjv at s,>s; is limited
by

¢=¢_,¢p_+180 deg; c=c_:0<Xy<X' (0<I'<1)
(61a)

C.=

¢=¢,.¢,—180 deg;

9 9
(61b)

8 8
c=c, :0<x5<x;<(—<1“<1), X,=0 (0<F<—)

Here X', are the relevant cubic rootgl9], of (58):

[ 64
m+tan ? ﬁ—l) (0<I'<1)

(62a)

N 4 1
=cC_ cosg

ERE

m+tan !

X' — 4 1 64 1 8 r<i
+=Ci— ﬁCOSg F* §< <1].
(62)

In the isotropic limit there is no restriction o#, and (63) give
(X.=0.4608,c.=1).

These results indicate that, in general, crack extension in the Se

’

c—X
c+X’

8r7v ,cys+Xcosy

J= —
mm\B ¥ Cytccosy

(s>s;). (63)

During fracture, the surface eneryer unit of crack edge length

Eszzfsf(@X'ds (s>5,) (64)

Sc

is produced, wheré(¢) is the specific fracture energy. A classi-
cal,[9], theory of fracture maintains that fracture proceeds so long
asJ=E;. If the specific fracture energy is a pure material prop-
erty, then this condition gives in view ¢63) and (64) the differ-
ential equation

[c+ X'
c—X’
for the crack edge trajectory, c.f9—11]. Equation(65) cannot

support instantaneous fracturg, € 0). For smooth crack growth
(X"=0, s=s,) it gives

477A% ¢ s+ X cosy
muf(¢) c,+ccosy

=0 (s>s;) (65)

_mu f(4)\B
TT( (60)

c
1+ —cosw).
Cy

original plane might not occur. It can occur when the crack plane

shear wave speed is a minimuiL ), but only for crack speeds | the isotropic limit(66) reduces to the result derived if]. As
below a subsonic valu¥_v. It might also occur when the crack an illustration, we conside{66) under the restrictions for crack
plane shear wave speed is a maximum, but the limiting subsopigth stability found above, and assume that fracture for given
speedX’, v vanishes unless 8/'<1. That is, increasing the non- (7, ,¢) initiates at the same instant in a nonorthotropic and an
orthotropy|y| beyond a certain value precludes path stability for Botropic material. In view 0{10b) and (66), the dimensionless

maximum crack plane shear wave speed.
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o f(4) edge. The factor achieved a local maximum on the original crack
Hp TP plane when that plane coincided with the directions for extremal

m,p, f. values of the shear wave speed in the material symmetry plane,
and a related crack path stability speed was not exceeded. How-
1.0 - _ ever, the maximum and minimum shear wave speed cases dif-

j fered: The maximum shear wave speed exceeded the isotropic
‘ value, and increased as the degree of nonorthotropy increased.
Moreover, the corresponding subsonic stability speed vanished
when the degree exceeded a critical level. The minimum shear
wave speed fell below the isotropic value, and a subsonic stability
speed always existed. These results agree with those obtained in a
steady-state dynamic analysig].

The fracture energy release rate for these two cases was exam-
ined in light of a classical fracture criteriofi9]. For the less-
restrictive minimum shear wave speed case, comparison of the

I ’ —t ? I fracture initiation time with the isotropic limit value indicated
0 02 04 06 08 1.0 that, if the specific fracture energy in the two types of materials
were the same, then the nonorthotropic material might fracture
Fig. 4 Ratio of specific fracture energies for various incident first under the same diffraction process. This particular result was

wave directions based on the assumption that the specific fracture energies are

pure material constants. As noted, these quantities might also de-
pend on both independent and dependent variables, e.g., location,

up f(hs) crack speed. In any case, their determination requires careful ex-
—— =V1++1-T cos 2/ perimentation[20].
MoPo

fo Moreover, the relative tractability of mode Il fracture studies
also limits their applicability. Nevertheless, they are useful for
" \/1i V1-T cos 2+ \/1i V1-T cosyy  general insight. It is hoped, therefore, that the present results, and
I e their steady-state counterpaif], do demonstrate the sensitivity
_ 3/2 3 " : X

(1+cosy)(15v1-T) of the dynamic fracture process in a nonorthotropic solid to both

(67) its properties and its orientation. In particular, the relative crack
ath stability in the direction of minimum shear wave speed might

rqvide insight into the design of structures that must withstand
amic loading.

emerges, wherey, ,p,,f,) are the corresponding isotropic val-P
ues of shear modulus, mass density, and specific fracture energy,
is noted that nonorthotropy enters the ratio only in the form of th
dimensionless ir_lvari_arﬁ. o o References
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Multiple Surface Cracking

and Its Effect on Interface Cracks
in Functionally Graded Thermal
Barrier Coatings Under Thermal

S. Rangaraj
K kokini | ONOCK
Fellow ASME
i o The thermal fracture behavior in functionally graded yttria stabilized zircenia
School of Mechanical Engineering, NiCoCrAlY bond coat alloy thermal barrier coatings was studied using analytical models.
Purdue University, The response of three coating architectures of similar thermal resistance to laser thermal

West Lafayette, IN 47907-1288 shock tests was considered. Mean field micromechanics models were used to predict the

effective thermoelastic and time-dependent (viscoplastic) properties of the individual lay-
ers of the graded thermal barrier coatings (TBCs). These effective properties were then
utilized in fracture mechanics analyses to study the role of coating architecture on the
initiation of surface cracks. The effect of the surface crack morphology and coating
architecture on the propensity for propagation of horizontal delamination cracks was then
assessed. The results of the analyses are correlated with previously reported experimental
results. Potential implications of the findings on architectural design of these material
systems for enhanced thermal fracture resistance are discussed.

[DOI: 10.1115/1.1533809

1 Introduction Thick TBCs are known to crack, delaminate and spall under the
. . . . . ._application of high temperatures and temperature gradients. Pre-
Thermal barr_ler coatmg@TBCs? are mc_reasmgly being used N vious studies have shown that the stress relaxation process, occur-
pawer generation and propulsion applications such as gas tHng in TBCs at high temperatures, was a significant cause of
E:Sﬁ?{egrﬁséer;ﬂg Jeertn‘/sirr](?r:rr]ne:ntﬂ%,? r(_)l_tﬁg; rgffgirllgvg?mgsr;gpt:nf_r%%ck init_iatio_n and _propagatio[lll]. Briefly, when the surface of_
hancina the durability of metallié components. imoroving fue he coating is subjected to a heat flux, a temperature gradient
9 ty P , IMP 9 xists in the coating. This gradient causes the surface of the coat-

economy, efficiency, and reducing cooling requiremef#3, A ing to experience a compressive stress during heating due to the
plasma sprayed yttria partially stabilized zircor#4S2) layer nstraint to its thermal expansion offered by the significantly

W.'th a intermetallic N|CquAIY bond coat on a substrate made ogtgoler bond coat layer and substrate. At high enough temperatures
nickel-based superalloy is a common superalloy/TBC system.

. ; ...and stresses, the layers near the surface of the coating experience
TBCs deposited by electron beam physical vapor depositign,: ~ . . . . . i
(EBPVD) are relatively thin(~50—100.m thick) and provide a Wtime dependent deformation, which consists of sintering, con

) . solidation, and creep-like behavidrl2]. This causes the large
temperature protection of about 100-3003F due to their lower compression to relax with time. Subsequent cooling of the coating

:jhueéTgl tqueesilrsf:)nlgﬁw.n-g:e;?uf:(t)l?rt!ér:lg;] ha\g/veei(/(ce?”(tehné stt)[)ar:r& té)cl)(zrta Klses the surface to experience a tensile stress leading to surface
T ' racking. This mechanism was shown to occur at relatively low

itself, when subjected to a high temperature, causes the Al in t o .

o o ; rface temperaturg800—900°C over two hours[12], at high
b(r)cl)qvencz?(tictig E)'Iz(clsd(l)z)ehvgghbt:ergﬁ ?ggntt)i?iz%maeé@a% .c:—iglcsatlhsar;ect)ulyfo?urface temperaturgd300-1500°Cin four second$13].
9 Thus, due to the aforementioned stress-relaxation effects, the

failure of these thinner coatingt3,4,6-10. TBC experiences tensile stresses at the end of a heating-cooling

On the other hand, for applications such as diesel engines an ; ; ; -
; . . . le. Further, there is a gradient in tensile stresses through the
combustion chambers, thicker500-2000um) coatings provide TBC thickness that causes a bending moment to act on the coat-

a better thermal insulation. These Coatirlg§ are usually .p'as'iﬂa, [14]. The action of this moment on the TBC creates signifi-
sprayed and have lower thermal conductivities due to their Ian?féntly high tensile normal stresses along the thermal barrier

nar structure and porosity5]. Being thicker and having lower . ; :
e . . oating—bond coaffBC-BC) interface,[11,14]. Further, there is
conductivities, these TBCs have higher thermal resstances.i ismatch in thermomechanical properties at the thermal barrier

thhese coatl.ngs.%. thett;_ocr;g ?Oat r]?malnsYa: lower ttﬁmpehr_ﬁlger)es &8 ting—bond coat interface that creates shear stresses along this
dence n?fSIgnltrl]canth. kTgéer ?lrlms. e, evert1h oug h .interface. Thus, the combined effect of the normal and shear
oes not tormthesethic S still experience thermomechaniyasses along this interface lead to the development of thermal

cal fracture barrier coating—bond coat interface crackkh]. Repeated appli-
Comiibuted by the Abplied Mechanics Division ofiE AMERICAN SOCIETY OF cation of thermal loads can cause the growth of the surface cracks.
ontributed by the Applied Mechanics Division o ;
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIED ME- As .WIII be show_n_later, the gquth of the surface Crac'.(s lead.s t_O
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februar)an increased derlng force for interface crack propagation. This is
26, 2002; final revision, July 26, 2002. Associate Editor: K. Ravi-Chandar. Discuelue to increased tensile stresses along the TBC—-BC interface and
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekiagreduction in the area resisting the bending moment acting on the
Department of Mechanical and Environmental Engineering University of C.’:\Iiforniaéoating
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four, . . L . .
months after final publication of the paper itself in the ASMBURNAL OF APPLIED TBCs comprised of monolithic ceramics have been the subject

MECHANICS. of many investigations12,16,17. However, owing to the large
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100% YSZ 0.25 mm.

100% YSZ 0.60 mm. 75% YSZ + 25% BC 0.29 mm.
Bond coat 0.20 mm. 50% YSZ + 50% BC 0.31 mm.
Bond coat 0.14 mm.
Substrate
Substrate

I Three—layer system I

\_/\

90% YSZ + 10% BC 0.22 mm.
80% YSZ +20% BC 0.22 mm.
70% YSZ +30% BC 0.22 mm.
30% YSZ + 70% BC 0.22 mm.
20% YSZ + 80% BC 0.22 mm.
10% YSZ + 90% BC 0.22 mm.
Bond coat 0.22 mm.
Substrate
Nine-layer system
Fig. 1 Architectural layup of functionally graded yttria stabilized zirconia (YSZ)-bond
coat alloy (BC) thermal barrier coating (TBC) systems. (All lengths in mm, each layer in
nine-layer system is 0.22 mm thick with compositions varying linearly in 10% steps. )

mismatch between the thermomechanical properties of the @ged in this study. The response of a representative unit cell to a
ramic and the bond coat layer, these coatings have been foundemotely applied uniform strain perpendicular to the gradation
be susceptible to fracture and delamination at the yttria partialflrection as well as to @onstant temperaturégreater than the
stabilized zirconia—bond co@YSZ—-BC) interface[11,15. Using stress-free temperatyravas considered. For the loading consid-
functionally graded material systems as TBCs offers an excellesred, it was found that compared to a pure ceramic coating, gra-
alternative to reduce the driving force for delamination. FGMdation of the coating can significantly reduce the crack driving
provide a gradual transition in properties through the coatirfgrce under thermo-mechanical loading.
thickness[18,19. For ease and economy of fabrication, such sys- Bao and Cai[23] presented a micromechanics analysis of
tems are comprised of a finite number of layers each havingdalamination cracking in functionally graded ceramic metal com-
certain ceramic bond coat alloy proportion. The compositioposite coating substrate system. Basedirogar fracture mechan-
changes through the TBC thickness. The topmost layer is ceramis analyses, the energy release rate of the delamination crack was
rich and the layer closest to the bond coat has the highest batetermined as a function of coating gradation, crack location, and
coat alloy proportion. The coating architectures for graded TB@dastic properties of the ceramic and metal phase. It was found
used in this study are illustrated in Fig. 1. that functionally grading the coating reduces the force driving
In the past ten years, functionally graded materials have opererdck growth for both edge-delamination and buckle-driven
new avenues for optimizing material and component structuresdelamination.
achieve high performance and material efficiency. At the sameErdogan and WUJ24] considered the response of an uncon-
time, they post many challenging mechanics problems, includistrainedelastic FGM layerto statically self-equilibrating thermal
the prediction and measurement of their effective properties, thanrd mechanical residual stresses. The thermomechanical proper-
mal stress distribution and unusual fracture behavior. Many tiés were assumed to be continuous functions through the thick-
these issues have been brought to light in biennial symposia ess of this FGM layer. Thus, properties such as Young's modu-
functionally graded material$20—-21]. Thermomechanical frac- lus, thermal expansion coefficient, and thermal conductivity were
ture in graded materials has drawn significant attention in tlexpressed as exponential functions. Embedded and surface cracks
recent past in a quest for developing durable functionally gradeérpendicular to the layer boundaries were considered. Results of
TBCs. the distribution of thermal stresses and stress intensity factors for
A fracture mechanics investigation into the development afurface and embedded cracks were presented.
multiple surface cracks in functionally graded ceramic-metal coat- Lee and Erdogafi25] considered the plain-strathermoelastic
ings have been studied previously in Bao and W§28]. The problem of a crack at the interface between a homogeneous su-
metallic substrate and the ceramic-metal FGM were all assumgeralloy substrate and a FGM coating. The composition of the
to belinearly elastic The FGM was modeled as a sequence dfGM coating was taken to vary continuously from 100% zirconia
layers (of ceramic-metal mixturgswith different compositions. at the surface to 100% superalloy at the coating-substrate inter-
Parallel and equally spaced model | cracks on the surface of flaee. Thermal loading involving exposure of the surface of the
FGM along the direction of compositional gradation were consid:oating to a high-temperature environment, forced cooling of the
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substrate and natural convection at the ends of the specimen wleeTBC thickness. The thermal loads used in this study represent
considered. The crack surfaces were assumed to be partially inan-upper bound of the loading that can be applied on such coat-
lated and a heat conductivity index was used to describe this ings. They may also represent situations such as overloads and
sulation condition. The thermal stress problem was solved ftransients during startup.
various composition profiles in the coating, including 100% ce- The results of thermal shock experiments performed using a
ramic, and for various values of the heat conductivity index. Thagh power laser on functionally graded YSZ-BC alloy TBCs
normalized strain energy release rates at the interface crack wase recently reported28]. The three TBC architecturg®ne,
shown to decrease with increasing metal content in the coatinghree, and nine-laygthat were considered in this study are illus-
The mechanism of multiple crack formation at the surface dfated in Fig. 1. The coatings were designed to have similar ther-
graded mullite thermal barrier coatings subjected to transient heatal resistance$28], and hence offered comparable thermal pro-
ing and cooling loads was studied in Kokini and TakeUy@8]. tection to their substrates. The thermal shock experiments were
Here, an experimental setup was used to apply concentrated tnaerformed by applying a concentrated Claser heat flux at the
sient thermal loads on beam-shaped mullite-CoCr&%nd coat center of the top surface of the coating for four seconds, followed
alloy) functionally graded TBCs plasma sprayed on steel suby ambient cooling. Surface cracks on the TBC as well as hori-
strates. The formation of multiple surface cracks on these sperontal cracks near the TBC-BC interface were observed after the
mens was observed. A corresponding analytical model was deuelsts. These have been schematically illustrated in Fig. 2. The key
oped to study the fracture process. Since mullite is significantbpbservations from the thermal shock te$2§], are reviewed:
more resistant to high-temperature creep and time-dependent de- - .
formation, [27], compared to YSZ that is more widely used in 1. Under similar thermal loads, most of the one-layer specimen

TBCs, its response was assumed teetzsticdue to therelatively showed single surface cracks, while most of the three and nine-
lower temperatures(800°C considered in this study. It was layer specimen show multiple surface cracks. The average number

shown that the location of the surface cracks may be estimaf¥gSurface cracks per specimen increased with coating gradation
shown in Table 1.

with reasonable accuracy by calculating the thermal stresses g@ F . . ¢ i t during th |
erated by the temperature gradients in the coating. It was alsg™ ~OF @ gIven maximum suriace temperature during therma
ock, the final length of horizontal cracks after the test, were

shown that the formation of multiple surface cracks reduces tR L . :
propensity for growth of the horizontal delamination crack® served to be shorter with increased coating gradation. Thus, the

thereby delaying final failure of the coating. one and nine-layer specimens had the longest and shortest hori-

The above studies suggest that the present understandin (g]atal cracks,_respectively, for similar S“”‘a‘?? temperatures. The
thermomechanical fracture in graded ceramic-metal systemshigasured horizontal crack lengths reported in Kokini ef28]

limited to thermoelastic response under somewhat simplified loa€ shown in Fig. 3.

ing and boundary conditionsHowever, when such graded Thys, there is agreater tendency to form multiple surface
ceramic-metal systeni§ig. 1) are used as TBCs, under the typi-cracks with increased level of coating gradation. A greater resis-
cal service environmentgl1,2], their response is not likely t0 tance to horizontal crackings also observed witlincreasing

remain elastic. Under the influence of high temperatures and gegrating gradation The analytical models presented in this paper
dients, the layers of a graded TB€omprised of ceramic-bond help understand:

coat alloy compositesare expected to experience significeinte-
dependentviscoplasti¢ deformations It becomes important then S

to model the effective time-dependemtscoplasti¢ response and the individual layers. . .

high temperature thermomechanical properties of graded TBC2 response of the_varlous TBC architectures to the applied ther-
systems. These models can then be used to analyze the respong mal shock loading. . L
of graded TBCs to loading conditions that more closely emulate> Increased propensity for surface crack formation with in-

their service environments. Such studies are vital for designing creased coating gradat_lon. )
TBCs with enhanced durability. 4 effects of coating architecture and surface crack configura-

tion on the driving force for the horizontal crack growth.

1 the effective thermo-elastic and time-dependent behavior of

The present study is motivated by experimental observations
from laser thermal shock tests on functionally graded yttria par-
tially stabilized zirconia—bond coatYSZ—BC) (NiCoCrAlY)
TBCs presented in Kokini et aJ28]. In what follows, these ex- 3 Micromechanics Models for Effective Properties
perimental results are briefly reviewed. Analytical models are then
developed to help understand the observed thermal fracture be3.1 Linear Elastic Properties of Ceramic-Bond Coat Alloy
havior. Micromechanics models for the time-dependent behavibfixtures. The thermoelastic properties of the ceramiS2)
and effective thermoelastic properties of YSZ—BC alloy compo&nd bond coat alloy were measured by the manufacturer of these
ites that constitute the layers of a graded TBC are discussé@atings(Caterpillar, Inc., Peoria, IL, U.S.A.over a range of
These models are then utilized in fracture mechanics analysedamperatures between 25°C and 1500°C. Their average values at
assess the response of the various TBC architectures used intkige of these temperatures are shown in Table 2 below. Using the
experiments to thermal loading and boundary conditions thatoperties of YSZ and bond coat alloy, the properties of the
simulate the laser thermal shock tests. The driving force for in%-SZ—BC alloy composites that comprise the layers of the graded
tiation of surface cracks and propagation of TBC-bond coat inteFBC systems were computed using mean field micromechanics
face cracks in graded TBCs is then analyzed. Finally, the analyfitethods such as the self-consistent, Mori-Tanaka, \Maigper-
cal models are correlated with the experimental findings. bound and Reusglower-bound models,[29,30.

A comparison between the thermal conductivity at 25°C of
- YSZ-BC alloy composites predicted by the self-consistent, Mori-
2 Background and Motivation Tanaka, Voigt(upper-bounygl and Reusglower-bound models

For thick thermal barrier coating’BCs) used in diesel engines are shown in Fig. 4 for various ceramic volume fractions. These
applications, thermal fracture correlates with highly localizedre also compared with the measured thermal conductivities of
heating caused by the combustion of fuel plumes from the injetiiese composites at 25°C provided by the manufact(izs].
tion nozzle. This produces local steep temperature gradie@snilarly, the model predictions and experimental data of elastic
through the coating thickned®,13]. Laser thermal shock experi- modulus at 25°C are shown in Fig. 5. A detailed discussion of the
ments provide a means to recreate in a precisely controlled mano+relation between the model predictions and experimental data
ner such high heat flux thermal loading conditions resulting ifor the thermoelastic properties is presented in Rangaraj and Ko-
high surface temperatures and large temperature gradients throkigin [31].
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Fig. 2 Surface and interface cracks in the TBC systems and boundary conditions,
thermal loads for analyses

Experimental measurements of thermoelastic properties for thffective viscoplastic properties of these composites is therefore
YSZ-BC alloy composites at higher temperatures are currenggsential in order to understand the response of graded TBCs to
unavailable. Hence, the high-temperature properties of YSZ atteermal shock loading.

BC alloy (Table 2 may be utilized to predict those of the com- The time-dependent behavior of YSZ and bond coat alloy can
posite using the micromechanics models. This enables the cdoe- described by the Norton-Hoff creep equatipd2,33. This
putation of the effective thermoelastic properties of each layer efuation, describes the relation between the equivalent strain-rate
the graded TBCgFig. 1) over the range of temperaturé®5— and flow stress in YSZceramig¢ and bond coat alloydenoted by
1300°Q considered here. subscripts " and “ b” respectively as

3.2 Time-Dependent Response of Ceramic-Bond Coat Al-
loy Composites. In graded TBCs, the temperature in layers be-
low the relatively thin ceramic-rich top layer may also be signifi-
cantly high. There are hence, likely to be significant time-
dependent (viscoplasti¢ effects in these layers which are
comprised of YSZ-BC allojcompositesAn estimation of the

Ec=Acexp ——=| o 2)
C C R-T c

Ey=Ay X —— 2™ 3)
b b R-T b "

Table 1 Summary of surface thermal fracture data

Number of Samples Showing Particular Average SCs per

Number of Surface Crack$SC) Specimen
Samples
Architecture Tested 1SC 2 SC 3SC 4 SC
One layer 19 14 5 0 0 1.25
Three layer 17 2 10 2 3 2.35
Nine layer 14 2 4 4 4 2.78
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Fig. 3 Horizontal crack length  (Hc) for the three TBC architec- Ceramic volume fraction (£).

tures. (Reproduced from Kokini et al.  [28].) . o )
Fig. 4 Thermal conductivity of YSZ-BC alloy composites.

(*Experimental data, as received from Caterpillar Inc., Peoria,

The constant®\., AH., A,, AH, are the prefactors and creepIL')
activation energies for the ceramic and bond coat alloy, respec-
tively, R and T denote the universal gas constant and absolute
temperature, respectively. These properties for {82Z], and BC that closely emulates the thermal shock tef28]. The thermal
alloy, [33], are shown in Table 3. shock experiment consisting of subjecting the surface of the speci-
Rangaraj and Kokini31] presented a model for effective time-men to a_Iaser beam for four seconds and subsequent cooling in
dependent response of ceramic-bond coat alloy composites ur@iéivas simulated. The effect of the laser beam was modeled by
typical TBC service temperatures. The model was based orflgplying a heat flux with a Gaussian spatlal distribution al_)out th_e
self-consistent micromechanics formulatid84,35|. Briefly, the center of the top surface of the TBC. Since the deformations dld'
effective flow-stress in each phase was related to its strain r&@t affect the temperatures, the problem was modeled as a quasi-
through its nonlinear(strain-rate dependentcreep viscosity. Stéady-state thermomechanical problem. First, the nodal tempera-
Strain-rate averaging and self-consistent localization relations €S were calculated by solving the transient heat transfer prob-
tween the two phases were then used to compute the strain-r&81. All of these temperatures were entered into a transient
dependent creep viscosity of the composite as a function of thiguctural analysis model to compute the resulting displacements
creep viscosity and volume fraction of the two phases. This moddd stresses. Since beam-shaped specimens had been used in the
enabled the computation of stress versus strain-rate response &&periments, plane-stress finite element analyses were performed.
fective stress exponertn), activation energy 4H), and pre-  The structural and thermal boundary conditidi@$], placed on
factor (A) of the composite for various compositions. Sample rdhe model were chosen to simulate the experimental setup and are
sults of stress exponent and activation energy of the YSz—Blustrated in Fig. 2. Due to symmetry of the loading and geom-
alloy composites for various YSZ volume fractions are shown i@y, & half-symmetric model was considered. The top edge was
Fig. 6. The stress exponents and activation energies shown hdygjected to a gaussian heat flux distribution and a boundary con-
have been normalized by the corresponding properties of the Nidition of ambient convection. The side and bottom edges were
oCrAlY BC alloy. assigned boundary conditions of ambient convection as well. The
Since the effective time-dependent response and thermoeladfiplied heat flux intensity was varied with changing coating ar-
properties of the individual layers of a graded TBC are now avafthitectures to keep the same surface temperdfi8€0°Q in or-
able (Fig. 4—6, the previously discussed thermal shock expeerer to assess the response of coatings of similar thermal resistance

ments on the three TBC architectur@g. 1) can be simulated. t0 the same surface temperatures. _
The different areas in the finite element model were assigned

4 Simulation of the Laser Thermal Shock Test their respective thermomechanical properties. The TBC and bond
coat were modeled as elastic-viscoplastic materials. Temperature-
4.1 Model, Boundary Conditions, and Materials. The fi- dependent(between 25-1300°Cthermomechanical properties
nite element method was used to model the response of the funere used for each layer of the TBC as well as for the bond coat
tionally graded TBC system&ig. 1) to transient thermal loading using previously discussed experimental ddta YSZ and BC

Table 2 Temperature-dependent thermomechanical properties of yttria partially stabilized zirconia and bond coat alloy

Thermal Specific Density Elastic Poisson’s Thermal

Conductivity Heat, °C p Modulus Ratio Expn. Coeff.

Material T°C K (W/mK) (J/mol.K) (Kg/m®) E (GP3 v ax 10 (/K)
BC 25 3.88 460 6290 64.5 0.30 1.03
alloy 725 7.93 617 6290 53.0 0.30 1.10
1300 9.86 620 6290 43.0 0.30 1.14

YSZ 25 0.67 420 5600 13.6 0.25 0.75
725 0.58 547 5600 104 0.25 0.90
1300 0.56 569 5600 8.0 0.25 0.97
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tations were performed with ABAQUS® developed by Hibbit,
=Upper Karlsson & Sorensen, Inc., using eight-noded plane-stress ele-
= = Lower ments.

A M-T. 4.2 Crack-Tip Finite Elements and Strain Energy Release
® O s.-C. Rates. In order the assess the driving force for surface and in-
® terface crack initiation, models with short surface cracks on the
TBC and horizontal cracks at the TBC—bond coat interface were
considered. The size and location of these cracks are discussed
below in more detail. In order to compute the strain energy release
rates andl-integrals accurately from these cracks, refined meshes
were employed in the vicinity of the crack tips. A mesh size of
around 0.5% of the crack length for the interface cracks and
0.75% of the crack length for the surface cracks, in general,
yielded convergent results. Hence, the size of the elements near
the crack tip was rather small in comparison to the TBC and more
significantly the substrate thickness. To contain the size of the
finite element model within reasonable limits, highly graded
meshes were employed. A uniform element si@&% of crack
length was used in a small square area around the crack tip. The
Ceramic volume fraction (£,). element size was then gradually increased with increasing dis-
tance from the crack tip. The models typically had 12,000 to
Fig. 5 Elastic stiffness of YSZ-BC alloy composites. 15,000 nodes and a total of 4000 to 5000 plane-stress elements.
(*Experimental data, as received from Caterpillar, Inc., Peoria To prevent the interpenetration of the crack surfaces due to the
IL.) crack closure that results during heating, a contact boundary con-
dition was used at the crack surfaces. This was facilitated by the
use of six-noded interface elements between the edges of the
eight-noded elements on either crack face. A smdotiefficient
of friction, w=0) contact between the crack faces was assumed in
respective viscoplasti¢time-dependentproperties as shown ine‘all cases. Following McDonald et d37], the gap conductance
Table 3. The viscoplastic properties for layers of the TBC co kG) across the cra_ck faces is directly proportlc_)n_al to the conduc-
prised o'f YSZ-BC alloy composites were computed from the pr lvity (k) of the medium between the crack factqg In the present
viously discussedFig. 6) self-consistent model. The steel subf“'g'tUdy-’ka‘":-o'o25 WimK) e_tnd inversely proportional to the crack-
strate was considered to be linear elastic in viéw of the fact th%enlng displacemert), i.e., Ko =K/ &, [37]. In the present
the temperatures here remain comparatively low. All the compy- aly_ses, _short cracks are being considered. Th_e resu!tlng crack-
) Hpenlng displacements) are hence small. A relatively high gap
conductanceks~10* W/m?°K) was hence prescribed across the
crack faces.
Table 3 Properties for time-dependent behavior of ceramic As shown later, the surface and interface cracks experieace
and bond coat alloy openingand rathersmall sliding displacementduring heating
when time-dependent deformations and high-temperature stress
Pre-factor  Stress ExponentActivation Energy  relaxation effects occur in the TBC layers. The faces of the sur-

60 Py

> \ Y
50 é Experimental *

40 p A

E (GPa)

3 p

20 p

10 A
0 0.2 0.4 0.6 0.8 1

alloy) and micromechanics mode(for YSZ—-BC alloy compos-
ites). The layer of pure YSZ and the BC layer were assigned th

Material A (N/m?)(sec) n AH (kJ/Kg face as well as the interface cracks were in contact only during
Bond coat alloy  9.05x 10~ 12 2.7 150 heating. After the stress relaxation, during cooling, they experi-
Zirconia (YSZ2) 5% 107 1.8 217 ence significant opening displacements. However, this opening
results due to the nonreversible viscoplastic deformations and
Ls stress-relaxation effects that occurred during heating. Thus, during
; cooling the crack faces were not in contact. Hence, only small
14 b =©—Norm. stress exponent sliding disp!acements occurred during heating when the crack
-8 Norm. activation energy faces were in contact. _ _
1.3 As discussed later, the strain-energy release rates for the inter-
o face cracks were computed using the crack flank displacement
T 12 method developed by Smeld&8] from the relative opening and
g sliding displacements between the two crack surfaces obtained
E 1.1 from the finite element analyses. The calculated strain energy re-
i lease rates agreed well with thé&integral computed from
g 1 ABAQUS®. The driving force for growth of the surface cracks
B 09 was assessed from the calculatemtegral values.
0.8 5 Temperature Distribution in the Thermal Barrier
Coatings (TBCs)
07 As mentioned earlier, the heat flux applied to the TBC top
0.6 2 1 1 1 surface(Fig. 2) was adjusted so as to yield.a maximum surface
o 2 40 60 80 100 temperature of 1300°C. T_he temperature history at the center of
the top surfaceX=0, y=0 in Fig. 2 for the three architectures is
YSZ volume fraction, fc (%) shown in Fig. 7. The coating is initially at uniform room tempera-
ture (298 K). The temperature at the center of the top surface
Fig. 6 Normalized stress exponent (n/ngc) and activation en- increases to 1573 K at the end of the heating periog4(sec.)
ergy (AH/AHgc) for YSZ-BC alloy composites and subsequently cools back to nearly room temperature in the
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Fig. 7 Temperature history at the center of the top surface of

the TBC

of bond coat alloy(which has a much higher thermal diffusivity
than YS2Z in the coating is increased, the temperature at a given
fraction of distance \{/t) from the TBC surface decreases. Thus
the coating architecture has a significant influence on this tem-
perature distribution.

6 Location of Surface Cracks

The region near the coating surface experiences high tempera-
tures during heatingFig. 7). A steep temperature gradient exists
through the coating thickneg&ig. 8. The lower layers of the
TBC, the bond coat layer and substrate are significantly cooler.
This causes compressive stresses to develop near the coating sur-
face due to its constrained thermal expansion. The combined ef-
fect of these compressive stresses and high temperatures cause
thermally activated time-dependent deformations in the coating,
[12,13. The compressive stresses then relax with time during
heating and the subsequent cooling gives rise to tensile stresses.
These tensile stresses lead to formation of surface cr&®Rsin
the coating.

The coatings used in the present study showed multiple surface
cracks under transient thermal loading8]. A methodology de-
veloped in Kokini and TakeucHi26] was used to analytically
estimate the location of the surface cracks. At first, a transient
thermal stress analysis of the TBC systems without any surface
cracks is carried out. This analysis predicts the maximum tensile

next 11 seconds after the heat flux is removed. The temperatdfgiss ¢ ), to occur at the center of the top surface. The first
histories on the surface of the one and three layer architectutgss,ce crack would therefore form at this location and is hence is

were similar since they had similar thermal resistances of 8 a erred to as the center surface créElg. 2. The transient ther-

7.8 K/W, respectively[28]. Since the nine-layer system had gng| and structural analyses are again carried out with one short
slightly higher thermal resistanc¢&0 K/W), its surface heated and enter surface cracks% of TBC thickness to determine the
cooled at a slower rate.

_ The temperature distribution through the thickness of the cogdrack would then be located at the new peak of this stress profile.
ing along its centerX=0) at the end of the heating period ( A similar procedure can be repeated with additional surface cracks

=4 sec.) is shown in Fig. 8 for the three architectures studiegl he model to estimate the locations of the subsequent surface
Here, the distance from the top surface of the coajddias been ¢ acks. The stress profiles along the coating top surface for the

normalized with respect to the total TBC thicknégsfor each of
the architectures. Since the coatings have similar thermal re

stress distribution along the TBC top surface. The second surface

right half (symmetric model of the nine-layer architecture with
y surface cracks, one surface crack and two surface cracks are

tances, the bond coat temperatures are similar in all cases @Rdwn in Fig. 9. Here, the distangds normalized with respect to
range between 110-180°C. The small differences in the bond caalf the coating widthw (Fig. 2. An important observation made

temperatures in the three architectures are consistent with t
respective thermal resistances, i.e., the bond coat is coolest and
hottest for the nineR=10°K/W) and three-layerR= 7.8 K/W)

m Fig. 9 is that the magnitude of the maximum stress decreases
an additional cracks forms on the surface. Multiple surface
crack formation relieves the tensile stresses in the TBC. This is to

systems, respectively. It is observed from Fig. 8 that as the contgfat expected since the presence of additional surface cracks makes
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Fig. 8 Temperature distribution through the TBC thickness at
the end of heating (t=4 sec)
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Table 4 Estimated location of surface cracks (SC) 80
Location of nth SC as a fraction of ~ 70 F
half coating width (x,/w)% g
Architecture sc1 sC2 sc3 SC4 5 0F
One layer 0 1.06 2.13 333 X sl Ee %’:f;*_‘ly:y’éf‘gv
Three layer 0 4.25 12.2 16 3 : ?
Nine layer 0 12.5 15.4 18.2 = —#— Nine-layer, dv
240 = ©O= 'One-layer, du
= - 8- 'Three-layer, du
= 30 f = A= ‘Nine-layer, du
>
)
The locations of up to four surface cracks in the symmetric 3 20
model(that correspond to 7 on the TBC surfageere determined ~§ G
by the above procedure and the results for the three architecture &,
are shown in Table 4. Here, the location of each surface coggk ( © 0 M
in the three architectures as a percentage of half the coating widt

(win Fig. 2) is presented. The estimated locations of these surface _jq L
cracks were verified with some of the micrographs presented ir Time (sec.)

Kokini et al. [28] and a reasonable agreement was found. For

instance, a nine-layer specimen subjected to a thermal shock fégt 10 Opening (dv) and sliding (du) displacements for the
with a maximum surface temperature comparable to that in thigle surface crack (SC2) in coatings with four surface cracks,
present analysi€l300°0 exhibited a second surface cra@C2  ach 5% of the TBC thickness in length  (asc/t=0.05)

at a distance of 200@m from the center of the TBG28]. The

corresponding analytically estimated distance in Table 4 is 1875

pm. surface cracKSC2, which is a side surface crack. The opening

As the gradation of the coating increases, the surface cragkg,ma) and sliding(tangential displacements are represented by
form further away from the center. This is a combined effect Q|iq and dashed lines respectively.

temperature gradients, coating thickness and time-dependent d§; is clear from Fig. 10 that the surface cracks experience

formations in the lower layers of the graded TBCs. To assess t@ﬁeningand rathersmall sliding displacementuring heating (
effect of time-dependent behavior in the lower layers on the loca-4 sec). During heating, the TBC experiences compressive
tions of the surface cracks, the calculations were performed Witk asses and the time-dependéviscoplasti¢ deformations and
out including the time-dependent behavior of the lower layers. Wress.relaxation effects occur. Thugien the viscoplastic defor-
the nine-layer architecture, when time-dependent behavior in ORlyations occur in the coating, the surface cracks experience very
the top Igyer is considered, the estimated locations of the secQiy| sliding deformationsDuring subsequent cooling, the coat-
(SC2, third (SC3, and fourth(SC4 surface cracks reduce t0 9,jng experiences tensile stressi7]. These tensile stresses result
11.6 and 14.3% of the coating widtt), respectively. due to the stress relaxation that occurred during heating. However,
To estimate the role of total TBC thickness on the surface Craﬂ'ﬁring cooling ¢>4 sec)no additional viscoplastic strainsle-
locations, the thickness of the one-layer TBC was varied betwegliop'in the TBC. The surface cracks open during cooling when
0.6 mm. (its original thicknespand 2.2 mm.(thickness of the e TBC experiences tensile stresses. During cooling, the opening

nine-layer TBG and the location of the second surface cracl,orma) displacements between the surface crack faces increase
(SC2 was calculated for each case. The estimated loca®®8 ang attain their maximum steady-state values by the end of the

percentage of coating widthof SC2 for one-layer TBC thickness peating-cooling cycle. Furthermore, as seen from Fig. 10, the
of 0.6, 0.85(thickness of three-layer TBC1.6 and 2.2 mm. were ¢yack opening that results during cooling is much larger in mag-

1.06, 3.84, 11, and 11.8%, respectively. Comparing these egfiq,de than the sliding that occurred during heatifigcan also be
mates with those in Table 4 for the location of SC2 in the thrégsteq from Fig. 10 that with an increase in the gradation of the
and nine-layer TBCs, it is evident that the formation of the surfac]qBQ the crack opening increases and the nine-layer TBC has the
crag:ks further.aV\./ay from the' center in a more graded TBC Kighest crack opening.
mainly due to its increased thickness. The J-integral during the heating-cooling cycle for the same
side surface crackSC2 from Fig. 10 is shown in Fig. 11 for the
L three TBC architectures. For these surface cracks, it is clear from
7 Surface Crack Initiation Fig. 11 that thel-integral follows the same trend as the relative
As seen from the experimental observatidi2g], there was an displacements between the crack faces, i.e.Jimeegral remains
increased tendency for the formation of multiple surface crackegligibly small (~ 10" J/n?) during heating when the surface
with increasing coating gradation. To understand this, the relatiggacks experience small sliding displacements. Hgtegral in-
magnitudes of the forces driving the surface crack initiation in thegreases during cooling when the TBC experiences tensile stresses
three architectures must be compared. The response to the prand the surface cracks open. Théntegral attains a maximum
ously described thermal shock loading of models with pre-existirgjeady-state value by the end of the heating-cooling cycle. Ac-
surface cracks was therefore considered. The location of the sterdingly, thismaximum steady-stataagnitude of thel-integral,
face cracks for each of the architectures was as previously di89], was used to characterize the driving force for surface crack
cussed(Table 4. To study the initiation of these cracks, shorinitiation. The J-integral was computed from ABAQUS® which
surface cracks(5% of the TBC thickness, crack ratiagc/t uses the domain integral method to evalukietegral,[40].
=0.05) were considered. For a particular architecture, all the sur-For a crack growing in a nonlinear viscous material, the
face cracks in the model had the same length. The surface cra€ksintegral,[41—42, obtained by replacing the strains and dis-
were all contained in the top layer of the TBC. placements in thé-integral[39] by their corresponding rates is
The relative openingdv) and sliding(du) displacements be- commonly used to assess the crack driving force. However, in the
tween the faces of the surface cracks in the one, three and nipeesent case, the sliding displacements that occur during heating
layer TBCs during the heating-cooling cycle are shown in Fig. 1Qwhen the viscoplastic deformations occur in the TB(@e rather
Models with four short §sc/t=0.05) surface cracks have beersmall in comparison to the opening displacements that result dur-
considered in Fig. 10. The displacements are shown for the secamgl cooling (when the TBC experiences no additional time-
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characterize the driving force for surface crack extension.

The J-integral values at the end of the thermal loading cyclEig- 12 Steady-state J-integrals for the surface cracks in mod-
(heating and coolingafter the system has cooled back to steady®s With multiple 5% (asc/t=0.05) surface cracks (SCs)
state (=15 sec.) are shown in Fig. 12. The cases of four surface
cracks and three surface cracks in the symmetric model were con- . .
sidered. In Fig. 12, thé-integral values for each of the surface8 Effect of Top-Layer Thickness on Surface Cracking

cracks for the three coating architectures are shown. It can beTo assess the role of the top ceramic-rich layer on surface crack
noted that thel-integral values increase with coating gradation. Ainitiation, the thickness of this top layer in the three and nine-layer
a given surface crack, the nine-layer coating has the highesthitectures was varied in the models. The total thickness of the
J-integral value whereas the one-layer coating has the lowe$BC and its thermal resistance were, however, kept constant. This
Thus, with increasing compositional gradation of the TBC, themas achieved by mutually adjusting the individual thickness of the
is an increased driving force for surface crack initiation. lower layers in order to accommodate the chan@esesistance
This is related to the temperature distribution through the coaind thicknessbrought about by varying the top-layer thickness.
ing thickness(Fig. 8 and its effect on the time-dependent deforThe boundary conditions and thermal loads were the same.
mation in the coating layers. The three coating architectures havel he steady-staté-integral values for each of the side surface
similar thermal resistances, but they are of different composition@lecks (Fig. 2) on the three-layer architecture, containing three
gradations. The distributions of thermomechanical and viscopla®irface cracks, as a function of its top-layer thickness are shown
tic properties through the TBC thickness hence change with TBE Fig. 13. The top-layer thickness was varied between 0.125 mm
architecture(Figs. 4—6. The bond coat alloy has a significantlyand 0.375 mm. For each value o_f top-layer thickness, at least two
higher stress exponent and lower activation enéfaple 3 com- surface crack lengths were con5|déered. The lengths of thg surface
pared to the ceramic and therefore experiences a higher amoun r@F.kS varied between 5 and 18% of the t(_)tal TB.C _thlckness.
viscoplasticity. In a graded TBC, the layers below the cerami églzlrn,l ttige(jza?L;rrr)arlr(]:eFigalcls(sth\;vtetrﬁb?r:tle;?glt?/gigsvg:zlgiézﬁ‘i top
glclzgyt(o'gglai/)er_r ﬁggtea:gysélgng:(éa;; gc;lsg?:cfgzcttgogfé \;);tggqgr:&ilca_ntly higher for coatings with thinner top layers. This may be
tures(Figl 8). The resulting time-dependent deformatidstress E@(pected con5|derlpg the fact thfit with a thinner top Iaye(, the
AN ; lower layers(comprised of ceramic-bond coat alloy composites
r_elaxatlor) in these layers causes th_e surface cracks in the furE:)Zperience higher temperatures and this would lead to greater
tionally graded TBCs to have highéfintegral values. amount thermally activated time-dependent deformation in these
Further, the total TBC thickness and, the thickness of the tQRers. These time-dependent effects influence the deformations in

ceramic-rich layers are differeffig. 1) in the three architectures. the top layer as well and hence lead to the observed increase in the
Previous studies on monolithic single layer YSZ coatifds],  j-integrals for the surface cracks.

have shown that as the thickness of the coating was reduced, thghe effects of the top-layer thickness on thimtegral for each
density of surface cracks on the coating increased. It is believgflthe side surface cracks in the nine-layer architecture are shown
that in the present study, as the gradation of the coating increasgsrig. 14. Again, a model with three short surface cra@ of

and the top ceramic-rich layer becomes thinner, this top laygtte TBC thicknesswas considered and tikeintegrals for the two
starts behaving in a manner similar to the previously studied théide surface cracks are shown in Fig. 14. The results are similar to
monolithic zirconia TBCs[13], and develops multiple surfacethose in Fig. 13. Figures 12—14 suggest that an important factor
cracks. responsible for the increased driving force for multiple surface
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cracking with increasing coating gradation at constant thermal re-
sistance is theeduced thickness of the ceramic-rich top layer to the previously described surface cracks were consid@tied
2). The horizontal cracks were assumed to be located at the inter-

9 Effect of Surface Cracks on the Horizontal Cracks face between the TBC and bond coat layers. The surface crack
| g’ltions for each of the TBC architectures were as shown in
d le 4. To assess the force driving interface crack initiation in the
ee architectures, a short interface crack that was 12% of the
nnest(one-layey coating was considered. Thkintegral and
's_train energy release rate were used to characterize the force driv-
ing the growth of this interface crack. The layers near the
C-BC interface do not experience elevated temperatifigs

. Hence, these layers do not experience any significant time-
pendent effects and their response tends to remain elastic. The
%{;ﬁin-energy release rates for the interface cracks were calculated
p owing Smelsef38] from the relative opening and sliding dis-
placements near the interface crack tip. The computed strain en-

y release rates agreed very closely withXetegral estimated

fiom ABAQUS®.

Figure 15 shows the strain energy release (&timtegra) for
e interface crack during the heating cooling cycle. One, three,
and nine-layer TBCs with a single center surface crack that was
half the TBC thicknessdgc/t=0.5) have been considered here.
Similar to the surface crack&ig. 10, the interface cracks expe-

As discussed earlier, the TBC experiences tensile stresses a
end of a heating-cooling cycle. The gradient in tensile stress
through the coating thickness causes a moment to act on the T
This moment creates tensile normal stresses along the TBC—
interface leading to initiation of horizontal cracks near this inte
face,[14,15. These cracks grow to cause final delamination a
loss of structural integrity of the coating. As seen in Fig. 3, th
coating architecturégradation and applied thermal loading can
have a significant effect on the length of these horizontal crac
Further, the presence of surface cracks in the coating may hav
influence on the force driving the growth of these horizont
cracks.

To assess the influence of coating gradation as well as the n
ber and size of the surface cracks on the force driving the gro
of the horizontal cracks, models with horizontal cracks in additio%

400 F &-sC2 rience no opening and rather small sliding displacements during
—A—SC3 heating and their energy release rates remain negligibly small dur-
ing heating as seen in Fig. 15. During subsequent cooling, the

interface cracks open and their energy release rate increases and
300 attains a steady-state value. This maximum steady-state value of

the energy release rate is used to characterize the driving force for

interface crack extension.

The phase angley=tan (K, /K,), whereK, andK, are the
mode | (opening and mode Il(sheay stress intensity factors,
respectively, may be used to assess the mode mixity for the inter-
face cracks. For such a bimaterial interface crack, the phase angle
1 () can be computed from the ratio of the crack-openidyg to
the sliding(du) displacement and the elastic constants of the two
materials across the interfadd3]. Accordingly, the ratios of the
opening to the sliding displacementdv(du) at steady statet (

0 1 L L =15 sec) were used to compute the phase afgleThe com-

0.2 0.3 0.4 0.5 0.6 puted phase angles for the TBC—BC interface cracks in the one,
three, and nine-layer TBCs were 14, 23, and 24 deg, respectively,
and have been indicated in Fig. 15. Thus, the mode mixity is
comparable in all three cases and there is a dominance of mode |

Fig. 14 Effect of top-layer thickness on  J-integral for side- (opening.
surface cracks in the nine-layer TBC The steady-statet € 15 sec) strain energy release rates for the

200

J-integral (J/m®)

100

Toplayer thickness (mm.)
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interface cracks in the three architectures are shown in Fig. 16.
Here, the lengths of all the surface cracks were 50% of the total
TBC thickness ésc/t=0.5) in each of the three architectures. The effect of increasing surface crack lengths on the strain-
The case where no surface cracks are present as well as c&s&$gy release rates for the interface cracks is shown in Fig. 17.
where one, two, three, and four surface cracks are present in ti@re, the cases where one surface crack and two surface cracks
symmetric model have been shown in Fig. 16. Figure 16 show@f equal lengthwere present in the symmetric model have been
that, for a given number of surface cracks, with a certain surfagensidered for each of the three architectures. Figure 17 shows
crack ratio fgc/t), the strain energy release rate for the interfacéat when there is no surface cradg/t=0), the energy release
crack reduces with increased coating gradation. Thus the fomege for the interface crack is negligibly smal-@0"2 J/n?).
driving the interface crack growth is highest in the one-layer arfeurther, for a given number of surface cracks, the energy release
lowest in the nine-layer architecture. rate for the interface cracks increase as these surface cracks be-
Figure 16 also shows that if no surface cracks were present @@me longer. Again, the gradient in tensile stresses through the
the TBC, the strain energy release rate for the interface cracks@ating thickness after the heating-cooling cycle creates a bending
negligibly small. Thus, if no surface cracks formed on the TBGnoment. This moment causes the interface cracks to open during
the driving force for interface cracking would be negligible. Howeooling. As the surface cracks become longer, the area of the TBC
ever, owing to the thermally activated time-dependent effects iasisting this moment reduces and hence the effective bending
YSZ based TBCs, the formation of these surface cracks are inetflexura)) stiffness of the TBC becomes lower. This leads to higher
table as evidenced by the previously presented experimental epening displacements for the interface cracks. Hence, for a given
sults, [28], as well as earlier investigationgl1,27. With one number of surface cracks on the TBC, the strain energy release
relatively long @sc/t=0.5) surface crack in the model, the en+ate for the interface crack increases as these surface cracks be-
ergy release rate for the interface crack is quite high. The reas@mmne longer.
for the same are discussed bel@¥ig. 17). Given that these sur- From the experimental data in Kokini et 428, it was seen
face cracks do form, the strain energy release rate for the interfdbat a one-layer coating would typically develop one surface crack
cracks decrease with an increase in the number of surface craggproximately 75% of its thicknessi{c/t=0.75) in a laser ther-
Thus, for a given architecture, with surface cracks of a certainal shock test where the maximum surface temperature was
length, as the number of surface cracks in the model is increas800°C. The three-layer coating would develop three surface
from one to four, a significant reduction in the driving force forcracks, to reach about 70% of its thickness. In a similar test, the
interface crack growth is seen. nine-layer coating would develop three surface cracks less than
The interface cracks tend to open during coolirtg~4 sec) 30% of its total thickness. With these surface crack configurations,
when the TBC experiences tensile stresses. It was seen from Fig strain energy release rate for the interface cracks in the three
9 that an increase in the number of surface cracks makes #irehitectures can be compared from Fig. 17. It is found that the
coating more compliangstrain-tolerantand relieves some of the strain energy release rate for the interface crack in a one-layer
tensile stressesof,) in the TBC. The interface cracks tend toTBC is two orders of magnitudgreater than the corresponding
open during cooling under the action of the bending moment astalue in the three-layer TBC arttiree orders of magnitudas that
ing on the TBC. This moment arises due to the gradient in tensile the nine-layer TBC. This illustrates the combined effect of an
stresses through the coating thickness. With an increase in thereased number of surface cracks and coating architecture in
number of surface cracks, the tensile stresses in the TBC amducing the driving force for interface crack growth with in-
hence the moment acting on the TBC reduce significantly. Thergeased compositional gradation.
fore, the relative opening displacements between the faces of the
interface cracks as well as their energy release rates were found to
reduce with an increase in the number of surface cracks on tﬂ .
TBC. Furthermore, the presence of these surface cracks does not Summary and Conclusions
change the temperature at the TBC—bond coat layer interface, and@he response of functionally graded YSZ-bond coat alloy
hence the insulating effects of the coating are preserved. TBCs to transient thermal loading simulating previously reported
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laser thermal shock tests was modeled. The effects of tim&l3l Choules, B. D., and Kokini, K., and Taylor, T. A., 2001, “Thermal Fracture of

i 1 i i i Ceramic Thermal Barrier Coatings Under High Heat Flux With Time-
%i%erggreagggSiciflotphlgsgr?a?ye;g;matlons in the Coatmg Iayers were Dependent Behavior—Part |: Experimental Results,” Mater. Sci. Eng., A,

me _ A299, pp. 296-304.
The results indicate that the tendency for multiple surfacgi4] Takeuchi, Y. R., and Kokini, K., 1994, “Thermal Fracture of Multilayer Ce-

cracking with increased coating gradation may be attributed to the ramic Thermal Barrier Coatings,” ASME J. Eng. Gas Turbines Pot, pp.
time-dependent effects of the lower layers and even more criti- 266-271. N )
cally, to the decrease in thickness of the ceramic rich top Iaye@ls] Choules, B. D., and Kokini, K., 1997, “Interface Thermal Fracture of Ceramic
’ . >~ " Coatings in a High Heat Flux EnvironmentThermal Stress '97Rochester
The thermal shock test§28], showed that the nine-layer speci- Institute of Technology, Rochester, NY.
mens on an average had the highest number of surface cragks| rejda, F., Socie, D. F., and Itoh, T., 1999, “Deformation Behavior of Plasma
while the one-layer specimens predominantly had single surface Sprayed Thick Thermal Barrier Coatings,” Surf. Coat. Techridl3 pp. 218—
cracks. 226.
17] Thurn, G., Schneider, G. A., and Aldinger, F., 1997, “High-Temperature De-
A _more graded TBC develops more number of Surface Cr_aCkg' formation of Plasma-Sprayed ZsOrhermal Barrier Coatings,” Mater. Sci.
Multiple surface cracks make the TBC more compliant, relieve  gng. A A233 pp. 176-182.
the tensile stresses in the TBC and consequently reduce the benm} Khor, K. A, Dong, Z. L., and Gu, Y. W., 1999, “Plasma Sprayed Functionally
ing moment acting on the coating. This is mainly responsible for _ Graded Thermal Barrier Coatings,” Mater. Le®8, pp. 437—444. o
the decreased driving force for TBC—BC interface crack growtfh!® Pong, Z. L., Khor, K. A, and Gu, Y. W., 1999, *Microstructure Formation in
s . . . a Plasma Sprayed Functionally Graded NiCoCrAlY/yttria-Stabilized Zirconia
with increased _composn_lonal gradation. This correl_ates with the Coatings,” Surf. Coat. Technol114, pp. 181—186.
fact that for a given maximum surface temperature in the therm@to] yYamanouchi, M., Koizumi, M., Hirai, T., and Shiota, I., 199oceedings of
shock tests, the nine-layer coatings had the shortest interface the First International Symposium on Functionally Graded Materials
cracks while the one-layer coatings had the longest. 21 g:G,M'g‘?) 'T“”é“ona"y Cf(’adsed Ma:ﬁ”’gs ':OLU?' TogyoaKJagggé i
B . eimanis, I., bowman, K., sampatn, S., an rumnle, K., ceedaings
. For a given number .Of S.urface Crac!(s' the driving force fOI[ of the Sixth International Symposium on Functionally Graded Materials
interface crack propagation increases with the length of these sur-  (Fgm: 2000) American Ceramic Society, Westerville, OH, in press.
face cracks due to a reduction in the area resisting the momeip] Bao, G., and Wang, L., 1995, “Multiple Cracking in Functionally Graded
acting on the TBC. For surface cracks of a given length, an in-  Ceramic/Metal Coatings,” Int. J. Solids Struc82(19), pp. 2853—2871.
crease in their number reduces the driving force for interfacE??’] Bao,_G., and Cai, H., 1997, “Delamination Cracking in Functionally Graded
Coating/Metal Substrate System,” Acta Matet5(4), pp. 1055—1066.
Cra(_:k grOWth' These tWO_ Fj'ﬁeCtS muwa“y co_mpete and thereforﬁﬂ Erdogan, F., and Wu, B. H., 1996, “Crack Problems In FGM Layers Under
having a TBC with a sufficiently high population of short surface ~ Thermal Stresses,” J. Therm. Stresst, pp. 237—265.
cracks can enhance its resistance to delamination. A plasm@s] Lee, Yi-Der, and Erdogan, F., 1998, “Interface Cracking of FGM Coating
sprayed TBC with a dense population of short surface cracks then Under Steady-State Heat Flow,” Eng. Fract. Me&#3), pp. 361-380.

: I ; [26] Kokini, K., and Takeuchi, Y. R., 1998, “Multiple Surface Thermal Fracture of
develops a strain tolerance similar to an EBPVD TBC while re Graded Ceramic Coatings,” J. Therm. Stress pp. 715-725.

taining its primary advantage of superior thermal resistance. [27] Kokini, K., Takeuchi, Y. R., and Choules, B. D., 1996, “Surface Thermal
Cracking Owing to Stress Relaxation: Zirconia vs. Mullite,” Surf. Coat. Tech-
nol., 82, pp. 77-82.
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On Global Energy Release Rate of
a Permeable Crack in a
Piezoelectric Ceramic

A permeable crack model is proposed to analyze crack growth in a piezoelectric ceramic.

S. Li In this model, a permeable crack is modeled as a vanishing thin, finite dimension, rect-
Department of Civil and Environmental angular slit with dielectric medium inside. A first-order approximation solution is derived
Enginesring, in terms of the slit height, i The main contribution of this paper is that the newly
University of California, proposed permeable crack model reveals that there exists a realistic leaky mode for
Berkeley, CA 94720-1710 electrical field, which allows applied electric field passing through the dielectric medium

inside a crack. By taking into account the leaky mode effect, a correct estimation of
electrical and mechanical fields in front of a crack tip in a piezoelectric ceramic is
obtained. To demonstrate this new finding, a closed-form solution is obtained for a mode
Il permeable crack under both mechanical as well electrical loads. Both local and global
energy release rates are calculated based on the permeable crack solution obtained. It is
found that the global energy release rate derived for a permeable crack is in a broad
agreement with some known experimental observations. It may be served as a fracture
criterion for piezoelectric materials. This contribution reconciles the outstanding discrep-
ancy between experimental observation and theoretical analysis on crack growth problem
in piezoelectric materials{DOI: 10.1115/1.1544539

1 Introduction local energy release rate criterion was subsequently proposed to
asure the fracture toughness of piezoelectric materials. The lo-
energy release rate criterion is based on the so-called
ration-strip model, or equivalently an electric dipole distribu-
model, which is basically a domain switch strip-zone model
that is taking into account the nonlinearity induced by the overall
effect of domain switching. The saturation-strip model is the di-
rect analogous of Dugdale crack in a cohesive elastic medium of
classical fracture mechanics.
. The local energy release rate criterion was an immediate suc-
[26,27, Yang [.21'274 among others_. A recent article by Zhangcess, because itggrovides a plausible explanation on Park-Sun’s
et al.[2_8] provides an excellent review. . . . empirical formula of energy release rafd1,12. However, the

A major challenge in fracture mechanics of piezoelectric matﬁissipative nature of saturation-strip model seems to be a nui-
rials has been how to resolve an outstanding discrepancy betwg Rce e.gl27].
exper!mental observation and theoretic_analysis. In a landmarky, tr’1is Wé)l’k, a permeable crack model is carefully crafted to
experimental work by Park and Sual], it was found that the e ger 4 tractable solution for mode Ill crack, while retaining all
experimental observation contradicts with some basic aspectsyof main features of a permeable crack. By doing so, it provides

fracture mechanics theory of linear piezoelectric materials. Fgp opnortunity to systematically reexamine the permeable crack
instance, the experimental results obtained by Park and Bln ¢, iution of a piezoelectric ceramic.

show that there is a decrease in the critical stress of a cracked

piezoelectric body if the electric field is applied along the direc-

tilon of pfqlilrég_ axis, ;e_mg the{‘e is an irjcr%a_lse in critichal stress if tk% Formulation of the Problem
electric field is applied to the opposite direction, whereas accord- ) e L .
ing to linear fracture mechanics theory, the applied electric field Con3|_der a c_rack with f'n't? dlm_enS|on in the m|§jdle ofa trans-
does not induce any nonzero stress intensity fa@ay., Pak1,2] versely isotropic piezoelectric solid under the antiplane mechani-
and Suo et al[6]), and it always predicts a negative definite en(-:""lek:;‘ﬁl3 vaz;nnc: ftigf d'CéE:;EE:Iaefemcal load. bat=X andx,=Y.

ergy release rate regardless the directions of the applied elec?m:

Fracture mechanics of piezoelectric solids has been an actg\}a
research area since early 1990s due to the widespread use of sg}ﬁ[}
materials and smart structures. Many research works have b«ﬁgﬂ
published in the past decade, e.g., PaR], Li et al. [3], Sosa
[4,5], Suo et al[6,7], Dunn[8], Dascalu and Maugi[®,10], Park
and Sur{11,12, Gao and Barneftl3], and Gao et al.14], Lynch
et al. [15,16, Zhang and Hack17], Fulton and Gad18], Ru
[19,20, Yang and Zhij21-23, Zhang et al[24,25, McMeeking

fields, which implies that the applied electric field always retards U=u,=0, us=w(X,Y);
crack growth.
Using micromechanics concepts related to domain switching, do d¢

Gao and his co-workers 3,14,18 argued that crack growth in a Es=0, E=—

D) A
piezoelectric solid is a multiscale phenomenon, and the local en- ) )
ergy release rate may be a critical factor in fracture process.FRT the symmetry class of 6 mm piezoelectric crystal, or general
piezoelectric composite possessing the same symmetry, the rel-

Contributed by the Applied Mechanics Division offf AMERICAN SoclETy oF ~ €Vant constitutive equations are as followdaild [29]):

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME-

CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 28, _~E ﬂ + d¢ 1
2002; final revision, Aug. 26, 2002. Associate Editor: H. Gao. Discussion on the 0XZ*C44(9X 615(9_)( @
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Department of

Mechanical and Environmental Engineering University of California—Santa Barbara, IW dp

Santa Barbara, CA 93106-5070, and will be accepted until four months after final oyz= CAE,4_ +e5— 2
publication of the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. Y Y
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which interacts with both the mechanical field as well as the elec-
trical field outside the crack along the crack surfaces. To capture
this interaction, one has to employ the exact boundary conditions
of both continuum mechanics and electromagnetics to solve the
crack problem.

Instead of imposing various combinations of boundary condi-
tions to show the coupling between the primary variables and their
conjugate pairs, only standard mixed boundary value problems are
considered heréMalvern [30] and Jacksom31]). The boundary
conditions or interface conditions for two different dielectric me-

dia are
Fig. 1 Convention for boundary conditions + mechanical boundary conditions
nflel]J=-T onS,; u=0onS,; (10)
aw d¢p « electrical boundary conditions
Dx= elSW_ Eilﬁ (3)

n-[ID]]=gs on Sy and nX[|E[]=0 on S (11)
Du—e ow & 5_¢ @) whereS, , S, identify appropriate subsets of the domain boundary

YT RISy gy and S=S,US,. Note that the notatiofi|f|]:==f"—f~, and the

normal vectom is pointing from medium-to mediumt+as shown

Subsequently, the Euler and Maxwell equations take the form in Fig. 1. In electrostatics, conditiofl1l) can sometimes be re-

cEV2w+esV2¢=0 (5) placed by the continuity condition of electric potential, i.e.,
[|¢|1=0. It should be noted the&,NS,=0, butSyNSg#0.
e15V2W—€3,V?¢=0 (6) In this paper, a planar permeable crack is modeled as a vanish-

ing thin, finite dimension, rectangular-shaped slit with heigihg 2

where and width 2a as shown in Fig. 2.
) & & As hy—0, the permeable crack becomes a conventional math-
v =ox2 + a2 ematical crack. One may write the crack height as the function of
X,
Since the determinant
cE, e h(X) o, [X|<a (12)
15 =
— e44 140 ) 0, |X|>a.
— €
o . ) ) The interior region of the crack is denoted as the(3gt
one can decouple the system of governing equations
Qu:={(X,Y)|—a<X<a, and —hg<Y<hg}. (13)
V2w=0, Y(X,Y)eR%Q,, (8a) , . o . ,
5 5 Adjacent to the slit, there are two semi-infinite strips, which are
Vep=0, V(X,Y)eRQ,, (8b)  denoted ad),,
where(},, is the void space inside the crack. Qe={(X,Y)|la<|X] and —hy<Y<hg} (14)
<={(X, , .

Note that the coupling between mechanical and electrical vari-
ables_stlll exists in boundary condltlons. For perr_negble crack§, Crack Solution
there is a nonzero electrical field in the free space inside the void,

and the electrical potential inside the cragk, satisfies the equa- _Consider a mode Il permeable crack that is perpendicular to

tion the poling direction(out plane, and it is subjected to remote
~ traction and charge distribution at remote boundase Fig. 2
V2$=0, xeQy 9) Let T=r.e, andgs=—(..
Teo
PPPOPOPOEOPOEOEOEO® ——m—e—>—
Teo q.

Piezoelectric Ceramic

- - -—— -— - -
—_— — — — —— —

+ + + + + + + + + + +
AV R® 3B Tt TR T T T
T

oo 9es

Fig. 2 A permeable crack with remote traction and charge distribution and surface charge distribution at the corner of the crack
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n-[lofl=-T—oy=r., VYo (15)
n-[|D[]=0s—Dy=q.., VY- (16)
whereqs=—0., .

The boundary conditions on the crack surfaces
n-[le]]=0, VY==*h, and |X|<a @a7)
n-[|D|]]J=gs, VYY==hy, and |X|<a (18)
nX[|E[]=0, VY=xh, and [X|sa (19)

take the form
ovAX,thg)=0, V|X|<a (20)
Dv(X,=hg)—D%(X,+£hg)=0, V|X|<a (21)
Ex(X,*ho)—E&(X,*hy)=0, V|X|<a. (22)

The following symmetry conditions will be useful as well,

w(X,00=0, V|X|>a (23)

#(X,00=0, V|X|>a (24)

$*(X,00=0, VO<|X|<a (25)
or

Ex(X,00=0, V|X|>a (26)

E3(X,00=0, VO0<|X|<a. (27)

In the dielectric medium inside the cracRi=e,E> and E?
=— d)f’} ,i=XY.

Separate the displacement and electric potential fields into two
parts: a uniform part due to the remote boundary conditions and a

disturbance part due to the presence of the crack.

w=wy+Ww (28)
$=dot ¢ (29)
and choose
Wo=7xY, ¢o=—E.Y (30)
and
0 =Chgy.—€1E.. (31)
0 =€157.+ €74E (32)

such thatw, ¢—0 asY—x.

It is convenient to write the inverse relationship among key

physical variables on the remote boundary,

1 s
%c:I(EllToc"‘ €150) (33)
I
1 E
Em:A_i (—e157: 1+ Cgi0s), (34)
whereA, :=c,el+e?e.
Extend the definition domain ap? into Q,UQ, and let

~ #?—¢g, Y(X,Y)eQ

= ’ ' (35)

0, V(X,Y)eQq

where the uniform part of the electric potential is the leaky mode,

which is chosen agg:=—q../¢,Y.
Introduce the Fourier cosine transform
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F*(£,Y)= \[ﬂf F(X,Y)cog {X)dX
F(X,Y)= \[WJ F*(£,Y)cod £X)d¢

where F(X,Y)=w(X,Y), ¢>(X,Y), and ¢a(X,Y), andF*(¢Z,Y)

=W*(£,Y), $*(£.Y), and " (£,Y).
The transformed governing equations become

(36)

2

* 2% —
av2 F*+°F (37)
Within the piezoelectric ceramic,
W*(Z,Y)=A(0)exp—LY), VYY>O0 (38)
S*(LY)=B(l)exp(—LY), VY>O0. (39)
Inside the permeable crack,
6% (£,Y)=C({)sin(ZY), VY>0 (40)
which satisfies the symmetry conditi&b?(x,o)=0.
Consider the boundary condition
Ex(X,*=hg)—E&(X,£hg)=0, |X|<a (41)
and the symmetry condition
Ex(X,00=0, |X|>a, (42)
and in the extended domain
E4(X,00=0, |X|>a. (43)
Combining Eqs(41)—(43), one may find that
Ex(X,=h(X))—E3(X,£h(X))=0, V—oo<X<+o
(44)
where functionh(X) is defined in Eq(12).
In transformed space(Y), the condition(44) reads as
E5(L,+h*(0)—EY (L, =h*(0)=0, VO<{<+x (45)
where
sin(a
h*(£)=ho m({ 2 (46)
Considering Eqs(39) and(40), one has
1
B(¢)=C({) 5 (exp(2¢h*(£)) 1)
2
=C(¢)| hgsin(ag)+h3 sirf(ag) + 3 h3sinf(a?)+ ... |.
(47)
Let
A(D)=A1(D+hoAx(O) +hGAS(D) + . .. (48)
B(£)=B1({)+hoBa(§) +hiBs(H)+ . .. . (49)
By virtue of Eq.(47),
B1({)=C({hgsin(ag) (50)
B2(£)=C({)hgsir’(a) (51)
2h
Ba(£)=C(¢) 3~ si(ag) (52)
(53)

After the Fourier transform, the boundary conditi@il) be-
comes
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2 o0
\[; fo H{lesA0) — €2iB(2) Jexpl —hol)

—€oC({)cosh{Zhg)}cog (X)d{=0, VO0<X<a.
(54)

Note the subtlety in terms of crack surface position between Eg.
(45) and Eq.(54). In the physical plane, the upper crack surface is

at Y=hy for |X|<a, whereas in the transformed plan¥,
=h*(¢), 0<¢<w.
Consider the series expansion

[e1sA() — €3B(0) 1=[e1sA1({) — 1+ hol e15A2(¢)
—n1Ba(0) ]+ hi[e1sA3(0) — €11B3({)]
+ ... (55)

(hof)z (ho§)3
2 3!

€11B1({)

exﬂ—h0§)=l—h0§+

(56)

(hot)?
+ 51 +

coshhg)= (57)

Assume that the permittivity constant,, is very small and

Considering the symmetry condition&(X,0)= ¢(X,0)=0,
V|X|>a. Two sets of standard dual integral equations may be

comparable td,. The following asymptotic series integral equa-

tions may be derived:

\/E * s €p d
;Lg e15A1({) — 611+W B1({) (cog¢{X)d{
=0, V0<X<a (58)
2 el
\/;JO {= P([e1sA1(0) — €2B1(D) ]+ {lersAa(d)
—e21Ba({)]}cog{X)d¢=0, YO0<X<a (59)
(60)

In the remainder of this paper, only the first-order approxima-

tion is considered. Moreover, whelm,— 0, sin@) is always

bounded. To render a tractable solution, we adopt the following

average approximation:

hg sin(ad)~hgsin(al)—0

- L w1l
sm(a§)==\[5fo sin(ag)d¢= \@5

The identity(62) is in the sense of a generalized functi@ee
Erddyi et al. [32] or Lighthill [33], p. 33.

(61)

where

(62)

Let
a \/E a
Equation(54) becomes
2 o0
\/; J; {(e1sA(D— (6fl+ €or)B1({))cog(X)d(=0,
Vo<X<a. (64)

The first-order approximation of boundary conditi(0) pro-
vides the additional integral equation

2 o0
\[;fo §(CE4A1(§)+elsBl({))COS{§X)d§=Tx, Vo<X<a.
(65)

Journal of Applied Mechanics

derived;
4 2 0
\[;fo EALQ)cot£X)d=S, [X|<a
B (66)
fOA1(§)00$§X)d§=0, IX|>a
and
2 o0
\/;JO (Bi(Ocost X)de=T, [X|<a
. (67)
fo B1({)cog¢X)d{=0, IX|>a
where
(Efl-i-eor)q'oc
S=——f—— (68)
€157
Ti=—3 (69)
andA =cE (3, + eor) +e%.
Let
A1(§>f\[ 57 (@0 (70)
Bl<§>=\[2 7 1(a0). (71)
Consequently, one may find that
w(x,Y)znyer fg“lJl(al)cos@X)
X exp(— £Y)d¢ (72)
6157'00 *
(X,Y)=—E.Y+ af 1y (ag)cog £X)exp — LY)dE
0
(73)
and
(et en)T. [VaP-X%  [X|<a
W(X'O)_T[o, IX|>a 74)
et [Va?—X3,  |X|<a
#(X,0)= {0’ X|>a (75)

4 Intensity Factors

Let Y=0. The asymptotic fields of both mechanical and electric
variables in front of the crack tip are found as follows:

(eter)r, X (et €l) e
€yz= A X2— g2 Hlre— A
+higher order terms (76)
_ €157 X €157 .
Ey=— A X2—a2+ E.+ A +higher order terms
(77)
"X+ higher order t (78)
Oy = igher order terms
Nl
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D= elsfor T X
A a2

+higher order terms. (79)

e15EOr T Y Fg
* A

+1a

The relevant field intensity factors can be found as follows:

( efl-i- €l ) T\ T

K}, = lim \/Zﬂ(x—a)EYz(X,O):+ (80) 6 .
X—a®
I

(&)
€157 VTa
KE = lim V2m(X—a)Ey(X,00= — ————  (81)
+

A
X—a

Ki = lim 2m(X—a)oyy(X,0)= 7.\ ma (82)

X—at

) elsfor T\ TTaA - . .

KP= |lim V2m(X—a)D X0)=——-"1 83) Fig. 3 J-integral contours for evaluating local and global en-

! ot m( )D¥(X.0) A (83) ergy release rates
Assume that the permittivity inside the crack is very smél,

<hg, or eg—0, we may recover all the results obtained by Zhang

and Hack{17] for a mode III crack. release rate may be defined as any contour intedrakarting at

the center of the lower part of the crack surface and ending at the

K, :irw‘/ﬂa (84) center of upper part of the crack surfa@ee Fig. 3. Therefore,
ny the global energy release rate is the sum of the local energy re-
e lease rate and the contour integral contribution along the crack
KE ==— A_15 r.ma (85) surfaces, ie.,
' Jg=J1+Jes (93)
Ki =722 (86) whereJ. denote the energy release rate contribution from crack
KPu -0 (87) surfaces, which can be calculated by

Let hy=0 and consequently—co. That is, the slit has zero Jo=— | nD¢.,ds
height. The physical interpretation of this limit is that the upper cs s
and lower crack surfaces are constantly in close contact during
fracture process, there is no dielectric medium inside the crack.5.1 Local Energy Release Rate. We first consider the so-

(94)

The intensity factors become calledlocal energy release rateConsider the following electro-
mechanical boundary conditions:
€11
K =C—E4wwa (88) Ovy=Tw, Dy=0Q., VY—oo. (95)
E _ The corresponding local energy release rate of the present per-
KIII =0 (89)

meable crack model is

K =7.Vma (90) 1 ra 7
KD =0. (91) J:\‘EWZE(KmKlyH_KﬁlKﬁl):TP(A(Eff"fo)"‘eisGor)-
This recovers the solution obtained by Yang and Ka4é] for a (96)
zero-height crack in piezoelectric medium. Letting €,=0 in (96), one recovers the result obtained by
Zhang and Hack17], i.e.,

S
ma €

5 Energy Release Rate JuNEW=>7A—MT§- 97)
It is generally believed that energy release ratel]-mtegral, is i

a better criterion for crack growth than stress intensity factors. The| et h =0 orr— in Eq.(96). The result obtained by Yang and
J-integral in a piezoelectric medium is given by Cherepal88],  kao [34] may be recovered,

2

= —o:nu —nD: ma T

J J'F(Hnl (T”nlu]’l n,D,¢,1)dS (92) \]|NEW:> > CE . (98)
44

whereH is the electric enthalpy density. Equation(99) is the purely elastic energy release rate, since there
On the surface of a permeable crack, both the normal comqggno diel(ect)ric med?um i>rllside the craglg '

nent of electric displacement as well as the electric potential are

not zero, consequently, the contribution in the contour intedral, 5.2 Global Energy Release Rate. When a permeable crack
along crack surfaces is not zero. Therefore, for permeable cracgmws, energy release is not only consumed in supplying the sur-
two types ofJ-integrals can be definetbcal energy release rate face energy for newly formed crack surfaces, but also consumed
and global energy release rateThe global energy release rateby supplying the electrostatic energy to the dielectric medium
consists of two parts{l) local energy release ratand (2) the inside the crack. In fact, if the surface charge is absent on the
energy release rate due to interaction between dielectric mediarack surfaces, the normal component of electric displacement in
inside the crack and piezoelectric matrix along crack surfaces. Thiezoelectric medium may be equal to the normal component of
local energy release rate is defined as the contour intelji@bng electric displacement in the dielectric medium inside the crack.
an infinitesimal circle around the crack tip, . The global energy This suggests that the crack surface contribution toJtheegral
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is the part of energy release rate that goes directly into supplyimgpression that the applied electric field will prohibit crack
the electrostatic energy increase in the dielectric medium insideowth. The fallacy of impermeable approximation is that it
the crack. shields, and may even reverse the direction of energy-momentum
If the surface charge is present on crack surfaces, which miyx on the crack surface. The permeable crack model presented in
either enhance or reverse the direction of the energy-moment fltixis paper provides a leaky mode for an electrical field, allowing
an additional energy release rate may be created that will infline applied electric field pass through the dielectric medium inside
ence crack growth process. the crack. An in-depth analysis for a mode | permeable crack is
In order the evaluatd,, we first evaluatel ;. Consider the presented in a recent paper by[Bi7].
normal component of the electric displacement on the crack sur-Based on the asymptotic analysis, a first-order approximation
faces. solution is obtained for a mode Il crack in a permeable environ-
ment. The control parameters of the asymptotic analysis are the
Dv(X,ho)~Dy(X,0) crack heighthg, dielectric permittivity inside the cracleg,, and
the crack widtha.
It has been found that the global energy release rate derived for
a permeable crack is in broad agreement with the known experi-
mental observationg.g.,[11,12)), which is in contrast with the
local energy release rate criterion proposed by Gao ¢1.3|14]
according to the saturation-strip model. Nevertheless, for all prac-
tical purposes, it may be a good estimate that

ow o dP
SISy UGy

elsfor Too

=0 Taf Jy(ag)cog ¢X)d¢
0

1, [X|<a
€560 Tor <J< r J,<J< 1
—Q.— lSAO X . (99) J1<I<dy, or Jg<I<, (105)
1- JY—?Z IX|>a since the actual contour integral may has a path betWgend
a I'y (see Fig. 3
Substituting Eq(99) and Eq.(75) into Eq.(94) yields The global energy release rate derived here may be served as a
_ " " . fracture criterion for piezoelectric materials in general. This con-
Jes=Dv(0,0")(4(0,07) — ¢(0,07)) tribution reconciles the discrepancy between experimental obser-
€01 T\ 26557, vations and' theore_tic anal_yses without i'nvoking any n_onlinear
= Q,— A A (100) theory, and it explains, by rigorous analysis, how an applied elec-
tric field affects crack growth in a piezoelectric ceramic through
Hence the global energy release has the form its interaction with the permeable environment surrounding the
crack.
2
Ta els€ol 4
I: Jgr= (—H (6f1+ €l )+ L( 1-— —) 7'50
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The Bending of Curved Pipes With
v.r.cherniy & \fgriable Wall Thickness

Department of Strength and
Stability of Pipelines,

Scientific Research Institute of Natural Gases A general solution is presented for the in-plane bending of short-radius curved pipes (pipe
and Gas Technologies, bends) which have variable wall thickness. Using the elastic thin-shell theory, the actual

VNIIGAZ, radius of curvature of the pipe’s longitudinal fibers and displacement of the neutral line of
Russian Joint Stock Company “GAZPROM”, the cross section under bending are taken into account. The pipe’s wall thickness is
Moscow 142085, Russia assumed to vary smoothly along the contour of the pipe’s cross section, and is a function

of an angular coordinate. The solution uses the minimization of the total energy, and is
compared to our previous solution for curved pipes with constant wall thickness.
[DOI: 10.1115/1.1546262

Introduction Formulation of Problem

The classical theory for bending of curved pipes was developedFigure 1 shows a curved, circular thin-walled pipe with a center
by von Kaman [1] and by Clark and Reissn¢2]. These works line radius of curvatureR and a mean cross-sectional radius
assumed that the actual curvature of longitudinal fibers of Wnder pure in-plane bending of the pipe by the moméuwishe
curved pipe should not be taken into account, instead, this cunggntral angle) has a changaé. We assume that the pipe wall
ture was considered to be equal to the center line curvature. THigkness is variable and depends on an angular coordhate
assumption leads to an error in results if applied to pipes with a

small radius of curvature. A solution taking the actual curvature of t(B)=(1—ycosp)t y=0. 1)
longitudinal fibers into account was developed by Cheng and . o
Thailer[3,4]. In (1), y represents the wall thickness variability factor. We as-

All investigations of the bending of curved pipes rely on th€Ume that the maximum value ¢fis considerably smaller than 1:
assumption of constant wall thickness along the contour of the
pipe’s cross section. However, the majority of short-radius curved 1%(1+7) 3%1_ @)
pipes are made using a forming process, and, as a result, have r
variable wall thickness along the contour of the pipe’s cross sec-
tion. The pipe wall is thinner than nominal on the convex side arfiEQ- (2) holds then the pipe obeys the assumptions of the theory
is thicker on the concave one. of thin shells. Consequently, we consider the rangey&€0.20.

The problem of in-plane bending of curved short-radius pipghis range ofy matches the tolerances for wall thickness of pipe
bends is solved in the present paper for pipes with variable wBgNds as determined by existing standdsi=[6]).
thickness. The wall thickness is assumed to be a function of thelf we put =0 in (1), we obtain a curved pipe with constant
angular coordinate of the pipe’s cross section. The pipe hasVall thickness:t=const. This pipe is useful for comparison pur-
plane of symmetry, and all aspects of the pipe are symmetric wRRSes. As for our pipe with variable wall thickness, it is only
respect to this plane, including the cross-sectional geometry. TRINS with angular coordinates=* /2 (see(1)) that have wall
actual curvature of longitudinal fibers of a curved pipe and dighickness equal to. _ _ ) _
placement of the neutral line of cross section under bending arg! IS &S0 worth noticing that this curved pipe with vanat;le wall
taken into account. The solution is based on the approach devgickness has the same parameter of curved pipe®tr- as
oped by the present author for pipes with constant wall thickne@8€s & curved pipe with constant wall thicknessn Kaman [1]).
(Cherniy[5]). Relations familiar from the theory of thin elastic!t IS necessary to say that the curved pipes of both types being
shells are used for the displacements, strains, and stresses. pared have identical cross-sectional areas and identical
solution uses the minimization of the total energy in the manner ioments of inertia relative to the axis going through the geomet-
Rayleigh-Ritz. The analysis applies to pipes which are made of §f@! center of pipe cross sectidassuming the wall thickness
isotropic material and have a constant mean cross-sectional radh ation (1))

and a constant curvature of the center line. The obtained result h.?. %ol?tstk?n thcf mlddclje Ilnelof the [él_pe’s c_rl_tl)qssos\?ctlon are
for displacements, strains, and rigidity of these pipes are corr ecified by the radius and angular coordinatg. The ver

. L B . (_Eal axis lies in the plane of the pipe’s axis of curvature and goes
pared to the_ corresponding results for the similar pipes with Coﬁwough the middle-line cross-sectional curvature cefehe
stant wall thickness. : . . : X

L . . . . vFrncaI coordinate of points on the middle line of the cross sec-

The presented solution is very important in terms of its practicgl "o

applications. It presents a useful tool for evaluation of strain an
rigidity of short-radius curved pipes with variable wall thickness
as such pipes frequently arise during manufacture. Besides, it en-
ables the development of new choices of cross sections for curve
pipes allowing for their strength.

y=r cosp. (3)

dI'he deformation of a cross section is accompanied by a radial
displacementsv and tangential displacemenisof points on the
Cormibuted by the Abolied Mechanics Division offE A © cross section’s middle lingrig. 1) as well as by vertical displace-
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF ~ H H _
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ments (parallel to theOY-axis) Wy of the same points. The fol

CHANICS. Manuscript received by the ASME Applied Mechanics Division, oct/owing geometrical formula describes their relationship:

23, 2001; final revision, Sept. 25, 2002. Associate Editor: O. O'Reilly. Discussion

on the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De- Wy =W cosB—uv sing. 4)
partment of Mechanical and Environmental Engineering, University of California—

Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until ff')i,lr . . . L
months after final publication of the paper itself in the ASMBURNAL OF APPLIED urther, we determine the displacements, strains, and rigidity of

MECHANICS. the curved pipe in question.
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strain caused by the flattening of cross-sectional contours of the
curved pipe. It is necessary to point out that the neutral line used
here refers to the bar component of the longitudinal strains.

The rigidity factorK of the curved pipe is determined as the
ratio of the angle change\(), in the straight pipe to the central
angle changéA) in the curved pipe under bending by identical
momentsM:

(A,

Ay

The radial components of displacements are assumed to have a
power series expansion:

™

w=(f<0r2)r§2 X, cosng, (8)

whereX,, are unknown coefficients.

The expression for tangential displacemantsiay be obtained
using the thin-shell theory hypothesis of inextensibility of the
middle surface in the meridional direction:

® w0, 9
ap W= 9)
From (8) and (9), it follows that
v=—(kor? >, n" X, sinng. (10)
n=2
Using (4), (8), and(10), the representatio(b) for longitudinal
strains may be rewritten as
g,=(1+\ cosB)* —(s+cos,8 2 Xawi } (kol),
11)
where
A=r/R, s=s,/r, (12)
L D+ L cogn+1 13
A-A Wy =——cogn-1)B+——cogn+1)p.  (13)
Fig. 1 Bending of a curved circular pipe with variable wall A relative displacement of Fhe ne_u_tra}l liseand _ri_gidity factor
thickness K can be found from the static equilibrium conditions:
N:Ertf (1-ycosB)e,dB=0, (14)
0

Longitudinal Strains

Here, we write down formulas for longitudinal strains and ri- _
gidity factor so that a straight pipe with the same radius of cross M= Ertjo (1= ycosp)eiydp. (15)
sectionr and with constant wall thicknegsis used for compari-
son. Both pipegcurved and straightare assumed to have identi- Using the following formulasee[5])
cal lengths.

In [5], it was shown that the longitudinal strain of any fila- 2m_cosnp —(—1)n 2¢" r N=0123...: r\<L
ment a—a which lies on the median surface of a curved pipe ), 1+A\ cosg a
and has an angular coordingée(see Fig. 1 may be represented (16)
as a sum:
where
1 sn+y( N+ wy, 5) 1
e )

K Ry T Rty e=-(1-V1-33), (A<1), 17)

where
ko=MIEI, (6) a=1-2e, (18)

rand also using14) and(15), we obtain formulas for the relative
displacements of the neutral line and the rigidity factd¢, cor-
respondingly,

andEl, «, are the straight pipe’s rigidity under bending and cu
vature change of the straight pipe, respectivilys rigidity factor
of the curved pipe, and, is the displacement of the neutral line
n—n from the central line of the cross sectiee Fig. L

The first part of formula5) is the so-called “bar” component s=K,
of the longitudinal strains. The second part of form(Bais the Y

1 1«
1+ EKﬁgz cnxn), (19)
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o -1
1r
K= aK”_Eﬁnzz DX,

(20)
The following designations are used (it9) and (20):
1
Cn=(—1)”Fe”‘2[(n+l)+(n—1)e2], (21)
Dn=K2/(K3,Cr=¥l1n), (22)
2e+y(1+€?)
v 2 e) )
1 -1
Ka,= (1+ez—2eK1y)—y(1+ez)K17—§e(3+e2)H )
(24)
Ks,=(1+€%)(1-yKy,) —2eKy,, (25)
e 1
__ 1\ n+1 In—3|
I1n aCn (=1 2an[(n+l)(e +el")
+(n—1)(e""3+e" 1] (26)

Then, we obtain the following formula for the longitudinal
straineq:

g1=(1+X\ cosﬁ)l( akK,,(K1,+cosp)

©

1r

3 R 2, [(En=Dnoosp+W;)X,]

+

} , (27)
where

En:Kly(Cn_Dn)- (28)

The result(27) is used below in the solution of the problem. If
we put y=0 for all the coefficients inf27), we arrive at the ex-
pression for strains which is obtained in pafgrfor curved pipes
with constant wall thickness.

Determination of the Unknown CoefficientsX,,

The coefficientsX,, of the serieg8) are determined through the
minimization of the total energy

V=U-W, (29)
where U is strain energy, andV is the work done by the end
moments.

The strain energy is

J.2

U

2

N181+ M2K2 dF

2
1 2
51 (RY) fo
X[E(1—ycosB)tes+(1—ycosB)®Dk3ldB, (30)
whereN;=(1— vy cosp)tEe; and M,= (1— y cos)°D«, are the

(1+\ cosp)

longitudinal force and bending moment in a meridional direction

accordingly in a curved pipe as in a shd@=Et3/12(1—v?) is
the flexural rigidity of the shell with the constant wall thicknéss
F is the area of the median surface of a curved pipeis the
longitudinal strain,k, is the curvature change of the middle line
of pipe cross section, andis Poisson’s ratio.

To determine the work done by the end moments, we take into

A_w = E i( r (31)
lﬂ’ r K Kol ).
Then, in view 0of(20), we obtain
5 11 <
W=—M*Ag=—2EI(Rp)| aKy,— Eﬁzz Do Xn |-
=
(32)

The curvature change of the middle lirg is determined using
the theory of shells, as in von iKaan’s work, [1],

1/ d?
Kzzfrﬂz W+1 W. (33)
If (8) is taken into account then
ko= ko2, (N?—1)X, cosnp. (34)
n=2

The minimum of the total energy may be obtained in the
Rayleigh-Ritz manner if

Vv
X,
Substituting(30) and (32) into (29), integrating it, and meeting

0.

(35)

the requirement$35), we get an infinite system of linear equa-
tions which describes the unknown coefficients:

anyan+22 apiXi=b,, n=234.... (36)
=

i#n

We used the formulél6) for while integrating(29). The coef-

ficientsa, ,, a,;, and free termsd, in the set of Eq.(36) are
determined by the following expressions:

an,n:4< U:,n—i_

1 3 +1 2| 3 36
570\ 7) 2N T MY O

)
2
3(1-17)

(n?-1)?
*3(1-9)

4
<n2—1><i2—1>h2k21 A Sk »
37)

a,i=4U7 i+

R R
b,= —8?(U§n+ Dn)s—s?Dn.
The following designations are used (87):

U:yn—al[ l,n—2eC.E,—2(1+€e?)C,D,+2E2+4eE,D,

+(1+e*)D2- 'y[lgn—ZDnlln-i- 2(1+e?)Ky, Ed

account the relationship between the central angle of the curved

pipe and the central angle changlis relationship was obtained

in [5]):

Journal of Applied Mechanics

2

2 e 2
—2e| 3+ ——Dil|. (38)
u;i=a1<Am+2(1—2e}<1‘71)EHEi

—(1+€*) (K1, DyEi~CD))

«Y(Bni+2[(1+ez)|<lje]EnEi

1 2
— 58(3+6)DD;~ 13D~ Dyly;f ), (39)
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Fig. 2 Radial displacements distribution; (a) y=0 (solid line ), (b) y=0.1
(dashed line ), (c¢) ¥=0.2 (dotted line )

_ 1
En—sz([2K17+(1+e2)K1y1—4e]En Ayya=— gmﬁ.
3+e? The following designations are used (89):
—y( 5 Dn—2eK1yEn+Iln) ~0,  (40) g desig @)
2n—2 n—1,|(n+l ? 2n+2 n-1\°
1 (n:2) 1 (i:nik) |2n:(1+e ) 1+2me n +(1+e ) ?) ,
Oon= (h+k) = . . 41
an [o (n#2) 1=k [o (i#n+k) (1) (43)
In (38) and (39), the designatiora is used as it was defined in e o on_4 ) ) o2
(18). I3n:—ﬁ([2+(1+e)e” I(n+1)“+(1+e°)(1+e"" %)
The coefficientsA, ., (k=1,4) are determined by the following
expressions: X(n?=1)+[2+(1+e)e?"(n—1)3). (44)
3 The results foD; , E;, |,; are made according to the correspond-
Avyi=A—37|1- 4 YAA=7)|, ing formulas forD,,, E,, I, wheren is replaced with.

There are also formulas for other memberg28):

1 2 2
An="3 YNy +3(N=Y)],

(-~
(42) A= 2 (Kand Ui, (45)
3
A=z Y (A=), (Ka)nx=n—2k+3, (46)
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(Up)pi= (i + 1) eMFi*2k=2) 4 gln=i+2(=1)]) stant wall thickness y=0.1, andy=0.2. In the infinite seried)
) ) eight terms withn=2,9 have been left. To estimate the precise-
+(i—1)|entirak by gin-it2(e2)) (47) ness of the calculations, the change in cross-sectional middle line
2 curvature is use34). A ratio of absolute values of the last term in
(=" E 48 the serie€34) to the first term does not exceed 0.1 percent for the
Bni="Zni “ (Ke)nid Ug)nik (48) presented calculations.
The radial displacements in cross section of the curved pipe are
(Kg)nk=—2(n—1)+(4n—1)k—nk?, (49) presented in Fig. 2. Dimensionless parameter of the radial dis-
(U= (i + 1)[ "1+ (2k=5) 1 gln=i+(2k-3)] placement is obtained froit®):
+(i_1)|-en+i+(2kf3)+e\nfi+(2k75)|J. (50) W )
* —
The infinite system of linear E¢36) was solved by the method we= W N 2 Xn COSNB. (51)
of sections. In the infinite serid8), a finite number of terms was
omitted. Then, the infinite system of linear E§6) was solved as . . . . .
a finite system using Cramer’s Rule. The general relationship of changes in .radlal dlgplacements re-
mains the same for the three valuesyoivhich are given above.
. . However, the increase of displacements in the thinner cross sec-
Results and Discussion

tion zone(at 8~0), as well as the decrease of displacements in the
The results of the solution for curved pipes with variable wathicker zone(at B~m), is observed whery increases. The differ-
thickness are presented below. The diagrams are drawn for #rees in values of the radial displacements for curved pipes with
basic parameters of curved pipe bending. All diagrams are plottearious y are small. The maximum difference is observed when
for curved pipes witth=0.3,\=0.5. The calculations are madethe value of angular coordinafe=. In this case, the difference
for three values of the parametgry=0 (curved pipe with con- is equal to 13%.
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More substantial differences are observed for the longitudin@he top mark in(53) refers to the outer surface of the pipe, and
strains. Figure 3 presents the distributions for the paransétef  the bottom mark refers to the inner surface.

longitudinal strains: Results for the meridional bending straiti=g,/kqr (for the
e outer surface of the pipe’s cross secjiare presented in Fig. 4. In
e} = (52) the same way, the meridional strains increase in the thinner zone
“o and decrease in the thicker zofie comparison with the curved
The longitudinal straire, in (52) is calculated using26). pipe with constant wall thickness

The graphs in Fig. 3 demonstrate that the conitBinne) part  Figure 5 demonstrates the change in the relative values of the
of the cross sectiofunder the bending of curved pipe with vari-pagic parameters of curved pipe depending on the wall thickness

able wall thicknessis deformed more and the concaitbicken 4 vianility factor (7). These parameters describe the stress and
part of the cross section is deformed less when compared with_a,

curved pipe of constant wall thickness. At the extreme points g%rain stgt_e of curve_d pipes. The_ graphs fqr radial _displacements
the cross section3=0 and 8=), even a change in sign for theand merldlgnal strains shovy thglr mamrm(m magnitude vaI-.
values of the longitudinal strain is observed. An increase of t#¥¢S- The diagrams for longitudinal strains present the maximum
neutral line displacement is also observedydacreases. (in magnitude values of longitudinal strains in the concave part of
The meridional bending strains are determined according to therved pipes. The corresponding values of these parameters in the
expression for the curvature change of the middle-line of the crossrved pipe with constant wall thicknegg=0) are used as datum
section(34): values(representing 100%
x The relative displacement of the neutral lis@nd the rigidity
)= ii(l— yCOSB)hL KOFE (n2—1)X, cosnB. (53) factor K are determined according {@9) and(20). The analysis
2 R ™= of the graphs in Fig. 5 reveals that the parametenostly influ-
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ences the neutral line displacements and longitudinal strains. Tbising elastic thin-shell theory, the actual curvature radius of lon-
meridional strains, rigidity factor and radial displacements are leg&udinal fibers of the pipe as well as the displacement of the
influenced byy. neutral line of cross section under bending are taken into account.
The wall thickness variability in short-radius curved pipes is Results are presented for the basic parameters which describe
determined by the technology of pipe production. In the design tife stress and strain state of curved pipes as functions of wall
pipeline systems, this circumstance is considered as a constrilniekness variability factoy. Increasingy considerably influences
tional shortcoming. The analysis of the diagrams in Fig. 5 showtise values of longitudinal strains and displacement of the neutral
that under bending, a curved pipe with variable wall thickness isliae. While, the displacements of points on the middle line of the
somewhat more rational structure than a curved pipe with constandss section, the meridional strains and rigidity of curved pipe
wall thickness. The curved pipe with variable wall thickness hasder bending are influenced to a lesser extent.
substantially smaller longitudinal strains while its rigidity is in-
creasing insignificantly. References
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The general solution is presented for in-plane bending of shortfe) AsME B16.28. Wrought Steel Butt-Welding Short Radius Elbows and
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Green’s Functions for Infinite
2-0.creng | AN Semi-infinite Anisotropic
== 2 Thin Plates

Distﬂéutlh;dﬁgfgsgovr’ This paper presents fundamental solutions of an anisotropic elastic thin plate within the

Fellow ASME context of the Kirchhoff theory. The plate material is inhomogeneous in the thickness

direction. Two systems of problems with non-self-equilibrated loads are solved. The first is

Department of Mechanical Enginesring, concerned with in-plane concentrated forces and moments and in-plane discontinuous
Texas A&M University, displacements and slopes, and the second with transverse concentrated forces. Exact

College Station, TX 77843-3123 closed-form Green’s functions for infinite and semi-infinite plates are obtained using the
recently established octet formalism by the authors for coupled stretching and bending

deformations of a plate. The Green functions for an infinite plate and the surface Green

functions for a semi-infinite plate are presented in a real form. The hoop stress resultants

are also presented in a real form for a semi-infinite plgt®Ol: 10.1115/1.1533806
Introduction kharov and Beckel6], we are able to show that our fundamental

A plate is one of the most common tvpe of structural elemen olution also satisfies the system of equations defined therein. This
p . ) o yp . : S helpful for clarifying the equivalency of the solutions to two
encountered in mechanical, civil, and aerospace engineering str Stems of problems that are posed differently. The solutions for

tures. Among numerous existing two-dimensional theories fQr ™.~ . = o .
modeling deformations of a thin plate element, the Kirchhoff plat%n infinitely plate are modified to give new exact fundamental

theory is the most classic and celebrated model in which a tra Olutions for a semi-infinite plate with a rigidly clamped edge or a
y - ) a tralySse edge. The surface Green’s functions are obtained in a special
verse normal before deformation remains normal to the midplal

- i Plag&se. Using some elegant properties established in the formalism,
of the plate during deformatiofil-3]. In many cases stretchlng_the Green functions for infinite plates, surface Green functions

f‘nd. betn((jjlnglj (:efortmhatlons are tcpulpled, an important example 3kt hoop stress resultants for a semi-infinite plate are converted
amina e, plate with unsymmetric ay-up]. . . into a real and closed form without solving for the eigenvalues
Green's functions are useful, for example, in constructing g,y eigenvectors. Unlike the previous wofi-7], that were de-
general solution and in boundary element and boundary integfali,heq only for an infinite plate made of a nondegenerate mate-
equation methods. Study on Green’s functions has been one of t § the present real form results apply to plates made of a degen-

important topics in structural mechanics. The complex functi_o&,ate material as discussed in REF3], including an isotropic
method was used to study the fundamental solutions for anisQzierial as well.

tropic laminates with coupled bending and stretching under con-

centrated loadd5,6], and under discontinuous in-plane displaceqctet Formulation for Anisotropic Thin Plates

ments and slopegy7], respectively. Their studies considered an ) . ) . .

infinitely extended plate and the solutions were given in a com- N this section, we first recapitulate the basic Kirchhoff plate
plex form and needed further numerical evaluations. theory and the new formalism for an anisotropic plate. Let an

Based on the work of Eshelby et &&], Stroh[9,10] developed undeformed plate of uniform thicknessbe considered in a Car-
a sextic formalism for generalized plane-strain deformations of &fian coordinate syster;} (i=1,2,3) and its midplane is at
anisotropic elastic material. The Stroh formalism is mathematfz=0: The plate is composed of an anisotropic, linearly elastic

cally elegant and technically power. Tifg1,12 has made an material that can be inhomogeneous in the thickness direction.
extensive review of the Stroh sextic formalism and its applica:ccerdingly, it includes the important special cases of laminated

tions. Recently, a new octet formalism has been proposed Wss-ply and angle-ply plates. A comma followed by a subscript

Cheng and Redd13] for the Kirchhoff anisotropic plates. This i‘;‘? gdeexn(i)rtssmtehse Sﬁlr(teisaé %‘iﬁgfw;’; V;Egcﬁﬁzzecstfﬁmg tirggeg\tg: the
formalism symbolically preserves extensive elegant properties a fge of the index with Greek indices ranging from 1 to 2,

identities that have been established in the Stroh sextic formalisifi’ L L
As one of powerful applications of the new octet formalism f%?wercase Latin indices from 1 to 3, and uppercase Latin indices

an anisotropic thin plate, the problem of Green’s functions is a om 1 t(.) 4. iy . .
dressed in t?ﬂs invegtigation. Es was dond5t6], the problem is The displacement field in the Kirchhoff plate theory is assumed

first classified into three systems according to the types of co 3
centrated loads and discontinuous displacements and slopes. We Uy (X)=U,+ X3, Us(X)=W, (1)
then define the three systems of problems in terms of stress fun(‘h-

tions. The first two are solved for an infinite plate by using th&Neréu., wandd,=—w, are independent ofs. The strain and

new formalism. Although the second system of problem we ha?d©SS components are obtained from

defined is different from the one defined by Beckg} and Za ea[;:%(ua,/j-‘ruﬁ,a)l Tap=Capupup )
Contributed by the Applied Mechanics Division ofi AMERICAN SocieTy oF ~ Where the reduced elasticity tensor is

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ~

CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 29, 2002; Caﬁm,,: Caﬁw,,— Caﬁ33C33mp/C3333- (3)
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should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmenteéhe membrane stress resultam'gﬁ, bending moments\,,4,

Mechanics and Environmental Engineering, University of California—Santa Barba@nd transverse shearing forcBg are defined by
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“with the integral operator
9 P 7zl:_ %ww,wzv RZZ%ww,wl1 (1&)

hi2
Q("')ZJ (-+-)dxs. %) Vi= =05, Vo= 111, (16d)

e wheree .z is the two-dimensional permutation tensor. Thus all of
The modified Kirchhoff transverse shearing forces that exclthe stress resultants can be obtained by differentiating the four
sively apply to free edges are stress functions with respect xg, .
In terms of(8) and(15), we can define the generalized displace-

VisRit Muza, Vo= Rot Mo ) ment vector and the stress function vector as
In the absence of external loads on the top and bottom surfaces u
of the plate, the equilibrium equations are given by ul #1
_ 2| _ _| P2 _
Naﬁ,ﬁzov RB,BZO' (7) u= ﬁl —af(z), (ﬁf ‘/’l —bf(Z), (17)
If the displacements on the midplane of the plate are assumed in D! 2
the following form in which a andb are eigenvectors defined Hy,3],
u,=a,f(2), w=—a3J f(z)dz, ®) a by
_| 82|, po| P2 18)
wheref is an arbitrary function ok=x,+px,, andp anda; are a= az |’ " | bs (
unknown constants to be determined, the equilibrium equations in a, b,

(7) can be reduced t¢13], Because there are four pairs of complex conjugatespfothe

oc ox,Cp 1] & 0 associated eigenvectors are also four pairs of complex conjugates.
~ ~ || ay|=| 0] (9) We denote
PTOXC P OX5CH 0 — a2 b.
Pk+a=Pk, (IMpe>0), axia=ak, bria=bg,
where (K=1,2,3,9, (19)
p'=[1 p], C=Q+p(R+R")+p?T, (10)  where Im refers to the imaginary part and the overbar denotes the
the components of thex22 matricesQ, R, andT are complex conjugate. Iy (K=1,2,3,4) are distinct, the general

B ~ _ - _ _ solution for the generalized displacements and stress functions are
Qu0=Cuatoi> Ruo=Cuainz: Taw=Caruz- (11) obtained by superposing eight solutions of the fdf) as

(3 and T are symmetric and positive definite. For a nontrivial o o
solution of[a; a, as]", the vanishing determinant of the coeffi- u= > {acfu(z) +acfrea(zo)},
cient matrix of(9) provides four pairs of complex conjugates for K=1

4

the eigenvalug. 4 .
Let us introduce =2 {bef(zd) +bfy 4@}, (20)
_Ja)] . Jag] -~ [bg bs il
a= ,a= ) = ) = , (12)  wherefy andfy 4 are eight arbitrary functions of their arguments
a, ay b, b, .
andzg=x;+pgX,. For a given boundary value problem, the un-
such that known functionsfy(zx) and fy, 4(zx) remain to be sought to

satisfy the given boundary conditions.

QAQ+pR)  AxX3(Q+PpR) a (13) Equations(13a,b) and (14) can be reduced to the following

I

Q(ﬁTﬂﬁ—) QXS(’F}TJFp?) a standard eigenrelation
. 10 o o N&=pé, (21)
TPEFlcl| [ 9xs(Q+pR)  QG(Q+PR) 1A where
b— (C) Qxa(RT+pT)  Q(RT+pT) 1] [Nl N, a
N= , =] 22
(130) Ny Nj b (22)
with N is real and called as tifandamental elastic plate matrir Ref.
L - [13]; N, and N3 are symmetric. By denoting
= , = > (by+phy)= 5p'b. 14
fa7Pas. c=2(batPhy= 2P o A=lay a a a), B=[by b, bs b, (23)

The first and second equilibrium equationg® are thus satisfied

in terms of(13a) and the third is satisfied bl 3b). We now have the orthogenalityrelations of the formalism are

seven new relationg13ab) with four additional unknowns BTA+ATB=1=BTA+ATB, (24a)
bk (K=1,2,3,4) in replacement of the three equilibrium . B B -
equations. B'"A+ATB=0=BTA+ATB. (240)
Furthermore, four stress functions are defined by . .
The closurerelations of the formalism are
«=Dbof(2),  P=bi2f(2). 15 _ _
_ ¢ ( (’//, sl (1) ABT+ABT=1=BAT+BAT, (253)
Equations(4) and(6) can be rewritten as o o
AAT+AAT=0=BB"+BB". 250
Nalz_(Poz,Zl NQZZ(PQ,ll (163.) ( )

. L It is clear from(25a) that the real part of BT is | and from
M= =Yoo= 381001 Maz=¥a1— 3€a2¥o.w (250b) that bothAAT and BBT are purely imaginary. Hence, the
(16b) following three real matrice§, H, andL can be defined as
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S=i(2ABT-1), H=2iAAT, L=-2iBB". (26)

Their counterparts in Stroh's sextic formalism for generalizeg

plane strain elasticity are called the Barnett-Lothe tendd#,

whether they are equivalent to the original problem. The first sys-
'Fim of problem consists of Eq$33), (35), (36), (38), and (40),

An indirect proof will be given in Section 6 thad andL are ub,p=0, ¢Y,r=dL), (41)
positive definite matrices. Thus andB are nonsingular matrices. while the second system of problem results from &),
Green’s Functions for an Infinite Plate U?|,p=0, ¢?|,p=x,D?, (42)
Assume that the concentrated foroﬁ"s and concentrated mo- where we have used the notations
ments M; are applied at the origin of the Cartesian coordinate N I
system. The force and moment equilibrium conditions of an arbi- U1 N 0
trary plane subregion of the plate enclosing the origin require that ~ | U2 2 (1) N, 2(2)_
U= ¢H= ~ , dY=| -~ (43)
) b, ’ e
Na+ %Naﬁnﬁdszo, (27) 192 —Ml 0
r
The third system of problem contaif®7) and(39). However, the
° _ two conditions are not sufficient for a complete solution of the
Na+ iRﬂnads—O, (28) third problem. It is of a higher-order singularity and needs addi-
tional knowledge of double forces and double moments to give a
~ B complete solution. We will not study it in this work.
M= FMZanadS+ FRa“aXZdS_O* (29) The eight arbitrary functions if20) are assumed to have the
same function form as
St 3§M1anads— fﬁnanaxlds:o, 30) fWz0=fz0ak, fera@O=1E0G,  (44)
: : whereqy are arbitrary complex constants. Thi@8) can be writ-
- é N N q 31) ten in a real form as
M3+ ( 2aX17 1ax2)na s=0, 31
r u=2 ReA(f(z,))at, #=2ReB(f(z,))a},  (45)
wheres is the arc-length measured along the contBuand the where(f(z,)) is the diagonal matrix given by
enclosed material lies on the left-hand side while increasiiife :
o (f(z))=diadf(z) f(z) f(z9) f(z)].  (46)

components of the unit outward normal vector to the curve are
When replacingy by —iq, (45) leads to the alternate form

_dxz B dxy
M=gs M=~ s (32) u=2Im{A(f(z,))a}, =2 Im{B(f(z,))a}.  (47)
Denote (--)|, as a jump in- --) when moving along the curve I the polar coordinate system
I' counterclockwise from one point to the same point. Substituting X;=I COSH, X,=rsing, (48)

(16a,b,c) and(32) into (27)—(31) yields . . . . L .
R the function Inz is a multivalued function which increases its

Colar=Ng, (33) value by 2ri each timed increases by 2 in the x;Ox,-plane. In
1 ~ order for the multivalued function to maintain a unique value, we
2 Yo.ular=Ns, (34) introduce a branch cut along the negatkyeaxis so that the range
1 - 35 of ¢is limited to —7<@=<. The function Iz is now continuous
(2= 2 %0000 lr= N G5 in the x,0x%, plane except across the negatiseaxis. Because
(1= 3%y, )| =M, (36) Inz=Inr+im, atf==m, (49)
(XoX o= X)or=Ms, (37) we have
where x in (37) is the Airy function defined byp;=—x, and (Inz)|,p=2mi. (50)

@,=x4 in order to satisfyN,;=Ny,, i.e., ¢11+ ¢,,=0. Note . ) .
that if the concentrated loads are not applied at the origin, sayingThe solution for the first system of problem is assumed as

xg, Egs.(29)—(31) and(35—(37) must be modified to replace,

1 1
by x,—x. ut=—Im{A(Inz,)q}, $P=—Im{B(Inz,)q"}.

Assume that there are jumps in in-plane displacements of mag- (51)
nitudgﬁa, in deflection of magnitudev, and in slopes of magni- Substitution of(51) into (41) gives
tude 9, , of the midplane of the plate across the negaxyuxis. K .
The physical meaning o, represents a plastic hing5]. The 2RgAqM)=U, 2RgBq)=®", (52)
discontinuous in-plane displacements and deflection are analoggps
to the edge dislocation and screw dislocation in a three- . A
dimensional solid, wheré, and W are the components of the A Allg® U
corresponding Burgers vector. If-¢)| ;- is designated as a jump B Bllq? o0 (53)
across the negative;-axis, we have B
Uylor=0,, (38) Use of the orthogonality reIaTtlor(QTé_la,b) leads to
R @1 [BT AT|[ (J
W, r=w, 39 ar|_ U
lor R (39) a(l)}* BT AT [(i)(l) , (54)
19ozlz')l“: ﬁa . (40) or ’
The original problem for finding Green'’s functions can be sepa- . .
rated into three systems of problems. We will examine later qP=AT®dV +BTU. (55)
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Therefore, the solution for the first system of problédl) is solution for the second system of problem. Although E@®)
given by substituting55) into (51) as were not explicitly shown to be valid in Ref&,6] we have dem-

T oA onstrated herein that the soluti¢d9) for Egs.(42) is also a so-
u® ilm A(inz,)B" A(inz)AT|[ U (s6) ution for (68). This provides a clear explanation of the equiva-
¢V 7 | B(Inz, )BT B(Inz,)AT|| @D lency of the two approaches for finding Green’s function. Because

- . a
Similarly, we assume the solution for the second system gf
problem to be of the form

Green function is a particular solution for a differential equation,
e present Green function is not necessarily the same as that
given in Refs[5,6] and the difference would be the homogeneous
1 1 solution for the differential equation.
u@==Im{A(z, Inz,)q?}, ¢P==Im{B(z, Inz,)q?}. The Green functions given in Ref§5,6] for concentrated
m m 57 forces and moments and in Ré¢f] for discontinuous in-plane
(57) displacements and slopes, respectively, appeared to be in an ana-
The conditiong42) are used to give lytical complex form and required numerical calculations. By con-
(2) AT&(2) trast,_ with the help _of the octet formalisiii, 3], our fundamental
qo=A'®", (58)  solutions are given in an exact closed form. Moreover, the present
and thus, Green’s functions can be converted into a real form and there is no
need for the calculation of the eigenvalues and eigenvectors.

(2) T
u“l 1 Az, Inz AT - 2) In terms of(43); and (65), we have
¢(2) = ; Im B<Z* In Z*>AT D', (59) 0 0
Because we are not studying the third system of problem, the (X1l +xoN)| gy2)| = (Xyia+ Xaia) Na|" (69)

total solution is obtained by superposit&f) and(59), i.e.,
According to Eq.(A27) in the Appendix, the fundamental solu-

u u® u®@ ) :
_ + . (60) tions (56) and(59) can be rewritten as
¢ l¢] "o .
(1) ~ ~
Now we need to check wheth€33)—(40) are satisfied upon set- u(l) S 2—{(In N+ WN(@)}N[ AL(Jl)}, (70)
ting M3=0 andw=0. In terms of(50), (56), (59), and(60), we 4 m b
have u@ _ _
=—— + . NN
ull _, RE{ABT AAT U } ¢ g IO+ NN (x1|3+x2|4)1\/'J’ (1)
Pl BBT BAT||®dV+x,®? | where K_l(e) and N are defined by(A22) and (A26) in the
u, i R%AAT e - Appendix.
¢’1 ,7[*_ BAT ’
and furthermore, using the closure relati¢@Sa,b), Green’s Functions for a Semi-Infinite Plate
u [ u } U [ 0 } 6 In the Kirchhoff plate theory, the boundary condition for a rig-
S| - E A XC) C PPN B P (62) idly clamped edge at,=0 is given by
From Eq.(21), we may obtain up=0, u;=0, w=0, ¥,=0, (72)
u, u, which give
CI=N| (63)
P b, u=0, atx,=0. (73)
and thus, using22), and(62),, The boundary condition for a free edgexat=0 is given by
;2 = m% (Ap(z) (64) N]_z:O, NZZZO, VZ:O, MZZZO, (74)
2
- ! which reduce to[13],
As shown in(A8) in the Appendix that
T $=0, atx,=0. (75)
(NZ)K3:01 (Nl)K3:5K4l (K:1!213141 (65) . . v e . . .
Having found the Green functions for an infinite anisotropic
thus we have plate, now we are able to modify them to give the Green functions
u 0 for a semi-infinite anisotropic plate. The approach is similar to
2=l AL (66) that for finding the Green functions for an anisotropic elastic half-
Dol LiaN3 space[11,16].
where the following notations are adopted: The semi-infinite anisotropic plate is locatedxat>0, and the
_ ) concentrated forces, moments and discontinuous displacements
i;=[0 010, i,=[000 1. (67) and slopes are located at
It is easily seen, according t@3), (62), and (66), that Egs. (X,X,)=(0d), d>0. (76)

(33)-(40) are satisfied by the solutiof60) provided thatMs; i o
=0 and W=0. Moreover, the following conditions are also In correspondence to the first system of problem for an infinite
satisfied: plate, we assume the solution for the semi-infinite plate as

ua,B'dF 0, W,aﬁ’|dr 0. (68) u(l):;Im{A(In(Z*—p*d)>q<1)}

They are nothing but the single-valued conditions for three plane
strains and three curvatures on the midplane and for the rotation 1 4
angle about the-axis. Instead 0f42), the seven condition&8) +ZIm E {A(In(z, —p,d))qsH}, (773)
as well as(28) have been used in Reffs,6] for obtaining the K= |
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1 N T 0
@Y =—Im{B(In(z, —p,d))q*'} Ao 0
M =—¢ot| o |=Potlusda, (87a)
1 4 11
+=1Im >, {B(In(z, ~p,d)HasP},  (77) 2Ma ] Y11
oo 1 1 11T
hereq® is given by (55 and (Y (J=1,2,3.4 ‘ {Rl _ |2 2 [l//mz:_ 2 2 {!13_115,12 (87)
whereg® is given by and gy’ (J=1,2,3,4) are unknown W o 1)l o 1llifdn

vectors to be determined. The second term on the right-hand side
of (77a) or (77b) represents four image singularities because thgherel ;5 is a 4<4 matrix whose elements aré, £y, = Sx45.3

singularity points are located on the lower-half plane. and the notation&7) have been used. Furthermore, with the help
Consider first the rigidly clamped edge »at=0. Substituting of (22); and(63),
(77a) into (73) leads to

4 Nll
Im{A(In(x, =y d))a -+ Im X, {A(In(x —Pyd))a =0, j\ffl == Naliz+ (e~ N bz, (88a)
(78) 2May
Using the equalities B B {Rl - % % [.ig[Ng NI] U,11_
Im{A(In(xl—p*d)>q<1)}=—Im{A(In(Xl_p*d»a(l)}’gga Vi 0 1|lialNs NIINJ 1, (880)

For a semi-infinite plate with a rigidly clamped edgexat=0,

. 4 o (73) is used to give
(0 =P, d)) =2, In(xy=Pyd)l, (7%) N
J=1 11
. . N,
in which lell = (145~ NJ) ¢ 1(x1,0), (8%)
I,=diad 1,0,0,d, I,=diad0,1,0,0, (80) 2 M, |
l,=diagd 0,0,1,0, I,=diad0,0,0,1, R, - 11 iTNT b0 (BD)
Eq. (78) reduces to vy 0 1|li5(NgNo+NINT) |PatXe0)-
4 . — For a semi-infinite plate with a free edgexat=0, (75) is used to
Im X, In(4—pyd){~AlLGY+AQS"}=0,  (81) give
J=1
which gives xﬂ
. 21 | _
g =A"1AI gL, 82) My | N3U 1(X1,0), (9Ga)
If the boundaryx,=0 is free, i.e.,(75), following the same 2Mz
procedure gives R 101 iT™N
_ 1}:_ 2 2 [ 3N3 U 14(%,,0) (90b)
oyt =B""Bl,q™. (83) Vi]7 o 1]l1a(NaNp+NINg) |87
Similarly, we can construct the solution for the second systemit is seen from(89a,b) and (90a,b) that the first and second
of problem of a semi-infinite plate as derivatives of¢(x4,0) andu(x4,0) with respect tok, are needed
1 for calculating the hoop stress resultants. We now derive these
@="ImiA —p.d)l —p.d))a@ expressions at the boundaty= 0. Using the procedure similar to
u T M{A((Z, =P d)In(z, =P, d))a™} (79a,b), the solution(77b) at x,=0 for a clamped semi-infinite
4 plate can be reduced to

1
=1 A{(z, —pyd)In(z, —pyd))a}, (844 —
M 2 1Az “padinGz, “pid)d, (24 0,01 = = Im{(BA~L-BA HA(In(x,~p, d))q V).

(91)
The following identities can be derived fro@4a,b) and (26)
1 4 —iBAl=H 14+iH™!s iAB l=L"1-isL™l (92)
_ —-n. _n. (2)
+ T |m;1 {B((z, = psd)In(z, —p,d))a;™, With (92);, Eq. (92) is rewritten as

¢<”=%|m{s<<z*—p*dnn(z*—p*d»q(”}

2
(840) #V0,0 =~ H LRA(NG,—p, AV}, (93)
where, for the rigidly clamped edge »t=0, m

or, in a real form,

ay? =ATALG™), (85) .
and, for the free edge a,=0, Y (x,00=H"?* ;(Inf)0+5(b)0+ H(ODDV |, (94)
qSZ): BilBlJaQ)' (86) where
The hoop membrane stress resultants, bending moments, and F cosg=x,, fsing=—d, (95)
transverse shear forces at the edge O are of particular interest.
In terms of(16a—d), we have and use have been made(66) and (A27) in the Appendix.
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In a same way, we can write the generalized displacement vec- 1 - .
tor atx,=0 in a real form for the first system of problem of a uPM==Im{A(Inz, }(AT+BBAN)}®Y,  (104)
semi-infinite plate with a free edge & =0. The result can be .
written, together with(94), in a compact form

HoV(x,00] 1 ~~ U
_Lu(l)(x 0) =—{(InT)I+7N(6)} ey . . .

1 ™ Using the closure relatior{25a) and Eg. (26);, the solution
The expressions for the second system of problem are similafkQ4a,b) can be rewritten as

¢(l):%|m{B<|n Z*>(AT+ B*la-r)}(i)(l)’ (104))

. (98)

given as ,
(2) ub=— —ReA(Inz )BT}L—l(i)u) (105)
He?0,0 ] 1, o < - 0 - A ,
—Lu@(xq,0| = 7 LINOTE TN (i i) A i
(97) ¢(1): _ _Re{B<|n Z*>BT}Lfl(i)(l). (1053)
Using the relation T
9 ~ad sing g oo Similarly, from (58) and (86),
a—xl—cosﬁﬁ_ Y (98) q=ATd?, 4P =B 1BI,q?. (106)
i 27 & ey 19 1 & The solution given in84a,b) reduces to
W{—CO 0W+SI a?a—f‘Ff—z;@—z , A
@=—— T~ 1p(2)
a1 1 @ u —Re{A(z, Inz,)BjL @', (107a)
+sin20| x5 —~— = ——|, (98h)
90 I Jro6 N > ] e
we can derive the first and second derivative$9®) with respect ¢7=- P Re(B(z, Inz,)B}L @~ (107)

to x;. The detailed derivation is omitted for brevity, only final ) ) ) )
results are given as follows: Using Eq.(A24) in the Appendix, the solution§l05,b) and

(107a,b) can be converted into a real form as

Heli'(x,0) | 1 {cosdl sinAaN(b)}{ v } (99) 1
_ (1) == - - .
LU,j_ (Xl,O) ar (I)(l) (L;((]i)) _| - ;(In I’)l _S(e) L—l(i)(l)' (108)
HOL 060 | 1 i sindNG : L)
1 " ~ A~ 0 U(Z) — *—(|nl’)|*5(t9) -15(2)
+ —{(nf)! +7TN(0)}[i3NJ. (100) [¢<2> Xl XN L™@™. (109)

L(0)

H'1(x1,0
—Lu f%]).(xl!o)

=— W—lfz [ cos 201 — d—d;;(sin2 @N(b))] [(i,l(Jn}- Strain Energy
(101) The _stra_in energy for a classical anisotropic thin plate on the
areaA is given by
H ¢! F(x1,0)
—Lu'f)(x,,0)

1 od ..
=— W{COS 201 — Eg(smz ON( 0))] U= % J'A(Naﬁe2B+MaBK2B)dA’ (110)

0 - A A .
x| . oA }Jr i{cosalfsin 6N(6)} where the components of the plane strain and curvature on the
(Xqig—dig ) N3| 7T midplane are
0 1
. isN3]’ (102) egﬁzz(ua,ﬁ+ Ug,a)s Kgﬁ:*W,aB. (111)

With these expressions, the hoop stress resultédfia,b) and

(90a,b) are readily obtained in a real form. Once again, one mulsrltegrating (110 by parts and using the equilibrium Eqer)

keep in mind that the stress function vector and the generaliz%'((iﬂdS
displacement vector given i{96), (97), and(99)—(102) are for a 1
semi-infinite plate with a rigidly clamped edge and a free edge, U= > § (NopUpt Mg, +Rewingds, (112)
respectively. r
wherel is the contour of the are& on thex; Ox,-plane anch is
its unit outward normal vector. The strain energy can be rewritten,
Surface Green'’s Functions for a Semi-Infinite Plate after substitution of16a—c), as
Let a semi-infinite anisotropic plate is locatedxat-0, and the 1 1
concentrated forces and moments are applied at the origin of the U=-5 g Uadeot dodifat 5d(Wih, ) 1. (113)

Cartesian coordinate system. The edge=0 is otherwise
traction-free. The surface Green functions can be reduced fromeor the annulus region<Or,<r<r, shown in Fig. 1, con-
the solutions for a semi-infinite plate by taking=0 andd=0. gjsts of two circles of radir, andr, and the lines above and

From (55) and(83), below the branch cut on the negatixg-axis betweern =r, and
(1)— ATEH(D) (D_p-1g| g r,. The generalized displacement vector and stress function vec-
q AT, a7 =B TBLG (103) tor are continuous insidE. Thus the strain energy can be reduced
The solution given in77a,b) reduces to to
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X2 Appendix

A Fundamental Elastic Plate Matrix. The standard eigenrela-
tion in the Cartesian coordinate systér} is
Né=pé, (A1)
where,[13],
N=(Y1+Yo) H(Xi+Xp), &= ], (A2)
with
-Q O R 1
E g Tl o) A3)
alayg Flgs alyz — 31y
X2: 1 ’ = 1 ’ (A'4)
Blaa — 3l Blsz 3 134
Qé sté Q’Fi st’l:i
Fig. 1 Geometry and coordinate system used Qx36 Qx%é ' Qx;li ngﬁ ’
QT— st?
= . Tl (A5)
OxzT  Ox5T

1 1
U=-3 fﬁ u'de, or U= 5 fﬁ ¢'du. (114)
r r andl s, la4, 143, andl,, are 4X4 matrices whose elements are

The calculation of the strain energy for an infinite anisotropic
plate is basedAon the solutions given(@®) and(71). For the case
of vanishing 3, only solution in(70) for the first system of (lag)kL= kb3,  (ladkL= SkadLa- (A6)
problem is needed. This solution is symbolically the same as the : 4 i }
counterpart of the generalized plane-strain elastifity,17,18. Flzacvhb:niz:tsgy shown that boly +X; and,+Y are revers
We do not duplicate the detailed calculation but give the final? The foIIowing equations are resulted fro@2), :

result as
(Y1t Yk (N) 7= X1+ Xo)k7, (K,L=1,...,8. (A7)

1 ot A a
= 1nl 22 (pW D47
U= In( )(q; H®=+U'LU). (115) We may view(A7) as a set of linear equations with respect to the

A \r
. t . . ) eight unknowns I{) ;. We do not have to solve the set of equa-
The strain energy caused lyis obtained from the integrals on tjon put can easily confirm that

two lines above and below the branch cut, while the strain energy
caused by is obtained from the integrals on the two circles. (N)L7= L8 (A8)

Equation(115 shows that there is no interaction of streyn eNergis 4 solution of(A7) in view of (A3) and(Ad). Becauser;+Y, is
betweerlJ and®V). As used by Ref|18], Eq.(115) also gives an nonsingular whenr+ 3, the set of Eqs(A7) have a unique solu-
indirect proof for the plate case thét andL must be positive tion for (N),,, which is (A8).
definite if the strain energy is positive.

If U is only concerned, then the integrals on the two circles
contribute zero strain energy. This point was not provable in Ref. Fundamental Elastic Plate Matrix in a Rotated Coordinate
[7] analytically but confirmed in their numerical evaluation for &ystem. Consider a rotated coordinate systgx{i}, obtained by

(I39)kL= Ok3dLss  (l3a)kL= Sk3OLa,

)

specific example. R rotating an angle aboutxs-axis, i.e.,
For the case of the addition of the transverse fo¥ge it seems .
o . . N2 S cosf  sing
there is interaction of strain energy betwegn®d'~), and.\; for XE=QopXg, = . . (A9)
an infinite anisotropic plate. “ —sinf cosé

. Denotingn andm as the unit vectors along the positixg¢ and
Conclusions x5 -axes, we have

This work has presented an application of the new formalism
for anisotropic thin plates. The exact Green functions for an infi-
nite plate and surface Green functions for a semi-infinite plate the standard eigenrelation in a rotated coordinate sy§h
have been given in a real form. The exact fundamental solutioggn be derived as
for a semi-infinite plate with a clamped or free edge are also
obtained by modifying the solutions for an infinite plate. The hoop N(0)&é=p(0)&, (A11)
stress resultants are presented in a real form. An indirect proof that
H andL are positive definite matrices is provided under consid¥"ere

n'=[cos# sing], m'=[—sind cosh]. (A10)

eration of the strain energy. _ pcosf—sind "
P(6)= p sin 6+ cosé’ (A12)
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—Q(
Xl(e):{

0)
-R(o) 1]

(
Ylw):h(&)

I
0} . (Al4)

Xo(0)=0TX,0, Y,(0)=0TY,0, ©=dadQ,Q 0 Q].

[ 0Q(6)
_sté(ﬁ)
[ OR(6)
| OxsR(0)
[ QT(8)

Q(6)=
R(6)=
T(6)=
and
{ Q6 R(O)
RT(6) T(6)
or

| Ox3T(6)

cosol
—singl

cosol
sin ol

0%3Q(0)]

9x%Q(0) |’

stﬁ( 0)—

OER() |’

st?( 9)-

QET(0)]’

sin 6l
cosol

—sindl
cosdol

(A15)

(A16)

—1 0

(A17)

éaw( O)ZEaﬁwpanp ' ﬁaw( 0):aaﬁwpnﬁmp )

Tou(0)=C

aBwp

mgm, .

(A18)

Identities Converting A, B, and f(z) Into Real Matrices.

From (Al), we have

(X1l +XN) &= (X1 + pXo) §= 2§,

and thus,

(Xl +x,N)"E=Z"E.
Integrating(A11) with respect tof yields

7N(8)&=In(cosh+psin )&= (Inz—Inr)é,

1 (6
—f N(6)déo.
T Jo

where

N(@)s[

S(6)
—L(6)

In terms of(A21), we have
((Int)l+7N(8))5E= (In 2)SE,
Combining(A20) and (A23) for p=p;, p», P3, P4 gives

Azl (Inz,)
B(z}(Inz,)

S> BT
s> BT

H(0)
s(0)

A(Z) (Inz,)%)AT
B(z] (Inz,)%)AT

(A19)

(A20)

(A21)

(A22)

(A23)

= L (5,1 +3,N)"(In 1)1+ 7N(0)15(1 —iN),

Journal of Applied Mechanics

(A24)

and use has been made of the following identity:

ABT AAT] 1 _
BeT paT| 27N (A25)
where
-~ [ s H

BecauseN andN(6) share the same eigenvectors, they are com-
mutative matrices. So afd, N(6), andN. Sometimes, it is con-
venient to use an alternative form @424) as

A(Z}(Inz, )BT
B(z} (Inz,)%BT

A(Z0 (Inz, )S)AT
B(z} (Inz,)%)AT

= L1an )1+ 7N(0) 131 —iN) (1] + XN)™.
(A27)
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An Acoustic-Microwave Method
for the Study of the Mechanical
c.sacon | INfluence of Moisture Content in
E. Guilliorit IVIateriaIs

B. Hosten
A one-dimensional theoretical model is developed to predict the acoustic waves generated
Laboratoire de Mécanique Physique, by rapid thermal expansion caused by electromagnetic microwave absorption in vis-
Université Bordeaux, 1, coelastic rods. The theoretical acceleration at the end of the irradiated rod is predicted.
UMR 5469 CNRS, The comparison between the experimental and the theoretical accelerations leads to the
351, cours de la Libération, evaluation of viscoelastic characteristics. Parameters related to the electromagnetic ab-
33405 Talence Cedex, France sorption can be also obtained. A procedure to find approximate values of the different
parameters is developed. Since it is considered in the model that the distribution of the
temperature rise along the rod is exponential, very absorbing materials can be tested.
Consequently, the influence of the moisture content on viscoelastic properties of a porous
material can be investigated. The method is applied to study the influence of the moisture
content on viscoelastic characteristics of medium density fiberboard materials.
[DOI: 10.1115/1.1545783
1 Introduction waves are produced by a sudden heating of the irradiated material.

In a previous papei,17], since the electromagnetic absorption

a-:t?ceuli:rfc?r?fﬂﬁ?]lcgaogerﬂ?;rOr:](;?;ﬁgaésor:?:rie Ff[)(:rguvgﬁ On(jai\gfas low, it was assumed that the profile of the temperature rise in
P y y ) e irradiated rod was uniform or linear. In the present paper, the

rials, a gOOd. knowledgg of their ‘mechamcal propgrtles needs %ctromagnetic absorption due to a high moisture content may be
evglugte thelrwscoelgstlc properties for several moisture conte @nificant. Thus the assumption of a linear profile is not appro-
This is useful, for instance, in order to perform numericghiate in this case and an exponential profile must be assumed, as
simulations. , o _already applied to composite materigl$g].

A lot of experimental methods permit the determination of vis- The aim of this paper is to develop an experimental method
coelastic properties of materials. The most famous method iich permits the determination of the viscoelastic properties by
volves classical creep or relaxation tests which are timgheans of the acoustic waves generated by electromagnetic absorp-
consuming and leads to the viscoelastic characteristics of #ign of pulsed microwaves. Contrary to the method described in a
tested material at very low frequency Only. ngher frequencies C@rﬁevious paper for low absorbing materiaﬂ&?], the presented
be reached by dynamic tests. A comprehensive review of the gXethod must be available for very absorbing materials when a
perimental techniques is out of the scope of this paper. The reaglgear profile of the temperature rise is not appropriate any more.
is referred to the reviews of NollgL], McSkimin [2], Ferry[3], A high moisture content may indeed increase the electromagnetic
and Nowick and Berry4]. Among these dynamic methods, someibsorption significantly. Consequently, it must be considered that
papers have been devoted to the determination of viscoelastie profile of the temperature rise in the irradiated rod is exponen-
characteristics by means of a dynamically loaded slender rod. Tiitd. A one-dimensional model will be developed to predict the
rod specimen can be loaded harmonicdlb-11], by means of a acceleration at the end of the specimen. The comparison between
shaker or impacted,12—15. In the latter case, the viscoelasticthe experimental and the theoretical accelerations will allow one
properties are evaluated by studying the change in shape ofoaevaluate the viscoelastic properties of the specimen but also
stress pulse as it travels back and forth along a viscoelastic rod oiner parameters, such as its absorption coefficient or the tempera-
both cases, the wave generation requires the contact of a shakeuoe rise reached after the irradiation by a microwave pulse. A
a projectile. procedure will be presented to estimate approximate values of

The present paper deals with a new method where the specintieese parameters.
rod is loaded by a rapid electromagnetic microwave irradiation, The method will be used for the study of the moisture content
[16]. Contrary to the above techniques, this method does not igfluence on the viscoelastic properties of medium density fiber-
quire a mechanical contact for the wave generation. Consequenfigard(MDF) rods.
the tests are very reproducible. The acoustic generation is caused
by the electromagnetic absorption of the irradiated material. Ip-  Experimental Setup
deed, the microwave energy is absorbed and converted into ther- . . . . .
mal energy, which caused the irradiated material to expand inThe experimental setup with the instrumented specimen rod is

accord with its thermoelastic properties. Thus the acoustiddiesented in Fig. 1. . .
The microwaves are produced by a time-gated electromagnetic

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF generator .at 9.41 (.BHZ' The maximum power of the InCId?nt e.‘lec-
MECHANICAL ENGINEERSfor publication in the ASME OURNAL OF APPLIEDME-  tromagnetic wave is 5.5 kW, and the maximum pulse width is 1
CHANICS. Manuscript received by the Applied Mechanics Division, July 18, 2000uS. To increase the amplitude of the acoustic waves generated, a
final revision, Aug. 1, 2002. Associate Editor: V. K. Kinra. Discussion on the pap¢jyrst of 10 pulses with a repetition rate of 500 kHz is used. The

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departmen : f f : . :
Mechanics and Environmental Engineering, University of California—Santa BarbaRr&Ea've is delivered by a circular Wavegl‘“de havmg a diameter of 24

Santa Barbara, CA 93106-5070, and will be accepted until four months after fiddiMm that permits Or!ly Fhe fundamental Walveguide mode, T&
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. propagateno electric field in the propagation directjoro ob-
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Omax(@) the lateral dimensions are much smaller than the wavelengths.
According to the classical theory of thermoviscoelasticity, the nor-
mal stress and the axial displacement are connected through the
convolution relation

D
(=]

t
a(z,t)= f E(t—17) %[8(2,7’)*,30(2,T)]dT

Maximum temperature rise
after one pulse

JE()
0 L = [e(z,t)—BO(z,1)] 2

whereE(t) is the tensile relaxation modulus(z,t) the longitu-
dinal strain,B the coefficient of linear thermal expansion in the
z-direction, andé(z,t) the temperature rise above the initial tem-
perature. This linear viscoelastic constitutive law can be expressed
in the frequency domain as

Pulsed F(z,0)=E*3(z,0)—E* B0(z,0) 3)
nticrowave where E*=E'+iE"” is the complex Young's modulus in the

enerator . . .
8 z-direction withE’ the storage modulus ari#l’ the loss modulus,

e(z,w) and 6(z,w) the Fourier transforms of the longitudinal
strain and the temperature rise above the initial temperature,
: | | Charge respectively.

Computer Osciloscope amplifier Since it will be seen that the temperature rise is very low, the
temperature distribution will be assumed to be independent of the
mechanical state of the material. From E(9.and(3), it can be

Fig. 1 Experimental setup demonstrated that the Fourier transforms of the axial displacement

can be calculated if the longitudinal strain and the temperature rise
are known, i.e.,
tain the maximum power from the generator, a hybrid tee imped- ~ ~
ance adaptoftee associated to two sliding short circuits in- U(z,0)= 1 18‘70(2"") 9&(z,0) )
serted into the circuit and adjusted to achieve a minimum voltage ' (0S*)? Jz Jz
standing wave ratigVSWR), as measured by a wattmeter. Then, o
the specimen can receive the maximum electromagnetic eneifyere the complex slowness =S'—iS" is given by
and the measured signals are increased.
The viscoelastic rod sample is held vertically inside the wave- g2 P (5)

guide by means of a piece of foam put at the end of the wave- E*
guide. A piezoelectric miniature acceleromet@&riel & Kjaer
4374 is attached to the end of the rod by means of a very th
layer of couplant. The accelerometer masds 0.65 g and its p _
charge sensitivity is 0.129 pChsi 2. Its dynamic frequency range o(z,w)= W[E(Z’w) —BO0(z,w)]. (6)
lies between about 1 Hz and 20 kHz. The signal from the accel-
erometer is amplified by a charge amplifi@ruel & Kjaer 2523,  The axial particle velocityy(z,») and the axial acceleration
and recorded on a digital oscilloscopeecroy 9310 that is, in  3(7 ) are given by
turn, linked to a computerized data acquisition system. The wave-
forms are averaged in the scope during ten sweeps in order to v(z,0)=i0l(z,0),3(z,0) = — 0°U(Z,0). (7
minimize the electronic noise and the environmental vibrations, ) ) S o
and transferred to a computer for further processing. In the hypothgss of small strains, the longitudinal strain is related
to the axial displacement by(z,t)=du(z,t)/dz. Consequently,

3 Theory Eg. (1) becomes

h,:.lquation(3) becomes

The aim of this section is to find a one-dimensional model e (z,0)
which can predict the theoretical acceleration at the end of a vis- 0z
coelastic irradiated rod.

Let us consider a viscoelastic rod put in a waveguiis the  For short microwave pulses, the heat conduction can be neglected.
axial coordinate, see Fig.).1The length of the rod i$. Its me- Owing to the electromagnetic absorption, it can be assumed with
chanical characteristics, its mass dengitgnd its cross-sectional sufficient accuracy that the temperature rise profile in the irradi-
areaA are uniform. The free surface at=0 is irradiated uni- ated rod is exponential, i.e.,
formly by an electromagnetic pulsed microwave. Owing to the
electromagnetic absorption, a temperature Aégt) occurs in- 0 for t<0

side the body(t is the time. _ —az. : |y for O<t<
The Fourier transformsg(z,») and U(z,), of the normal 0(z)=[6oe*]-r(t) with r(t) T or 7

029(Z,w) B

+ w?S* % (z,0)— B 77

8)

stresso(z,t) and the axial displacemeniz,t), respectively, are 1 for t=7

related by 9)
J where 7 is the duration of the microwave pulse amy is the
o 0(z,w)=—po?U(z,0) (1) temperature rise after one pulsezatO. The temporal evolution of

the temperature rise is explained by the fact that, during the elec-
where the angular frequenay is related to the frequency by tromagnetic pulse (&t<7), the temperature increases linearly
w=2mv. The stress state can be considered uniaxial in the rodsihce the heat conduction can be neglected owing to the short
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duration of the microwave pulses. The spatial decreasing expb- Determination of the Different Parameters

nential profile is caused by the electromagnetic absorption when . )
the wave propagates along the specimen. In order to evaluate experimentally the set of the four param

With this exponential temperature profile, the general solutiofﬁers.p:(S .S',a,86,), the dlffer_ence between the m°d‘4" of the
of Eq. (8) can be written as ourier transforms of the experimental and the theoreuoa] ficpel-
erations in the accelerometer frequency range can be minimized
- = CleStz. (St 2 Bbya oz by a numerical procedure. The minimization allows one to find the
e(z,w)=P(w)e +N(w)e'> *+ Wr((u) optimal set of parameters that fits the experimental and the
(10) theoretical acceleration spectra at best. To simplify the minimiza-
tion procedure, it must be assumed that the variation of the com-
where the function®(w) andN(w) are two functions depending plex slowness with frequency is small in the frequency range of

on the boundary conditions at both ends of the rod. the accelerometer. The function to minimize is given by
At this stage, the purpose is to find the relationship between the
normal force and the acceleration at cross sec® and these J(D)ZE [Bexd ») |~ [E(v,p)] (16)

two quantities at cross secti@* L. By writing the normal force

F(z,0) and the acceleratiod(z,«) atz=0 andz=L with _th‘? where|a.,»)| and|a(v,p)| are the moduli of the Fourier trans-
help of Eqs.(4), (6), (7), and(10), P(») andN(w) can be elimi- forms of the experimental and the theoretical accelerations, re-

nated. Then, we obtain spectively. The values reached by this procedure may be false if
|~:(L ®) ,N:(o ) the initial values used to start the numerical minimization are too
= |=Pl=,4 1 |+G (11) far from the real values. Consequently, it is important to develop a
a(L,w) a(0.w) method that can provide approximate values close to the real ones.
where the components of the matixand the vectolG are de- The method will be based on the shape of the acceleration spec-
fined by trum measured at the eae- L. This spectrum has been calculated
theoretically and plotted in Fig. 2 in the case of a PVC rod having
c ﬂs alengthL=20cm (' =600us/m, S"=10us/m). It is character-
oS* ized by the presence of pealanly the first and the second ones
P=| s : (12)  are represented in Fig).2The frequency of theth peak is called
——s c v, and its amplitude is,,. The characteristics of the two first
PA peaks at frequencies; and v, will allow one to evaluate the

~ as approximate values of some parameters.
B0 w? Ap(C— — e—aL) First, it can be noticed that the frequencigsare related to the
= 21wl wS* (13)  real part of the complex slowness by
—wS*st+ae 3 —ac
n
wherec=cos@S*L) ands=sin(wS*L). It can be noticed that the TR a7

matrix P is related to the wave propagation whereas the vestor

is related to the wave generation due to the thermal expansidinis relation is an approximation because the presence of the

Only G depends on the spatial profile of the temperature rise #tcelerometer reduces the value of the peak frequency slightly. As

the irradiated rod. an example, for a PVC rod of 20 cm, the error made by using
Then, the determination of the accelerationzatL (for in- relation(17) with an accelerometer lighter th& g would be less

stancg involves the knowledge of the boundary conditions. Thehan 3.2%. With an accelerometer having a mass of 0.@&cel-

end atz=0 is free. Consequently, the normal forcezatO must erometer used in the experimental s¢fupe error would be less

be zero, i.e.F(0,0)=0. The rod is instrumented with an accelerthan 1%. The value of the real part of the complex slowness is

ometer having a mass at the endz=L. Thus, the normal force found without knowing the spatial profile of the temperature rise.

at this end is related to the axial velocity by Moreover, the paramet&’ can be obtained independently at each
~ ~ frequencyr, of the measured acceleration peaks. This fact allows
F(L,w)=~Zu(L,0) (14)  to verify whether the real part of the slowness depends on the

whereZ, is the mechanical impedance of the accelerometer. Agauency.
low frequencies, the accelerometer can be assumed to be a rigid

mass. Then, its mechanical impedance is give# byimw. With

the help of these boundary conditions and Ed), the accelera-

tion atz=L is M| V2
35 T T T T T T T T T T
PZZGl PlZGZ I
$' =600 us/m
ALo)= (15) & 3F Sifommm s a
I _
_P22_P12 s a=5m
0 w 25
£

In the forward problem, the viscoelastic mechanical propertieg
the mass density, the dimensions of the irradiated rod, the prod%
B0, of the coefficient of thermal expansion by the maximum tens
perature reached after one pulse, the electromagnetic absaaptics
and the temporal function(t) are known. Thus, the acceleration§
measured by the accelerometer can be predicted theoretically.
function r(t) is assumed to be given by E¢P). In the inverse
problem, the acceleration is measured at the end of the irradia
rod. By comparing the measured signal to the theoretical one,
may be possible to evaluate the real part and the imaginary pari 5 s , 8 °
the complex slownes§' andS’, the electromagnetic absorption Frequency (kHz)

a, and the producBé,. To solve this inverse problem, we need to
implement a numerical procedure using the theoretical(Eg). Fig. 2 Theoretical acceleration spectrum for a PVC rod
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_ J(S”)ZE |aexp(V)|_|a(V-S,)H.
=3 v a; exp al(g) ‘

A trick to evaluate an approximate value$fis to measure the
amplitude of the normalized spectrum in the central area between
the two first peaks. Indeed, this value is almost proportional to the
value ofS’. This fact has been verified for very different values of
the other parameteiS’ anda. Then, in the central area between
the two frequencies, andv,, the ratio between the experimental
normalized spectrum and a theoretical normalized spectrum, cal-
culated with an arbitrary reference val8g; of S’, gives directly
the ratio between the approximate actual valu&oénd the cho-
sen reference value:

S Ja(v,9")|/ay(S")

(18)

1.6

S' = 600 ps/m
8" =1 psh

m
S" =10 pus/m (PVC)
S" = 40 us/m

0.5

ala
-
UYL e e S S o e e e e i

P R R SN (NN TSN VOO HOUN U YOO TOON VOO O MO

0 10 20 30 40 50 &0 70 80 90 100 ISP b S i o St (19)
Absorption coefficienta (m") S;,ef |a(v, r,ef)|/ al(S’,’ef) I
V'“\’Vl V2
Fig. 3 Ratios a,/a, for different imaginary parts of the com- At this stage, approximate values of the three paramesgrs
plex slowness (L=20cm) S’, and a have been obtained. Only the prodygs, remains

unknown. Since the acceleration spectrum is proportionglég,
the simplest way to evaluate its approximate value is to use the
Once the paramete®’ is evaluated thanks to Edl7), the following equation:

electromagnetic absorption coefficientan be determined even if ~
the imaginary part of the complex slowness is unknown. To prove 86 :M (20)
that, the curve corresponding to the radig/a, (wherea, anda, 07S,[a(v,B,=1)]
are the amplitudes of the two first peaks of the acceleration spgghere|a(v, 36,=1)| corresponds to the theoretical acceleration
trum, see Fig. Ris plotted in Fig. 3 for very different values of theSpectrum calculated with the values $f, S, anda obtained
imaginary partS" of the complex slownesiéhe other characteris- ghove andgg,=1.
tics used in the calculation are the characteristics of a PVC rodpnce all the approximate values of the four parameters have
having a length of 20 ¢ From Fig. 3, it can be noticed that, heen evaluated by the methods described above, these values can
compared to the amplitude of the first peak, the amplitude of thg ysed as initial values in the numerical minimization procedure

second peak increases with the absorption coefficient. This cufethe function given by Eq(16) in order to increase their
permits the determination of the absorption coefficiantith a  5ccuracy.

quite good accuracy by measuring the raid/a, of the ampli-
tudes of the two first peaks. It can be plotted automatically in a
few seconds whes&' is known. 5 Experimental Results for Medium Density Fiber-

The imaginary parg’ of the complex slowness is more difficultboard (MFD) Rods

to obtain. As shown in Fig. 4, this parameter is relat_ed to the MDF is an engineered wood product composed of fine wood
widths of the spectrum peaks. The normalized acceleration Spegifa. s compined with a synthetic resin or other bonding system
have been plotted in Fig. 4 for three different valuesSof Each 5 joined together under heat and pressure to form large panels.
normalized acceleration spectrum corresponds to the ratio Bgie influence of the moisture content on the viscoelastic proper-
tween the acceleration spectra and the maximum amplayd¥  es of this kind of material may be significant. The aim of this
the first peak. The parametes anda evaluated by the methods section is to apply the method described above for the study of
described above are used for the calculations. The normalizgéferent MDF materials. The effect of the moisture content will
spectra does not depend on the last param@tgr be particularly analyzed.

Consequently, the value & can be obtained by a numerical Three different MDF materials with different densities were
minimization procedure using one parameter. In this case, theted. They are denoted MDF A, MDF B, and MDF C. The
function to minimize is given by material A comes from a manufacturer, the materials B and C

come from another one. For each material, one rod specimen was
cut in the machine direction. The lengths are 19 cm for MDF A
16— 7T T T T T T T T T and 21 cm for MDF B and C. The cross sections are rectangular
with lateral dimensions 1020 mn.

In order to increase their moisture content, the three specimens
were put in a box with saturated dhlrumidity of 100% during 72
hours approximately at room temperature. Afterward, the speci-
mens were dried progressively at ambient humidity and tempera-
ture. During this stage, microwave tests, dimensions, and mass
measurements were performed regularly for the three specimens.
When the mass of the rods became stable, they were put in an
oven at a temperature of 80°C during about ten hours in order to
dry them completely. The mass of the dry specimen is used for the
calculation of the moisture content. Indeed, the moisture content
. of a specimen is defined as the difference between its mass and its
dry mass divided by its dry mass. The densities calculated from
these dry masses are 510 kd/rB70 kg/n¥, and 700 kg/m for
MDF A, B, and C, respectively.

The data collected from the previous tests were treated with the
Fig. 4 Normalized acceleration spectra for different imaginary method described above in order to determinate the four param-
parts of the complex slowness  (L=20cm) etersS’, S’, a, and B6, at each moisture content for the three
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Fig. 8 Absorption coefficient and product of the maximum temperature rise by
the thermal expansion coefficient versus moisture content

specimens. The moisture contents tested are less than 25%téonperature rise is extremely low but it is sufficient to generate
MDF A and C. They are less than 15% for MDF B. The specimeacoustic waves which are measurable with the accelerometer. For
A was not tested between 0% and 9%. Some examples of expéne absorption coefficient as well as for the prod86ét shown in
mental acceleration signals are given in Fig. 5 for three differeRig. 8, it can be noticed the fact that the results are very close up
moisture contents. These waveforms come from the tests p&r-about 10% or 12% of moisture content. Beyond, there is a
formed for MDF A. The corresponding experimental acceleratiagiscrepancy between MDF A and C. It is out of the scope of this
spectra are also plotted in Fig. 5 for the same moisture contengaper to explain these effects. It can be just concluded here that
It is well known that the electromagnetic absorption of microthe absorption coefficient and the maximum temperature(dse
waves by water is quite significant. Consequently, since the eleather the produgBé,) are some better indicators of the moisture
tromagnetic absorption of the irradiated body will increase witbontent than the mechanical properties evaluated by the method
its moisture content, the temperature rise will increase too. Tkace the variations of these parameters with the moisture content
result of the data processing will show that this statement is trgeem to be identical for the three tested materials, at least up to
although it can be shown in Fig. 5 that the amplitude of the firdt0% or 12% of moisture content.
peak in the acceleration spectra decreases when the moisture con-
tent increases for the plotted spectra. )
The method presented in the last section has been used to @le-Conclusions
terminate the experimenta| Values Of the fOUI’ parametel’s for eacbs\ new method to determine the viscoelastic properties of ma-
specimen rod and for each tested moisture content. From the f&als in a frequency range between 1 kHz to 20 kHz has been
sults obtained by the minimization procedure, the theoretical agresented. This method uses a theoretical one-dimensional model
celeration spectra have been calculated and compared to the ®eloped in order to predict the acoustic waves generated in
perimental acceleration spectra in the case of the material MDR#scoelastic rods by electromagnetic microwave pulses. The phe-
and for two different moisture contentsee Fig. 6. _ nomenon of acoustic generation is thermoviscoelastic. Besides the
The experimental curve and the theoretical curve obtained frofiycoelastic characteristics, parameters related to the electromag-
the evaluated set of parameters are very close. This fact tends&ic absorption can be evaluated. These parameters are the elec-
demonstrate the Val|d|ty of the theoretical model. The results Oﬁomagnetic absorption Coefﬁcient and the product Of the Coefﬁ_
tained for the four parameters are presented in Figs. 7 and 8. Fref@nt of thermal expansion by the maximum temperature reached
the evaluated complex slowness, the complex viscoelastic mog@ter one microwave pulse. Finally, four parameters can be ob-
lus has been calculated by means of E5). The real part, the tajined(two mechanical ones and two electromagnetic pr@sn-
storage modulus, and the tangent of the loss anBland trary to a previous paper where it was considered that the electro-
=E"/E’) have been plotted in Fig. 7. magnetic absorption in the irradiated material was W], very
Concerning the storage modulus, it can be noticed that the orgsorbing materials can be tested with the present method since
of MDF A and B are very close even if the densities of botlthe profile of the temperature rise in the rod is assumed to be
materials are different. The storage modulus of MDF C is highesxponential, which is more realistic than a linear or uniform pro-
This fact can be explained by a higher density of this last materigile. This fact allows one to investigate the influence of the mois-
On the other hand, the loss angles are quite close for the thegge content on the viscoelastic properties of a porous material.
materials but the one of MDF A seems to be a little higher. Fromhe presence of the accelerometer mass at the end of the rod is
Fig. 7, it can be shown that the increase of the moisture contagken into account in the model. Moreover, a procedure has been
leads to a decrease of the specimen rigidity and an increase of giéposed to find approximate values of the different parameters to
viscoelastic damping effect. As it has been predicted above, ith& measured. Once these approximate values have been evaluated,
shown in Fig. 8 that the electromagnetic absorption and thus tenumerical minimization procedure allows to increase their
temperature rise increase for the three material when the moistgtguracy.
content increases. In order to give an order of magnitude for theNext, the method has been applied to the study of the influence
temperature rise reached in the irradiated materials, the coefficighthe moisture content on the viscoelastic characteristics of me-
of thermal expansion must be known. If the coefficient of thermalium density fiberboardMFD) materials. Three specimens hav-
expansion is estimated on the order of 20 C (that is generally ing different densities have been tested. The comparisons between
the case for most materials, particularly for wooid can be de- experimental spectra and theoretical spectra calculated with the
duced that the temperature rigg reached after one pulse ofyls  evaluated parameters have demonstrated the validity of the theo-
varies between 0:30 4°C and 2510 *°C approximately. This retical one-dimensional model. The results obtained for the me-
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chanical parameters have confirmed that the moisture content hdél Kolsky, H., 1957, “The Propagation of Stress Pulses in Viscoelastic Solids,”
a significant influence on viscoelastic properties of MDF materi- Zg‘r';’: I’;"aa"lfga%ui?‘v\jlé 1970, “Complex Modulus Measurement by

als_. An important _observatlon is that t_he evaluated absorptlo_n co* Longit’udinal Vibration Te;ﬂng',, éxp. I\/’Iech_’LO, bp. 93-96.

efficient and maximum temperature rise are some good 'ndlcaton] Madigosky, W. M., and Lee, G. F., 1983, “Improved Resonance Technique for
of the moisture content in the tested material. In a future study, wWe ~ Materials Characterization,” J. Acoust. Soc. Afi3(4), pp. 1374—1377.

could imagine an extension of this method, directly implementegLo] Pritz, T., 1982, “Transfer Function Method for Investigating the Complex

in the production line, to control moisture content and viscoelastic ~Modulus Acoustical Materials: Rod-Like Specimen,” J. Sound V&1, pp.

characteristics during the manufacturing process. 359-376. . . . .
[11] Buchanan, J. L., 1987, “Numerical Solution for the Dynamic Moduli of a

Viscoelastic Bar,” J. Acoust. Soc. Am81, pp. 1775-1786.
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The Motion of a Rolling Polygon

Galileo was the first to analyze the motion of spheres rolling down an inclined surface.
P. C. Rem1 Since then, Coulomb’s law of dry friction has covered the case of sliding particles. How-
ever, a particle that is not round can still roll, although in a way that is essentially
different from the motion studied by Galileo. Instead of keeping contact with the surface,
such particles will start bouncing after reaching a certain angular velocity. This motion is
Delft University of Technology, a cc_)mbi_nation of flying and colliding. It is_shown that the a(_:celeratior_1 _of a bouncing
Mijnbouwstraat 120, partlc!e is alwayg bounded by the accelerations for perfect rolling gnd sliding. In order to
9628 RX Delft The Netherlands describe the motion of a not perfectly round particle, the polygon is used as a model. The
' aim of the model is to predict the trajectories of particles that cannot be covered by the
models for perfect rolling and slidindDOI: 10.1115/1.1481893

E. M. Beunder

Research Assistant

Senior Researcher
g-mail: p.c.rem@ta.tudelft.nl

1 Introduction scopically, i.e., by considering the average behavior of a large
umber of similar particles, or alternatively, by considering a
ingle particle over time intervals containing many collisions. For
Bgrticle separation models, the macroscopic view is the most help-

i e ! ful, and therefore this view is adopted here. The purpose of these
by Drabkin and Drak¢1] and Drake[2]). Sliding motion, on the oyl s to predict the trajectories of particles on the basis of
other hand, can be described by Coulomb’s law of dry frictiony, ameters which can be easily measured or estimated, so as to
Only one empirical constant, the coefficient of friction, is needega) how particles of a different nature, in terms of material or
For_sliding, the distance traveled is also proportional to the SqualRape, segregate into different streams while moving dogus

of time. o o ) ally curved surface.

The descriptions of sliding and perfect rolling do not cover all |n order to simplify the calculations, the model that is presented
possible particle motions, however. In practice, a lot of particlasere is restricted to two dimensions and the supporting surface is
have the ability to roll, but their rolling is dissipative, unlike thakepresented by a straight line. The particles on the surface are
of a sphere. The energy dissipation, in this case, originates fraiipject to the acceleratigi of a constant external force, which is
collisions with the Surface, rather than from forces of friction. Ah’[ some ang|@ with the normal into the surface. Collisions be-
some point, such particles may lose contact with the surface afgken the particles and the surface are modeled by the theory of
start bouncing. Keller [7] more in particular by the method developed by Wang

Shinoharg 3] attempted to describe the motion of granular paand Masori8] for two dimensions. This theory treats the collision
ticles by treating particles as ellipsoids, without taking into acf solid bodies as an infinitesimally short process governed by two
count bouncing due to impact at the moment of landing. Azzoplarameters, the coefficient of dry friction, and the coefficient of
et al.[4] studied rock fall trajectories in order to determine accurestitution e. Apart from the external force and the interaction
rate risk zoning and construct adequate defense systems. Thgih the surface, no other forces, such as, for example, air drag,
model uses fitted values for the restitution and roll friction coefare taken into account.
ficients. Variation in slope and irregularities of the slope are the The choice for a regular polygon as a model for particles of
important parameters, rather than the irregularities of the shapemégular shapes is motivated by the fact that this choice reduces
the rocks. Hacar Benitez et 4b] did a similar study on bodies the shape parameter to a single number, i.e., the number of edges
falling down from various slopes: Again, the irregularities of the, while at the same time providing flat and round particles as
slope are the main parameters. For roughly round particles, thiatiting cases.
are moving on a smooth slope, the approaches mentioned above
are inadequate.

In particle technology, the effect of shape on particle motion i3 | mits of Rolling and Sliding
used for separatiorisee Furuuchi and Gotdb] for an overvievy. ) . . . .
Modeling these separations requires a theory that accounts for '€ SPeed of arolling or bouncing particle, starting from rest, is
irregularly shaped particles. In this paper, a model is present%ﬂunded b_y the motion of Sl'd'.ng and roIImg_ particles with the
which deals with alternative rolling behavior by treating particleS2M€ physical properties, but with an appropriate change of shape.

as polygons and including impact effects. The number of edges Bforder to show t.h's‘ cc_)n5|der a two-dimensional particle of ar-
the polygon is a measure for the energy loss due to collisiofdtr@"y shape that is subject to a constant accelergiorsuch as
comparable to the friction coefficient used in the theory of slidinglravity, while constrained by a surface, here the positivaxis,
The coefficient of friction also plays a role in the description of #1at acts on the particle with a timedependent support féige
rolling polygon, in determining which type of collision occurs. and a friction forceF;, which are normal and parallel to the
The rolling behavior of irregularly shaped particles can be stugurface, respectively. The gravity force makes an afgléth the
ied on the scale of individual particle collisions as well as macr@ormal into the surface, so as to accelerate the particle towards the
right (see Fig. 1 During its flight, the particle is described by its
To whom correspondence should be addressed. massm’ and moment of inertid, , its linear velocity ¢ ,v)',) and
Contributed by the Applied Mechanics Division oH AMERICAN SOCIETY OF angular velocityQ)'. (The primes are used here to distinguish the
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- iainal phvsical tities f their di ionl t t
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dc—:-::em?”gma physical quantties from their dimensioniess counterparts
ber 12, 1999; final revision, December 21, 2001. Associate Editor: A. A. Ferintroduced later on.
Discussion on the paper should be addressed to the Editor, Prof. Robert M. McMeek\Me now consider two consecutive points in time at which the
ing, Department of Mechanical and Environmental Engineering University rticle h zero veloci mponent normal to th rf whil
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Galileo studied the motion of spheres rolling down an inclinerg]
plane, and concluded that “the distances, then, from the beginni
of motion are as the squares of the timés&e Galileo, translation
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Table 1 Factors that are used to make dimensionless quanti-

ties.
Variable Dimension Dividing Factor
Force kg m/g m'g’
Torque kg m?/ & m'g’'R’
Velocity m/s Jo'R
Angular velocity 1/s g’/R’
Time s JR'Ig’
Distance m R’
Moment of inertia kg n? m'R'?2
g )
Fig. 1 Problem definition A % =((vy)1t+(vy)2)Avyl2 7
it then follows that
, ) , [ Av, ]
m’'Av,=m'g’ sindAt’— | F; (1) Wer, IXG =m’g’ siné. (8)
v

Note that the equal sign corresponds to the case of perfect rolling
m’Avy = f F,—m’g’ cosfAt’. (2)  of a particle with radius’ . Therefore, the particle acceleration is
v bounded from above by the maximum of sliding and rolling.
Sincev§:O both at the start and at the end of the time interval, it

follows that 3 The Polygon Model
Avi=g’ COS@AV(tanﬁ_ f,Ff,/ f,Frﬂ : (3) irregular shape, we now turn to a polygon withedges(see Fig.
t t 1). Whenever a polygon is in continuous contact with the surface,

From Coulomb’s law of dry friction we know that all timés; ;t_W_i" eitherbslide Ic')rdStIi?l'(. If ilt< slidzs,hCOUIO_mlb’s II?W ﬁf dry
=17} and consequenty, ¥{=uf, ). This means thaty? _ficon can be apple. I stk and the partl rolls, e pant
is at a minimum for a particle with a shape that implies slidin ges, every . g he polyg
motion (F/ = uF’) o_uches the s_u_rface. This ch:_:mge of point of_contact is accompa-

By int f {'L "f' the ch f kineti th nied by a collision. At a certain angular velocity, the particle will
i y_nr; egr? Ing ort € change of Kinetic energy over (né samg,t 1o jump from the surface and its motion will become a com-
Ime interval, we ge bination of flying and colliding.

In order to arrive at equations of motion for particles of an

1 1 5 _ The motion of a polygon is essentially defined by a number of
A §|é9'2+ Moy = f,m’v)'(g’ sinf—Li—L,—Ad dimensionless parameters, such as the afigketween the normal
t ) into the surface and the external acceleration, the number of edges

) o ) ] 7 of the polygon,n, the moment of inertia to mass rafig’/m’R’?
with L¢,L,=0 the losses due to friction and inelastic collisionsang two material properties: the friction coefficient and the
The difference in potential energyd at the times of contact is restitution coefficient of the collision with the surfaee In order
due to small, random variations of the heightof the center of to make this more apparent, the equations of motion are made
mass of the particle above the surfdes a consequence of thedimensionless using the magnitude of the external acceleration
irregular shape of the partiglend the difference of the elasticy’ the particle radiusR’, and the particle mass’. Table 1
energy stored in the particle-surface contact. Since the particlesifows the factors that are used for the various quantities.
accelerating, it seems fair to assume that the elastic energy is
growing with time and sA®=0 as well. 3.1 Modeling Assumptions. In general, a polygon has, next
From this point on, two different cases emerge from the analfe sliding and standing still, two possible modes of interaction
sis. One possibility is that the particle structurally slips in colliwith the surface: rolling and bouncing. In rolling mode, the poly-
sions with the surface, because its rotation lags essentially beh@fi is continuously in contact with the surface. In this paper, only
the condition of perfect rolling,+Q’y’=0 and hence the ve- the case when the polygon sticks at the point of contact is consid-
locity at the point of contact is consistently positive. In this cas€red for rolling. This corresponds to the assumption that the fric-
we get back to the previous case Wi =puF/. The second tion coefficient is _suﬁ_‘lmently high. If the partlcle has a small
e " ) ,  number of edges, it will only take a few collisions before it starts
possibility is that the condition of perfect rollingr evenv, 4 ncing. The number of collisions before this point increases
+Q'y’'<0) is regularly satisfied. In that case, the rotation of thgity an increasing number of edges. However, the energy loss per
particle remains close to the condition of perfect rolling and ogyjision decreases with an increasing number of edges. For this
averagev=|Q'[R’ for some effective particle radiuR’. The reason, it is assumed that collisions play a minor role in rolling

latter case implies mode and they are therefore ignored during this mode. Rolling is
, 02 modeled with an average rotation axis, by taking an average value
—+m' |A—<m'g’ sin gf vl (5) for the orientationg, instead of a function of timeg(t), in ac-
R 2 t cordance with the macroscopic character of the model.
By replacing the integral with the trapezoidal rule Bouncing mode is when the polygon is free from the surface
except for collisions. It is assumed that the horizontal velocity at
ty (o))t (0])5) AL /2 ©) the point of contact is alyvays positive before collision. This is a
N Ux= U017 WUxJ2 consequence of the horizontal component of the external force
! that accelerates the polygon while traveling through the air. The
and observing that external force will result in a linear velocity that exceeds the sur-
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face velocity of the particle. In accordance with this assumptio T L
only two possibilities are considered for the horizontal conta %, % o
velocity after collision: zero or positive. The collisions themselve 0000 "oo |
are modeled by Routh’s graphical method, using Poisson’s mot % %
of restitution, and are assumed to be perfectly plagic0 (a 2, 000 %
restitution coefficient of 1 corresponds to a perfectly elastic collw1 /v 02 % ° 0
sion). This latter assumption is not obvious and will be supporte A o °
by results from numerical simulations for a number of values of o o
(see Section ¥ 0.2+ o —
3.2 Collision Model. Wang and Masoh8] showed that all 0.4 - o 7
two-dimensional collisions can be described by five impa 0.6 ! ' L ! ! * . )
modes, each mode representing a different microscopic transfe -1 -08 -06 -04 -02 0 02 04 06 08 1
momentum. The five modes are bounded by relations between néo/m
coefficient of friction, the coefficient of restitution, and the contac
velocities before collision. As a result of the assumpten0, two
of the five impact modes cannot occur. The assumption of a po 1 | | ; | T o
tive horizontal velocity at the point of contact before the collisiol 08 L o o ° ® -
rules out a third impact modeee the Appendix % , 0 °° ool
For ease of notation, subscript 1 and 2 will refer to the state 06 %l 00" o ° o o ° 0
the polygon just before and just after the collision, respectivel 0.4 - 00 o 0 o, ° ° i
(Subscript 0 will be used later and represents the state just alng, /x 92 | °,% o ° o %
the previous collision.Following the notation of Wang and Ma- o o o %
son, S and C refer to thex-component ang/-component of the 0 o o
velocity of the polygon at the point of contact, respectively: 0.2 o
S=v,+ cos¢ 9) 04T ® o 7
-06 1 [ | 1 I | ! L. o
C=v,+Qsing. (20) -1 08 -06 -04 02 0 02 04 06 08 1
y ngo/m
A collision with the surface delivers an impuls@,P,) to the
polygon: Fig. 2 Relation between values of ¢ in subsequent collisions
for n=6 and Q/.cos #=2 (top) and €/cos #=4 (bottom )
Uyo=Ux1t Py (11)
Uyp=vy1+ Py (12)
0,=0,+(Pycosp+Pysing)/l,. (13) ¢, is found as the solution foy+ (2i7/n) +Qet at the first

zero of miny'. The formula shows tha#; depends only om,
@?0/\/0039 and¢,. Figure 2 shows diagrams gf; againstg, for
n=6 and two different values of)/,/cosd. The diagrams show
that the relationship is such that any negative valuegpfesult
P, sine cosp+S, in positive values ofp;, whereas most initially positive values of
P,=- W (14) ¢ are randomly thrown into the interv@D,7/n] for increasing
values of(). This behavior suggesi$= 7/2n as an appropriate
S, sin ¢ cos¢— Cy(1+co ¢) value for the macroscopic model.
2 ' (15) 3.3 Equations of Motion. The time-averaged dimension-
. - . . less equations of motion for a polygon contain both terms due to
ghe second contact mode callglitling (collision 2), is described the external force and friction as well as terms resulting from
y collisions with the surface. The latter are averaged in time by
Py=—uP, (16) dividing their effect byAt, the dimensionless time between two
collisions:
Cy

1+sir’ ¢—using cosg’

The conditions for all contact modes are given in the Appendix.
In order to arrive at macroscopic values for the impulse deliv- Vya— Uy
ered by a collision, a representative value is needed for the orien- chzu (20)
tation parameterp. To this end, we consider the flight of the At
polygon between two subsequent collisions. Immediately after a
collision, the state of the polygon is defined by a set of values T=1 Q-0
(Vx0:Vy0,Q0,¢0) that define its motion until it hits the surface © At T
again in a precollision state {;,v,7,{1=Q¢,¢4). Since the ve- . ) . .
locity of the point of contact after the first collision is strictly h3'3'1h Motion W';h%”t Rotat:‘ofn.A polygon will k?'mh mO\h’e
horizontal, we have,=— Q. sin ¢,. During its flight between when the torque and the sum of forces are zero, which is the case
the collisions, they-coordinates of the vertices of the polygon WNen
are given by

The two remaining impact modes result into different expressio
for (P,,P,). The first mode, calledticking in compression phase
(collision 1) is described by

P,=(1+e)

Py=—(1+e)

A7) Ux2~ Ux1

Fxe=xt

(19)

(21)

o
t2 coso tand< ,u,<tanﬁ. (22)
5

) 2im
y' =cos¢o—cos( bo+ - +Qot) —Qqsinggt—
A polygon will only slide (and not rol) when the torque is zero
i=1,.n. (18) and the sum of forces is positive, which is the case when
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pu<min

. (23) = (sing— )% cosg)cosa

| (1+sir? ¢— u Sin ¢ cose) .
_ Collision 1 occurs as long as the condition below is satisfees
vy=cosé(tanf— u). (24)  the Appendiy.

In all other cases, the polygon will start rolling.

tand,t T

In this case, the acceleration of the polygon is given by

Sin 6+ sin ¢ cos¢ cosf+ sin 4 sir? ¢
3.3.2 Rolling. If the polygon rolls, its corners remain in con- = - = = (40)
tact with the surface at all times. In particular, if the orientation of €osf-+cosf CoS’ ¢+ sin ¢ cosep sin g
the polygon is¢, the acceleration of its center of gravity toward®therwise, collision 2 occurs.
the surface i€)? cos¢. Since this acceleration cannot exceed th : :
of the external acc(é)leration for any value éf rolling motion % Numerical Calculations
implies The moment of inertia/, of a polygon can be approximated by
the average of the moments of inertia of the inscribed and out-

2
}*=<cosé. (25) scribed cylinder.
Otherwise, the polygon will start bouncing. To come to macro- 1 .
scopic equations of motion, it is further assumed titatan be _mr( R'2+R’2 Cog(_>)
approximated by the average valge= 7/2n. Ignoring losses |/~ 2 n (41)
from collisions and sliding, we get ¢ 2
— . and the dimensionless moment of inertia is then approximated by
. COS¢ siné
QO=—— (26) |
C
|c+ COS?_QZ& ICZW%OS (42)
vy=—{) COS¢. (27) " This value is used in both the model calculations and the numeri-
The solution forQ)(t) is a simple linear function of. cal calculations presented here.

Numerical calculations were performed to verify the assump-

3.3.3 Bouncing. The particle starts bouncing when the suptions used in the macroscopic model, in particular the assumption
port force needs to be negative in order to keep the polygon éa-0. The ODE-solver DASSI(see Petzold9] and Brenan et al.

contact with the surface. All energy losses during bouncing respito]) was used to integrate the detailed microscopic equations of

from collisions. _ _ motion between collisions:
During bouncing the following general relations apply between .
the velocitiesv, ,Q) of two consecutive after-collision states: d=Q (43)
Uyo="Uyo+ SiNn OAL+ Py (28) Uy=Sinf—F; (44)
Q=00+ (P, cosp+P,sing)/l, (29) vy=cosf+F, (45)
with At the time between collisions. Note that the results for both ICQ= F,sin¢g—F; cosg¢. (46)

impact modes express, in terms ofP, andP, in terms ofS; and

C,. Regardless of the type of collision, For rolling modeF, andF; are computed from the constraints of

the point of contact with the surface and for bouncing mdse,

Ci=vy0+ 0 sing— COSOAL (30) ;g;ghggiftrsa;gﬁlggn from rolling to bouncing is triggered by
n-
= —COSfAt. (31) When ¢ reaches- (@/n), corresponding to another rotation of

— (2m/n), ¢ is reset tom/n. In rolling mode, a collision occurs

at this point, which is calculated using the full method by Wang
and Mason(see the Appendix In bouncing mode, a collision is
S;=v,0+ 0 cos$+sin OAL (32) gﬁ;;fcde out when the nearest edge of the polygon touches the

For sticking in compression phageollision 1), there is the addi-
tional relation

=singAt (33) 4.1 The Assumptione=0. An important contribution of
since this type of collision ends with sticking. Inserting the exthe numerical results from the detailed microscopic model is to
pressions foP, andP, and using the relations above, we find forshow the effect of variations of the coefficient of restitutien
collision 1. which is assumed to be zero in the macroscopic model. Table 2
. shows the tangential velocity, at timet=100 for various com-
0x=(Vxe = Uyo) /At (34)  pinations ofe andu. The coefficient of restitutioe is varied from
— L= — 0.0 to 1.0, covering the entire possible range. The frictiors
— cos’ ¢ sin 0 —sin ¢ cos¢ coso varied from 0.0 to 1.0, which is a typical range of values occur-
2 ring in practice.
(35) For low values of the friction, the particle will slide. In this
. case, the friction force is not sufficiently large to make the particle
Q=(Q,—Q)/At (36)  rotate. For higher values @f, the particle will rotate. At the given
. — — . combination ofn and 6, a further increase of the coefficient of
_ Sin¢ cosd—cos¢ sing (37) friction will make the particle keep still. In general, the values of
2l the friction at the transitions from sliding to rolling and from
rolling to keeping still depend on the number of edges as well as
on the angle of the slope.

and for collision 2

PR For low coefficients of restitution we observe that the coeffi-
v,=Ssinf— — — (38) cient of friction, rather than the coefficient of restitution deter-
1+sir? ¢— u sin¢ cose mines the tangential velocity. This is fortunate because high val-
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Table 2 Horizontal velocity for various combinations of e and
m, for n=10 and #=40 deg at dimensionless time  t=100

e 0.0 0.2 0.4 0.6 0.8 1.0
0.0 64 64 64 64 64 64
0.2 49 49 49 49 49 49
0.4 32 33 35 36 33 31
0.6 26 26 27 31 27 32
0.8 0 0 0 0 0 0

1.0 0 0 0 0 0 0

ues of restitution are rare and the exact value afay depend on
the orientation of the colliding object with respect to the surfac
[11]. These results support the assumptien0 for a macroscopic
model for computing the tangential velocity. For higher values of
e, changes of the coefficient of restitution do affect the resulting

60

50

40+

30

20

10

0g

20 40

t 60

Fig. 4 Effect of the friction coefficient.
op to bottom: w=0.1, u=0.4, and x=0.7, with the dotted line

e macroscopic model and the continuous line the numerical
calculations.

80

100

6=40 deg, n=20. From

tangential velocity, the effect being of the same order of magni- 90
tude as resulting from variations of the coefficient of friction. 80+
4.2 Comparison of Numerical and Model Calculations. ;3_
As a further check on the modeling assumptions involved in the
macroscopic model, the results of the model are compared to nu- v %r
merical calculations for various values of the friction, slope, and 40
the number of edges of the polygon around the central dase 30
=40 deg,.=0.5,n=20. 201
Figure 3 shows that the motion of the polygon is bounded by 101
the cases of perfect rollingop dark ling and sliding (bottom 0 30 15 160 30 100

dark ling, as the number of surfacesis varied from 10 to 100.
Continuous lines show the results of numerical calculations a

Riy. 5 Effect of the slope. ©=0.5, n=20. From top to bottom
6=80 deg, #=50 deg, and =20 deg, with the dotted line the
macroscopic model and the continuous line the numerical cal-
culations.

45 T T T T
40 g
351 i Table 3 Impact modes of the macroscopic model for the con-
301 b ditions of Figs. 3, 4, and 5. Sticking means sticking in compres-
v 250 sion phase; none means the particle slided without collisions.
20 .
150 i n o 0 (degrees Impact Mode
10+ B 10 0.5 40 sticking
51 o 20 0.5 40 sticking
0 ) ) ) ) 100 0.5 40 sticking
20 40 t60 80 100 20 0.5 20 sticking
45 20 0.5 50 sliding
' ' ' ' 20 0.5 80 sliding
40r 7 20 0.1 40 none
35 . 20 0.4 40 sticking
30k A 20 0.7 40 sliding
25} N
v ~
20 AL .
151 , - :
10+ : 7 dotted lines represent the macroscopic model. Notice that even a
S 7 perfect sphere or cylinder will start to bounce as soon as it meets
05 30 10 160 30 100 an irregularit_y _of the surface: It can therefore be _questio_ned
45 : . : : whether the limit of perfect rolling could be observed in practice
wl / for such an extent of time. Figure 3 shows a good resemblance
35k ‘ i between the model and numerical calculations, apart from fluctua-
a0l i tions in the numerical velocity that are caused by individual col-
lisions. Figures 4 and 5 compare the model and numerical calcu-
v Br lations for various values qgf and different slopes. At=0.1 the
208 I polygon slides without collisions. Table 3 shows the impact
15 7 modes for all the presented results. All cases show good resem-
10~ 7 blance between the model and numerical calculations.
5t i
0g 20 10 t60 30 100

Fig. 3 6#=40deg, u=0.5, n=100 (top), n=20 (middle), n
=10 (bottom ) with the dotted line the macroscopic model and
the continuous line the numerical calculations. The top and
bottom line represent, respectively, perfectly rolling and per-
fectly sliding

Journal of Applied Mechanics

5 Conclusions

The motion of a polygon can be used as a model for the non-
perfect rolling of bodies of irregular shape. The number of sur-
facesn of the polygon is a measure for the roundness of the
particle and the energy loss due to collisions with the surface. The
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larger the number of edges of the polygon, the lower the energy3 Sticking in restitution phaséR-sticking
loss due to collisions, and the faster it will roll. For practical

applications, a macroscopic model based on time-averaged equa- Pq<Py<(1+e)P, and 1w

tions of motion is developed. This model shows very good resem- BsPy— Sy

blance to detailed numerical calculations and is a powerful and PX=+

fast tool to describe the motion of polygons, without having to 1

perform numerical calculations. It gives a good insight in the way Co

particle shape relates to energy losses during rolling. Py=—(l+e) 575

Bz+ S,LLB3
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V" B,—suB;| ° Bz+suB;

Impact Modes: Boundary Conditions. The collisions are
computed by the two-dimensional model described by Wang and5 Reversed sliding in restitution phage-reversed sliding
Mason[8]. Their model is based on Routh’s graphical method to

describe an impact process and to determine the frictional im- Pa<Pq<(1+e)Pq and u<|u

pulse. They distinguish two directions for impulses due to impact, 25,
i.e., normalP, and tangentiaP,. For an oblique impact, five Py=su|Py— m}
impact modes can be identified, and the impulses due to collision 3T Suby
depend on the impact mode. The impact modes have to do with Co
the order in which sticking and maximal compression take place Py=—(1+e) B.TsuB.
during the collision and whether the point of contact sticks or 27 SHBs
starts reversed sliding. The third and the fifth mode do not occur in the macroscopic
The conditions that define the impact modes of the collision uggodel, due to the choice ad=0. If u<|ug, it follows that
the following definitions: Py<—cC; andP 4> (2(1+cog¢)) S, with ¢ a negative constant.
—sin¢ cose As C, is always negative before collision, afgl is always posi-
p= (47) tive, it follows that if u<|u|, thenP4>P, and thus the fourth
1+cos'p impact mode never occurs in the polygon model either.
Pg=(1+siP¢—using cosg)S, (48)
Pq=(u(1+cos¢)—sin¢ cosp)(—Cy). (49) References
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Forced Vibration of Cylindrical
Helical Rods Subjected to
.. | Impuisive Loads

€-mail: btemel@mail.cu.edu.tr In this study, the forced vibration of cylindrical helical rods subjected to impulsive loads
. is theoretically investigated in the Laplace domain. The free vibration is then taken into
F. F. Ga"m account as a special case of forced vibration. The governing equations for naturally
S twisted and curved space rods obtained using Timoshenko beam theory are rewritten for
Department of Civil Engineering, cylindrical helical rods. The material of the rod is assumed to be homogeneous, linear
University of Gukurova, elastic, and isotropic. The axial and shear deformations are also taken into account in the
01330 Balcali-Adana, Turkey formulation. Ordinary differential equations in scalar form obtained in the Laplace do-
main are solved numerically using the complementary functions method to calculate ex-
actly the dynamic stiffness matrix of the problem. The desired accuracy is obtained by
taking only a few elements. The solutions obtained are transformed to the real space using
the Durbin’s numerical inverse Laplace transform method. The free and forced vibrations
of cylindrical helical rods are analyzed through various example. The results obtained in
this study are found to be in a good agreement with those available in the literature.
[DOI: 10.1115/1.1554413

1 Introduction [2] to the analysis of behavior of compressed circular cross-
. . ... sectioned cylindrical helical springs and has studied the problem
As is known, a closed-form solution of a curved, initially f free vibrations by the transfer matrix method

tW'Sted. space ro_d problem using the. thrge-dmensmnql ela‘St'CﬂyPearson and Wittrick7] have determined the d.ynamic stiffness
theory is not avallable. A.n approximation in the formulatloq of th’?':natrix based on the Bernoulli-Euler hypothesis, where the effect
problem is adopte.d by introducing Bernpulln-EuIer and T'mOS.FBf shear deformation is not considered, for the free vibrations of a
enko beam theories. Thus, mathematically tractable equatigfl§ical spring

without introducing a significant error in practical engineering Nagaya Tékeda and Nakdi@] have determined the natural
problems are obtained. Moreover, the finite ele_ment_, f'n'_te_d'ﬁefr'equencies of noncircular helical springs with circular cross sec-
ence, and energy methods are employed. It is quite difficult {p\ng hoth experimentally and by the method of equivalence trans-
obtain the element stiffness matrix with these methods, and 8 matrix method. They used the static element transfer matrix
results are inevitably approximate. o _ that was deduced in closed form taking into account only the axial

Massoud[1] has used D'Alambert's principle to derive thegeformations.
equation of motion in vectorial form for slender spatial bar taking | in and Pisand9,10] derived the general dynamic equations of
into account both axial and shear deformations and has given figical springs with circular cross section, variable pitch angle,
expressions of the scalar equations for the free vibrations of thgq variable helix radius.
cylindrical helice. ) ~ Tabarrok et al[11] have studied free vibrations of spatially

Wittrick [2], using the Timoshenko beam theory, has obtaingd,yed and twisted rods with the aid of a finite element model and
the differential equations for a large step of unit angle of helix anghyve optained displacement modes of a problem.
has studied the wave propagation in semi-infinite springs and objaktanir[12] examined only static behavior of a helical spring
tained approximate solutions by neglecting the axial and sheg{der arbitrary distributed loads and has computed the element
deformations. _ _ _ stiffness matrix using complementary functions.

Kiral and Ertepinar3,4] obtained governing equations of the vj|dirim [13] has studied free vibrations of helical springs with
free and forced vibration of curved space rod in the canonic@de help of the transfer matrix method. In a separate work, Yildi-
form using the Timoshenko beam theory. They solved the fregm [14] studied the free-vibration problem of cylindrical helical
vibration problem by the transfer matrix method and concludegprings, where the actual helical element stiffness matrix and the
that a more efficient method is needed for general forced-vibratigBncentrated element mass matrix are used in the formulation of
analysis. ] . ] - the problem.

Mottershead5], using the equations given by WittrigR] for | ee and Thompsor15] have recently studied the dynamic
the static case, computed the natural frequencies by the finite giffness formulation for free vibration and wave motion of helical
ement method and compared his results with the values measuggfings. They have used Wittrick-Williams algorithm to determine
at his own experiments. _ _ ) ~ the free-vibration frequencies with the dynamic stiffness matrix

Pearsor{6] extended the dynamic equations given by Wittricland have compared the results of the dynamic stiffness matrix

with those of the transfer matrix and the finite element methods.

To whom correspondence should be addressed. As Lee and Thompsofil5] pointed out, Jiang et a[16] ob-

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF  tainad nonlinear equations of motion and from them linearized
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- . . . . . .
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Fig. 1 The rod geometry

numerically the nonlinear partial differential equations in the ttimg The Rod Geometry
domain. This study too is limited to axial and torsional motion of
the spring.

Berdichevsky and Sutyrifil8] have studied the problem of an
equivalent rod in nonlinear theory of springs. In a separate wor,

Berdichevsky and Starosel'skil9] studied the theory of curvilin- (Fig. 1(a)). Let, at any timet, a reference frame defined by the

ear Timoshenko-type rods. Cesnik et[&0] have studied an ad- it yectorg, n, b with the origin of the axis of the rod, be chosen
vanced beam theories include the effects of initial twist and cWy,ch that

vature. Borri et al[21] have studied linear analysis of naturally
curved and twisted anisotropic beams Yu et[@2] examined ar9(s,t)
Timoshenko-like modeling of initially curved and twisted com- = Js @
posite beams with oblique cross sections. o o o ) ] )
Although there are numerous studies on the free vibration Which indicates that is in the direction of increasing. n is
helical spatial rods, research pertaining to the analysis of forcBArmal to the axis and in the osculating plane, directed toward the
vibration under dynamic loads of helical spatial rods is scarce. center of curvature. The binormal vectoris given byb=txn.
In this study, an efficient method is introduced for the analysis"€ following differential relations among the unit vectors, b
of the forced vibration of cylindrical helical rods and springs uncan be obtained with the aid of the Frenet formu[@€]:
der arbitrary time-dependent and impulsive loads in the Laplace atlgs=xyn, anlas=tb—xt, dblgs=—mn @)
domain. In this method, the governing equations for naturally
twisted and curved spatial rods obtained using the Timoshenkierex and = are the curvature and the natural twist of the axis,
beam theory are rewritten for cylindrical helical rods. The curvdespectively. It is noted thay is always positive and that is
ture of the rod axis, effect of rotary inertia, and shear and axi@Psitive, in the right-hand sense, abdutvhen advanced in the
deformations are considered in the formulation. The element dj}creasings-direction. They are expressed in terms of the spatial
namic stiffness matrix is calculated in the Laplace transform spag@grivatives of the position vectaf(s,t):
by applying the complementary functions method to the differen- ar® 20 530

Consider a naturally curved and twisted spatial slender rod. The
trajectory of geometric centé® of the rod is defined as the rod
xis and its position vector a0 is given byr®=r(s,0) where

is measured from an arbitrary reference pa@nrtO on the axis

tial equations in canonical form. This provides great convenience 0 — = X—5
in the solution of the problems having general boundary condi- - il 05 95 08 @)
tions as the desired accuracy is obtained by taking only a few 9s?|’ X2 '

elements as opposed to high number of eleméntthe order of
100 needed in finite element analysis. Ordinary differential equa- . L .

. : : e -~ In order to take into account the initial twist of the cross sec-
tions with var[able cogfﬂments can also be solveq exactly ip n, a second rectangular Cartesian frame.X,.xs) is defined
Laplace domain by using the complem(_antary functions metho ch that thex;-axis is in the direction of, andx,, x5 are the
The complementary functions method given for only static loa incipal axes of the cross sectiéfig. 1(b)). Letiy , i, andis be

in Haktanir[12] is used in the Laplace domain with the additio he unit vectors alond. . x». andx. From Fia. 1b) Ed. (4) can
of dynamic loads. The solutions obtained in the Laplace transfofga \ ritien- %1, X2, 3 9. 1b) Eq. (4)
space are then transformed to the time space using the Durbin’s '

inverse Laplace transform methd@3—25. t=i;, n=i,cosf—izsinh, b=i,sinf+izcosh. (4)

gor planar rods=0, and for straight rodg= 7=0.
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Fig. 2 Geometry of a cylindrical helix Fig. 3 (&) Cylindrical helical spring;  (b) a triangular impulsive
load
3 The Governing Equations
Let us denote the displacement of any point on the rod axis by Gly O 0
U%(s,t), the rotation of the cross section about an axis passing [D]=| 0 El, 0 (10)

through the geometric cent& by Q°(s,t), and the relative ex-
tension and the relative rotation of the unit length on the axis by
YP(s,t) and w°(s,t), respectively. Assuming the displacements . . .
and the deformations are infinitesimal, the equations of geometW@EreA;rsefﬁ:a?fcgg;iiiictt'og" ?gg%r?;le er‘?jt'c fogrséagg’“d_
compatibility and the equations of motion are, respectively, giv @b L b ' n:'b

ing moments of inertia.

0 0 El

by, [4,13],
0 0
')/0=£+t><90, w0=£ (5) _ _ ) _
Js Js 4 Governing Equations in Canonical Form for Free

and and Forced Vibrations

47O IMO The free-vibration problem could be studied as a special case of

_+p(ex):p(in), X T4+ mE=min ©6) forced vibrations. Therefore, the forced vibration analysis will be

s as presented here.

where the inertia force vector &, the inertia moment vector is 4.1 Forced Vibrations. For the case of forced vibrations, a
MO and p® andm(? are the external distributed load and ex£olumn matrixY(s,t) is introduced as

ternal distributed moment vectors per unit length of axis, respec- 0 110 110 0 0 MO -0 -0 —0 o
tively. The mass density, the inertia forcep™ and the inertia Y (SU={Ur, Un, Up Q¢ Qp Qp, T Ty Ty My,

(in) i i i
momentm‘™, per unit length of the rod axis are given Ips], MO, MO, (11)
(in)— _ A i (im— _ | L (i=tn.b 7y Laplace transform of Eq(11) with respect to timel[Y(s,t)]
p| P 2 rT]| pli 2 (I n, ) ( ) vy . .
at at =Y(s,z), for t>0 is defined as
Assuming that the centroid and the shear center of cross section -
coincide; the normal and binormal axes are the principal axes; the \T(S,Z)zf Y(s,t)e”Z'dt (12)
effect of warping is ignored; the material of the rod is homoge- 0
neous, linear elastic, and isotropic, the constitutive equations are
given by,[13], where Laplace transform parameteis a complex number. With
o o o o the aid of these definitions, Eq&) and(6) are reduced to a set of
Ti=Aijv;, Mi=Djo; (i,j=t,nb) (8) 12 first-order nonhomogeneous ordinary differential equations
whereA;; andDj; are defined as d¥(s.2) - - B
EA 0 0 s =F(s,2)Y(s,2)+B(s,2). (13)
= 0 GA 0 _
[A] “n ©) Some of the elements &%(s,z) are obtained by applying Laplace

0 0 GA ay transform of the following second derivatives:
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Table 1 Natural frequencies in Hertz  (FEM: the finite element method, TMM: the transfer matrix method, CFM: the complementary
functions method, N /A: not available )

1 2 3 4 5 6 7 8 9 10

Mottershead5]F*Perimental 391.0 391.0 459.0 528.0 878.0 878.0 906.0 N/A 1282.0 1386.0
Mottershead5]"=™ 396.0 397.0 469.0 532.0 887.0 900.0 N/A N/A N/A N/A
Pearsorf6]™M 394.9 397.6 456.4 518.3 859.7 874.7 902.2 1023.7 1293.4 1351.9
Yildirim [13]™M 3935 395.9 462.8 525.5 864.0 876.8 914.3 1037.0 1310.5 1363.8
Yildirim [14] 3934 396.0 462.7 525.6 863.7 876.6 N/A N/A N/A N/A
ANSYS [28](80 elements) FEM 400.2 402.9 481.5 545.2 886.3 898.1 949.3 1075.2 1360.7 1408.8
ANSYS [28](200 elements) FEM 394.5 397.1 465.7 528.7 867.3 880.2 919.1 1043.2 1318.4 1371.3
ANSY'S [28](500 elements) FEM 393.6 396.2 463.2 526.1 864.2 877.3 914.4 1038.2 1311.4 1365.4
Present Study™ 393.4 395.9 462.7 525.6 863.6 876.8 913.5 1037.2 1310.4 1364.3
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Fig. 4 (a) Vertical displacement versus time at the arc-length midpoint, (b) rotation versus time at the arc-length midpoint, (c)
vertical shear force versus time at the fixed end, (d) moment versus time at the fixed end

284 / Vol. 70, MARCH 2003 Transactions of the ASME



~ -0 - -ANSYS

0 0.002 0.004 0.008 0.008 0.01 0.012
Time (sec.)
()
0.00015 —
Present Study
- - & - -ANSYS
0.00010
L4
0,

-y
-

8.8.0

erory

B on o

Nondimensional Mz moment
o

-0.00010

-0.00015 r T v
0 0.002 0.004 0.006 0.008 (] 0.012
Time (sec.)
(d)
Fig. 4 (continued )
U2 _ aU(s,0) Note that the initial conditions shown in Eq€l4) are now
L PAW = pA| 22U —zUQ(s,0)— — included in the load vectdB(s,z).
5200 o 900(s,0) 4.2 Free Vibrations. For the vibration analysis, we set
L P'szk =pl | 2Q2—209(s,0)— Ij?it (k=t,n,b).  p®=0 andm{®¥=0 with (i=t,n,b). Assuming harmonic mo-
tion, U°, Q°, T°, andM?P take the form

(14)

The second and third terms on the right-hand side of the( .
are the initial conditions given at=0. The elements of the col-

umn matrixB(s,z) are

U%(s,t)=U*(s)e!

0%s,t)=0*(s)d“t

Bi(s,2)=0 (i=12,....8 TOs,t)=T*(s)e*" (16)
— U (s,0) Ofa ) — M* () ot
E36+J-(s,z>=<5‘f”>pA[zu‘£<s,0>+kat (i-123 WsH=MH(9e

(15) and substituting16) into (6), a set of 12 first-order linear, homo-
geneous ordinary differential equations is obtained. If the gener-
alized displacementsl¥ , Uy, Ug, QF , QF, Qp and corre-

902(s,0)
sponding generalized resultant forcgy T, T9, MY, M2, M}

z09(s,00+ o

By i(8,2)=— (M) — pl (k=t,n,b).
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Fig. 5 (a) A cantilever helical rod; (b) type of the dynamic loads

are considered as the components, in the indicated order, of &he scalar equations governing the forced vibration behavior of
column matrixY*(s), these 12 equations can be rewritten in théelical bars are obtained by using E¢8), (19), and(20). Non-

matrix form as dimensional parameters in the Laplace domain are defined as
dY*(S) * —_1 0 0 [V c? 0
ds F(s,w)Y*(s). a7) Ui:EUi, 0;=0Q;, Ti:E—InTi,

The values ofw which make the determinant of the system dy- c
namic stiffness matrix zero are the natural frequencies of the prob- M = M-0 (i=t,n,b). (22)
lem. For the case of free vibrations the dynamic stiffness matrix is E'

obtained by applying the complementary functions method de-Finally, the nondimensional forced vibration equations in ca-

scribed in Section 6. nonical form are as follows:
. du, a— I, —
5 Special Cases d_d: = Up+ ﬁTl (23a)
The spatially curved system is examined as a free-vibration
problem in Yildirim [13]. Forced vibration problem with time- du. h o El
d_ependent Ipa_ding_ will be considered here. The parametric equa- 5 n__ —Uﬁ‘ Ub+ Qb+ nAc;_“ (230)
tion of a helix is(Fig. 2) ¢ G
x=acos¢, y=asing, z=he (18) dU, h— _  aEl,—
. . . P = U~ QO+ ——T (2%0)
where ¢ is the horizontal angle of the helix. The infinitesimal do¢ c " nt GAZ °
length element of the helix is defined as _
dQ, a— El,—
c=\a?+h?, ds=cd¢, cosa=alc, sina=h/c (19) d_qﬁt:EQ“JrG_I:M‘ (23d)
wherea anda are pitch angle and centreline radius of the helix, o
respectively. The curvatures of a cylindrical helical spring are dQ, a— h_— _
) ) =—=Q+=Qp+M, (23¢)
x=alc“=constant, 7=h/c“=constant. (20) deé c c
The relationship between the moving axisn, b) and the fixed dQ, he |
reference framéi, j, k) is —b__ — QO+ M, (23f)
do c Iy
{V}tnb [B]{V}Uk —
. dT, pAc’z a—
v —(alc)sing (alc)cos¢p  (hlc) V, @ E U +— T +B7 (230)
Vb =| —cose —sing 0 [{Vvt. B "
\% - _ \Y dT, pAc*z?_— a— h—
b (h/c)sing (h/c)cos¢ (alc) k = d_(bn: P = U,— Tt+ Tb+Bs (23n)
n
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dTy pAc*Z_ h— _ dY(¢.2)

ﬁ—Tr‘Ub—ETrﬁng (23) WZF(%Z)YW‘ZHB(&Z)- (24)
dM, plc?Z2_— a— _— ~ For the case of spatial bar, the elements of state vector are defined
d6 - El Qi+ o Mp+Byo (23) as
dM, pc?2— — a— h_ _ Y(6,2={U($,2), Q(¢,2), T($,2), M(,2)}'. (25)
= Qp+Tp— =M+ =M, +By; (23K)
deé E c c The complementary functions method is based on the principle
— - of solving Eq.(25) with the aid of initial conditions. This method
dM, _ plpcz 0 -T.— EM +B. (23) of the complementary functions method is basically the reduction
do¢ El, b Tn g Mint P12 of two-point boundary value problems to the numerical solution

of initial-value problems which are much more suitable for pro-
6 Solutions of the Differential Equations With the gramming. The general solution of the governing differential Eq.

Complementary Functions Method (25), is given by

Equationg23a—I) make up a set of 12 simultaneous differential 12
equations with constant coefficients. Each one of these equations Y(¢,2)= Cr(UM™(,2))+V(,2) (26)
involves first-order derivatives with respect to position. The rela- m=1

tionships given for only the static case in Haktdrig] were used _ ) ) _
in the Laplace domain with the addition of dynamic loads. IwhereU™(¢,z) is the complementary solution such thatrith
matrix notation, Eqs(23a—l) can be expressed as component is equal to 1, whereas all the others are x4r,z)

18

Present Study
16 - -- 0 - -ANSYS

14 -

12
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Nondimensional Uz displacement

Or 2l

-2 6
-3 T v +
0 1 2 3 4
Time (sec.)
(b)
Fig. 6 (a) Vertical displacement versus time at the free end for the step load, (b) bending

moment versus time at the fixed end for the step load
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Fig. 7 (a) Vertical displacement versus time at the free end for the rectangular impulsive
load, (b) bending moment versus time at the fixed end for the rectangular impulsive load

is the inhomogeneous solution with all zero initial conditions, theeous solution of the systelf23), the element end forces are
integration constant€,, will be determined from the boundary obtained, and these forces are incorporated into the element dy-
conditions at both ends. namic stiffness matrix appropriately.
The fixed-end forces are computed fr@@8) by taking all the
end displacements to be equal to zero.
7 Determination of the Dynamic Stiffness Matrix

The element equation is given in the Laplace domain by

{P}=[k]{d}+{f}. @7
There are six degrees-of-freedom at each node, three of these .
six are translations and others are rotations. Leftisiand for the For the transformation to .the common reference system, the
beginning and for the end of an element, the end displacemenfg!lowing equations are used:
and the end forces are given in E428) and(29).

(f1'={-T(¢,2), —M(¢;,2), T($;,2), M(¢;,2)} (30)

{d)'={U(¢.2), Q(e.2). U4} .2, .2} (28) Kl =TT Kl T (31)
PI'={T(¢1.2, M(¢i.2). T(4.2, M(¢.2)} (29)
In order to determine the element stiffness matrix, the end dis- {ﬂijk:[T]‘{ﬂmb (32)

placements of the element as defined28) are equated to unity
for any one of the 12 directions while keeping the others zero.
This is done 12 times using each equation. From the homogehere the transformation matrj{] is given by
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Fig. 8 (a) Vertical displacement versus time at the free end for the triangular impulsive
load, (b) bending moment versus time at the fixed end for the triangular impulsive load

[B(¢i)] [0] [0] [0] 8 Numerical Examples
[0] [B(¢i)] [0] [0] In this study, a general-purpose computer program is coded in
[T]= [0] 0]  [B(s)] (0] FORTRAN77 for time-dependent loading to analyze forced vibra-
) tion of cylindrical helical rods. As a special case, free-vibration
(0] [0] (0] [B(¢)1] oi1n analysis can also be done by simply removing the applied loads
(33) and replacing the Laplace parameter’ With “ iw.” Butcher's
and[B] is defined in Eq(21). fifth-order Runge-Kutta algorithnf27], is used for the solution of

the initial value problem based on the complementary functions
' T3l ; : thod. Forty steps of integration are used in the analysis. The

the fixed-end force¢f}, are determined by solving EG23) by meth L ) ;

the method of the complementary functions method in the Laplapéerlns inverse Laplace transforni23,24, is applied for the

domain. The system equation of motion can then be assemblEgisformation from the Laplace domain to the time domain.

from the element dynamic stiffness matrices and end forces as !N this section, two sample problems are presented. First, in
order to validate the developed computer program, the free-

[K(2{D}={P(2)} (34)  vibration frequencies of a helical spring that is fixed at two ends

where[K ()] and{P(2)} are the system dynamic stiffness matrixa'e cor_npared W|t_h the results available in th'e I|tera_1ture. In addi-
and load vectofD} is the vector of unknown displacements of thdion, this system is also analyzed under an impulsive load. Sec-
system. ond, a cantilever helical rod is considered. Various dynamic loads
For the free-vibration case, the system load vector is equal ate applied on the free end of the rod, then the analysis is done by
zero and the Laplace parameter’ is replaced with “iw.” The using the present computer program and ANS28]. Displace-
eigenvalues in this case give the natural frequencies. ment values and the element forces are compared in the graphics.

In this study, both the element dynamic stiffness makixand
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Example 1. The helical spring fixed at the both ends showms required with an appropriate integration step-size. In the
in Fig. 3 is considered. The spring is made of steel and haspeesent method, only one or two elements were used to achieve
circular cross section with the diametdr=1 mm. The pitch the desired accuracy as opposed to high number of elentients
angle, radius of the helix circle and the number of active turns aifee order of 10pneeded in ANSYS.
chosen asy=8.5744°,a=5 mm, andn=7.6, respectively. The  Free-vibration frequencies calculated to validate the developed
material properties arfg= 2.06x 10t* N/m?, p=7900 kg/n?, and computer program are compared with the theoretical and experi-
v=0.3. Free-vibration frequencies calculated by using the presenental data given in the literature. It is seen that the results of the
computer program are given in Table 1 with the theoretical affesent model demonstrate a good agreement with the results of
experimental data given in the literature for a comparison. It cather independent methods and ANSYS.
be seen from Table 1 that the result of the present model demonAfter having tested the validity of the present model on the
strates a good agreement with the previous results. Table 1 shdwes-vibration problem, the results of forced vibration analysis is
the results obtained from ANSYS are also in accord with theompared with those of ANSYS in graphic form, and close agree-
results of the present study. It should be noted that, in the preserent has been observed. The computation time is also signifi-
method, only two elements were used to achieve the desired agntly reduced with the present model.
curacy as opposed to 500 straight-beam elements needed in AN-

Afte_r ha_ving tested the validity c_)f th_e present_m_odel on th%cknowledgments

free-vibration problem, the forced vibration analysis is presented. ) )
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Vibration of Thick Circular Disks
and Shells of Revolution

A fully numerical and consistent method using the three-dimensional theory of elasticity is

A. V. Slngh presented in this paper to study the free vibrations of an axially symmetric solid. The solid
. is defined in the cylindrical coordinates fjz) by a quadrilateral cross section in the r-z
L. Subramaniam plane bounded by four straight and/or curved edges. The cross section is then mapped
using the natural coordinatesé @) to simplify the mathematics of the problem. The
Department of Mechanical and Materials displacement fields are expressed in terms of the product of two simple algebraic polyno-
Enginesring, mials in & and », respectively. Boundary conditions are enforced in the later part of the

The University of Western Ontario, solution by simply controlling coefficients of the polynomials. The procedure setup in this

London, ON N6A 5B9, Canada paper is such that it was possible to investigate the free axisymmetric and asymmetric

vibrations of a wide range of problems, namely; circular disks, cylinders, cones, and
spheres with considerable success. The numerical cases include circular disks of uniform
as well as varying thickness, conical/cylindrical shells and finally a spherical shell of
uniform thickness. Convergence study is also done to examine the accuracy of the results
rendered by the present method. The results are compared with the finite element method
using the eight-node isoparametric element for the solids of revolution and published data
by other researcherd.DOI: 10.1115/1.1544542

Introduction ied the axisymmetric vibrations of a circular plate with double
Vibrations of circular annular plates and shells of revolutio near variable thickness. In their paper, the thickness of each of

have been the focus of study for a very large number of researdfie core and the outer annular region was considered to be linearly
%ying. Numerical results were given for the clamped as well as

ers for nearly a century. The problem of vibrating solid cylinder imol d d d with oth blished
was considered by many researchers from the three-dimensidng S'MPIY supported cases and compared with other publishe

theory of elasticity. Different solution types were introduced b _ources._Rec_entIy, So and Leig42] investigated the free \_/ibra-
incorporating in the analysis some simplifying assumptions aff" of thick circular and annular plates and compared their results

cases of slender rods and relatively thick circular disks were e¥ith those obtained by others using Mindlin plate theory. Majority

amined as special cases. McMahfi deduced equations for of the researchers mentioned above focussed their attention on the

some special cases of the free vibration analysis of circular cyliifalysis of circular plates and cylinders.
ders. He continued to verify his analytical results by performing ThiS paper presents a consistent numerical method for the free
some experiments on the free vibrations of solid cylinders. Mirsk{jbration analys!s of solids of revolutlon_. The method |s_un|f|ed in
[2] deduced an approximate theory of vibrations of orthotropié Way that a varied class of problems with respect to axisymmetric
thick cylindrical shells in which the effect of transverse normafnd asymmetric vibrations, can be studied. The solid is defined in
stress was retained. Hutchinsi@-5] published a series of papersthe cylindrical coordinatesr(6,z) by revolving around the-axis
on axisymmetric and asymmetric vibrations of solids of revoll@ quadrilateral cross section bounded by four straight and/or
tion. For example, he studied axisymmetric vibrations of a stresgHrved edges. The cross section is then mapped using the natural
free rod,[3], using Bessel functions in the solution. The vibratiorgoordinates(¢,») to simplify the mathematics of the problem.
of solid cylinders using three-dimensional equations of linear elauch a mapping is routinely carried out for the formulation of
ticity was also investigated in his paper of 1988]. This work isoparametric quadrilateral finite elements. The solution algorithm
was further extended to consider the vibration of thick circulds developed on the basis of the Ritz method, which requires pre-
plates(Hutchinson[5]). A detailed survey paper dealing with thedefined admissible displacement fields, which are constructed by
dynamic analysis of cylinders and open cylindrical panels made wiultiplying two simple algebraic polynomials in thgeand » di-
an arbitrary number of anistropic linearly elastic layers perfectlections, respectively. The present formulation is different from
bonded together, was published by Sold4&jsLeissa and SP7] those by other researchers, because it is entirely numerical and has
compared the natural frequencies for rods and beams from oaesignificantly wider range of applicability. It is very similar to the
dimensional and three-dimensional theories using the Rayleifgrmulation of Leissa and S[7,8], but more general in the sense
Ritz method. After establishing the advantage of threghat it can accommodate various other geometries, such as spheri-
dimensional analysis, they continued with the free vibratiopal and conical shells having uniform or variable thicknesses.
analysis of circular cylindergLeissa and Sd8]) and presented Through the convergence study, numerical scheme is found to be
results for free-free and clamped-free boundary conditions. Thgbust and stable. The results are obtained first for uniform as well
Rayleigh-Ritz method was used by Young and Dickin@a0| to  as variable thickness circular disks and then compared with those
study a class of homogeneous solids including several solids gtained from the classical method using Mindlin plate theory and
revolution. Using the same method, Singh and Saxéfiastud- finjte element method using eight-node isoparametric axisymmet-
ric ring elements. Although the mode shapes were generated for

Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF these cases. due to lack of space they are not included in this
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ! !

CHANICS. Manuscript received by the Applied Mechanics Division, June 24, 19ogaper. Still, it is worthwhile to mention that an ime_'reSting pa_lttem
final revision, Aug. 29, 2002. Associate Editor: V. K. Kinra. Discussion on the papawas observed from the mode shapes of the vibrating thick circular

should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Department(ﬂ%ks Some modes were found to be predominantly flexural type
Mechanics and Environmental Engineering, University of California—Santa Barbara, ) '

Santa Barbara, CA 93106-5070, and will be accepted until four months after fiﬁ%ﬁhereas the others We_re the in-plane Stretchmg TYPe- They CO?XISt
publication in the paper itself in the ASMEDURNAL OF APPLIED MECHANICS. independently. Numerical examples for solid cylinder and thick
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conical and spherical shells are also presented and discussed in u 19w

this study. Frequencies of the circular disks and thick shells of 83:F+ T

revolution are plotted versus the thickness. 3)
. Ju  Jduv

Formulation Y=gt 5

To begin with a general formulation, it is assumed that the solid

is made of a linearly elastic isotropic material. Figure 1 shows the 1dv oJw

sectional view in the -z plane and the solid is formed by revolv- Y20=7 501 oz

ing the shown area about tlzeaxis. The area is bounded by four

curved edges. The coordinatesZ) of the four corner points 1 lou ow w

through 4 and also of the additional middle points 5 through 8 of iy + T

the four edges are prescribed. The natural coordinate sygtemn

is used to map this area into a square. The relationship betwéére matrix form of Eq(3) is

the (r-z) and(&-7) systems is well known, as this type of map-

ping is routinely used in the formulation of an eight-node isopara- {ey=[d]{u} (4)
metric finite element. Consider a point inside the area shown \jhere {8}T:{sr €5 €0 YVesYanVeoh {u}T:{uvw} and [d] is

Fig. 1. The coordinates of this point can be represented by  cajled for convenience the matrix of differential operator. It is

* given by
(&) =2 NiE " 1
= — 0 0
) 8 ar
2(&m=2, Ni(&mz. o 2
=1 9z
Here,N;(&,7) and (;,z); for i=1,2,3 ... ,8 are, respectively, 1 19
the shape functions and the coordinates of the eight points defin- - 0 -—
ing the geometry. According to this notation, the infinitesimal vol- q1= r rae 5
umedV can be written as [d]= 9 9 0 : ®)
dV=rdedrdz=r(& 7)|3(£ 7)|déd ydo. ) gz ar
The cross-sectional area is not divided into smaller regions, as is 0 19 d
done to generate the mesh in the finite element method. In the Y90 oz
following, the basic equations from the theory of elasticity for
axisymmetric solids are presented briefly in thef(z) coordinate E i 0 i_ 1
system. These equations include strain displacement relations, Lrae ar ]

stress strain relations, and energy expressions. . . . .
gy exp The next important equation to consider here is the stress-

Elasticity Equations strain relationship. By denoting the transpose of the stress vec-

) o tor as {0} ={0,0,0,71,7247;4}, ONe can write the following
Assume that the translations along the, and ¢ directions are rg|ationship:

denoted by, v, andw, respectively. The strain-displacement re-

lationships in this system are given by {o}=[El{e}. (6)
au If the material is isotropic withr, z, and 6 as the principal di-
&= or rections, the stress-strain operator mafi® can be written as
follows:
Ju - -
€= e v v 0 O
14 el 14 0 0
v v e 0 O O
E]l= ——+— 7
z LE] (1+v)e;] 0 0 0 e3 0O O ™
0 0 O 0 e O
|0 0 0 0 0 eg

where,e;=1—v, e,=1-2v, e3=€,=e5=e,/2 andE=modulus

of elasticity of the material. Orthotropic material can also be
treated with some minor alteration in E@). The strain energy is
given by

1 1
U=zfv {"}T{s}dv=zfmmme{e}T[EHa}dV- ®

olume

Similarly, the kinetic energy for the continuum is given by

1
K=< f ploul gt} {oulatldV. 9)

2 olume

Here,{au/at}T={aul ot dvldt dw/at} and p=mass density of the
Fig. 1 Cross section of a solid of revolution material. The strain and kinetic energy expressions given by Egs.
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(8) and(9) are left in the above form and will be revisited, when Now, Egs.(12) and (13) are substituted into the energy ex-
the solution procedure is discussed in the subsequent section.pressions given by Eq$8) and (9), respectively, to obtain the

following:
. +1 (+1

Method of Solution U—%{é}T( n f f [BITEIBIr (£ n)| (& n)ldéd 77){5}

As said earlier, the solution procedure developed herein is -1J-1
based on the Ritz method. The original Rayleigh-Ritz method re- ) $1 41 _
quires predefined displacement fields with fully satisfied essentialK = %{5}T( Wpf f [FITTFIr(&,m|3(&, m)|dédn |{4}.
boundary conditions. To define the displacement fields, the fol- -1J-1
lowing form of the simple algebraic polynomial is chosen: Finally,

f(&)=ag(l— &) "+a(1— &))" Y1+ &) +a(1—&)" 2(1+¢)? : :

oA (1= 6(1+ )" a1+ )" (10) In the above[k] and[m] are the stiffness and mass matrices of the

The advantages of considering such a polynomial in the solutisyistem and an overdot denotes the time derivative. From these
procedure are as follows. First, if the polynomial is comple, energy equations, one can use standard procedure to obtain the
none of the intermediate terms has been rempvétre is no following equation of motion for the free symmetric and asym-
mathematical constraint imposed to the solution. Second, the @netric vibrations of the solid of revolution:
forcement of the geometric boundary conditions is very simple .
and straightforward. For example, by examining the above poly- [m{é}+[k]{o}=0. (15)
nomial in Eq.(10), it is observed thaf(¢£)=0 at é=—1 and Also, for simple harmonic motion, one can writés}
&=+1, if ag and a, are set to zero. Similarly, the derivative={A}cost+ ¢). Further,E and p can be taken out of the stiff-
af(&)/9¢ is zero at the two extreme values &fwhen the condi- ness and mass matrices and then the final eigenequation is
tion of ayp=a,=a,_;=a,=0 is applied. The boundary condi- 5
tions are applied prior to the eigenvalue calculation. ([k]=Qm]{a}=0. (16)

The admissible displacement fields are generated by multipijere, ()2= (p/E)w2a?. The symbolQ=the dimensionless fre-
ing the polynomiaff () by its counterpart(z). The coefficients quency parameter of the systemzmass density of the material,
resulting from the product of the polynomials are denoted by a sgt-natural frequency in radian/second, aneda length parameter
of two-dimensional arraysajy , by, andcj. for u, v, andw, re- \hijch is typically a prominent dimension depending upon the
spectively. Therefore, the displacement components are repigse of the problem. The computational algorithm is written such
sented using the following double summation series in winich that numerical results are obtained in nondimensional form. It is

p q coordinates are normalized with respect to the length pararaeter
u=, ayfi(&)fi(m)cosnd of the solid of revolution.
k=1j=1

Numerical Results

P q
v="2, >, byfi(&)f(n)cosng (11)  Although the analysis is valid for more general solids of revo-
k=1j=1 lution, numerical investigations in this paper are carried out only
b q for solid_s of revolution formed by revolv_ing areas bounded by
W E Cof-(6)Fu(7)sinng four straight or curved edges around thaxis. The orientation of
ik K7 : this quadrangular shaped region determines the type of the prob-

k

I
[
Il

) ) ) ) lem we need to solve. By changing the parameters, it is possible to
In a matrix form, the above series equations can be written asanalyze problems having a wide range of shapes and sizes. To
{u}=[Flq} (12) iIIu_strate th(_a vers_atility o_f the present forr_nulation, three types_of
axisymmetric solids are investigated in this study. They are: thick
where[F] is a (3x3pg) matrix and constructed as follows. Forgircular disks of variable thickness, conical shells, and spherical
the row one, the firstfxq) terms are made of;j(£)f(#) and shells. In addition, cylindrical configuration is considered as a
the remaining terms are zero. Similarly, the second row is formeg@ecial case of the conical one. Numerical values obtained for the
with the first and the last(X q) terms being zero and the middlefrequency paramete® are also compared with results available
(pxq) terms constructed from the products of the two polynahrough other sources in the literature. The value of the Poisson’s
mial functions. The values gfandk are assigned to be 1,2,3 .q. ratio v is taken to be 0.3 in the computation of all the results that
and 1,2,3...p, where I—1) and (p—1) represent the orders of follow. (See Fig. 2.

the polynomials f;(£)=(1-&)971(1+&)/"* and f(7)=(1 In the calculations using the Ritz method, the accuracy of the

— )P 7K1+ 7)1, respectively. When Eq(12) is substituted results depends upon the number of terms used in the polynomials

into Eq. (4), the strain vector is obtained and written as f;(£) andf (%) which are complete functions in the sense that
{e}=[dI[FHa}=[BI}. 13)

In this equation, the size of matrf8] is (6X3pq) and its terms z

are made of functiond;(£) and f(#), their derivatives with 4 7

respect to¢ and » and also the function as such multiplied by a 3

factor of (1f). The relationship between the two sets of coordi-

nate parameters is well understood in the field of finite element

methods and the terms of the inverse of the Jacobian matrix SL/A/’,‘E f
[J(&, 7] are to be used for this purpose. The vegidy the size of 1 p 2
which is 3pq, contains all the unknown coefficients of the double
summation series given by E¢ll). The values of these coeffi-
cients are determined during the eigensolution of the equation.

Also, the infinitesimal volume for an aredrdz located at point Fig. 2 Area to be revolved around  z-axis to form a variable
(r,2) is written asdV=r (¢, 1)|J(&, »)|dédnde. thickness circular disk
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Fourier Harmonic Number. n= 1
3p Number of temms along the thickness = 4 1
-0-ha=005 -x-ha=0.10

Fig. 3 Representation of a thick conical shell

[
D
h

there are no terms that are missing between the first and the [
terms. If a sufficiently large numbétheoretically it is) of terms

is used in the calculation, the method will yield exact solution 05 — =7 75 s 85 o
However, by increasing the number of terms in the polynomials NUMBER OF TERMS ALONG THE SURFACE

one is bound to encounter numerical complications. If the com-

puter is not powerful enough, the computer code will not rend&fg. 5 Convergence study for a conical shell clamped at the
successful runs. To ensure the degree of accuracy of the result!¥%§r open end

well as the validity of the polynomial form used in this study, it is

appropriate to conduct a convergence study.

' e - i
e— - - ]

Convergence Study. For this, a conical shell with cone \yjih these polynomials the order of each of the stifiness and mass
angle=30 deg and clamped at the lower end shown by point 2-6i3,rices is 96. The stiffness and the mass matrices are computed

in Fig. 3 is analyzed. The number of termsfif(7) is kept at 4, merically by Gaussian quadrature, with eight and four integra-
which is reasonable as it represents solution part associated wit, points in¢ and  directions, respectively.

the thickness of the sheliSee Fig. 4. The number of terms in

f;(£), which represents variation along the axis generating theCase 1. Analysis of Circular Disks. A thick circular disk of
conical surface, is varied from 4 to 9. Figure 5 shows the first finearying thickness as shown in Fig. 2, is considered. It is sym-
natural frequencies corresponding to the asymmetric modes witigtrical about the-axis and the detailed dimension of this disk is
n=1. Two cases with thicknesga=0.05 and 0.10, respectively, described as follows:

are analyzed and the results are plotted using symbols “0” and
“x,” respectively. Clearly, the convergence is seen to be mono-
tonic for the first four modes. For the fifth mode of vibration, and b=r,;=r,=rg. 17)
some peculiarity is observed for both cases. Especially, with the

mode corresponding to/a=0.10, for which two curves appear toHere, {;,z) for i=1 through 8 represent the coordinates of the
be intersecting af=5. This can be explained by considering theeight nodes. The inside edge contains nodes 1, 8, and 4 and the
fact that this type of formulation includes all kinds of behaviorsoutside edge is defined by nodes 2, 6, and 3.

namely flexural, thickness-shear and purely extensional, of theFor further validation of the numerical method presented in this
shell structure. For extensional modes, the frequency does paper, a circular disk of uniform thickness, clamped at the inside
vary with the thicknes$Kalnins[13]). It is also seen here that theedge and free at the outside, is analyzed so that the results ob-
values of the frequency are the same for bota=0.05 and 0.10. tained can be compared with those from the work by lIrie et al.
By considering eight or more terms i(¢), it is reasonable to [14]. By using the Mindlin plate theory for solving the differential
say that the values of the natural frequencies are expected toeg@iation of motion in terms of the Bessel functions, they pub-
within 3 to 5 percent of the correct value. One should realize thiiéhed an extensive set of data pertaining to the natural frequencies
the exact solution based on the three-dimensional theory of ela$-thick annular plate of uniform thickness. The comparison as
ticity may not be simple(if not impossible for the shell types seen in Table 1 is generally very good for relatively thin annular
considered in this study. For additional numerical investigatioplates. But for thick disks, the discrepancy between the numerical
generally thick circular disks and shells of revolution are taken assults from the two sources is expected as the work by Irie et al.
example problems. The computation is carried out with eighl4] is based on the first-order shear deformation theory of plates.
terms(i.e., q=8) in f;(£) and four term(i.e., p=4) in f, (n). Itis further noticed is that there are some blank cells in columns B
of Table 1. The present formulation is capable of providing the
results of both the bending and in-plane stretching modes,
whereas the results based on the Mindlin plate theory yields fre-
quencies for the flexural vibration only. Irie et al. did not publish
results with a thickness ratioh(a) of 0.4 and higher for the
annular plate witth/a=0.3. Because of this, the last column of
the second half of Table 1 is blank.

Table 2 is included in this study to illustrate how the Ritz
method fairs with the standard finite element method. Again a disk
of variable thickness clamped at the inside edge and free at the
outside is considered. The variables for which the frequency cal-
culation corresponding to the first five axisymmetrin=0)
modes of vibration was carried out, are given as follows:

hl:Z4_le h2:Z3_22, a:r2:r3:r6

r b/a=0.3,04 and O0.5;

Fig. 4 Representation of a thick spherical shell h,/a=1.0,0.50 and 0.05; and;/a=1.0. (18)
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Table 1 Natural frequency parameter Q for a thick annular plate clamped at the inner edge
and free at the outer. S=Wave number in the radial direction. A—present analysis and B—Irie

et al. [14].
b/a=0.2
h/a=0.1 h/a=0.2 h/a=0.3 h/a=0.4

n S A B A B A B A B

1 0.1547 0.1537 0.2941 0.2911 0.4095 0.4031 0.5003 0.4902
0 2 0.8961 0.8867 1.4628 1.4380 1.7676 1.7267 1.9376 1.8860

3 2.3904 2.3156 2.3146 2.3115

1 0.1408 0.1395 0.2574 0.2536 0.3478 0.3414 0.4186 0.4091
1 2 0.9530 0.9440 0.9655 e 0.9660 e 0.9665 e

3 0.9650 e 1.5680 1.5445 1.9256 1.8883 2.1372 2.0880

1 0.1873 0.1861 0.3498 0.3480 0.4911 0.4884 0.6134 0.6101
2 2 1.1507 1.1427 1.6179 1.6184 1.6189

3 1.6174 1.9172 1.8956 2.3850 2.3468 2.6614 2.6085

b/a=0.3
h/a=0.1 h/a=0.2 h/a=0.3 h/a=0.4

n S A B A B A B A B

1 0.1987 0.1973 0.3756 0.3716 0.5200 0.5120 0.6321 ---
0 2 1.1591 1.1466 1.8348 1.8012 2.1657 2.1125 2.3327 ---

3 2.5278 2.5297 2.5298 2.5275

1 0.1927 0.1910 0.3553 0.3504 0.4815 0.4730 0.5778 ---
1 2 1.2090 1.1965 1.1399 1.1402 e 1.1405

3 1.2330 s 1.9212 1.8883 2.2882 2.2360 2.4806 ---

1 0.2300 0.2285 0.4208 0.4170 0.5765 0.5701 0.7064 ---
2 2 1.3686 1.3566 1.8093 e 1.8102 . 1.1811

3 1.8084 2.1916 2.1595 2.6436 2.5919 2.8710

The boundary condition at the inside edge is givenubyvo=0. =0.0,h,;/a=0.5 andh,/a is varied from 0.05 to 0.50. The varia-
The Ritz solution used 8 terms in the series in eaclf ahd » tion of the frequency paramet€) versus the thickness ratig /a
directions. This order of the polynomial translates into working presented in Fig. 6 for the tapered disk clamped at the inside
with 128128 matrices. An eight-node quadrilateral solid of revoand free at the outside. The valuelof/a=0.05 represents a disk
lution element is used in the finite element analysis. The finiEdmost shaped like a wedge, i.e., thick at the inside edge where it
element mesh consists of 10 elements inrtdrection and 8 in is clamped and nearly a sharp pointrata. The first five modes
the z-direction. The 80-element model consists of 277 nodes, eafth each of the axisymmetrigine with “o” for n=0) and asym-
node having two degrees-of-freedom. Hence, there is a total raktric (line with “x” for n=1) cases are presented in this figure.
554 known(through the given boundary conditioremd unknown Frequency distribution shows no distinct pattern. Both the
degrees-of-freedom. The results from the two methods are fouitekural/thickness-shear and in-plane stretching modes are present
to be in very good agreement. The Ritz method consistently yielbsre.
lower values for the natural frequency than the finite element
method and hence is more accurate.

A solid circular disk of variable thickness is further analyze
here. The dimensionless parameters taken for this casbe/are

Case 2. Analysis of ConicdCylindrical Shells. The second
&olid of revolution investigated herein is described by Fig. 3, in
which a frustum of a cone of variable thickness is shown. The

Table 2 Comparison of the frequencies obtained from the Ritz 3 ' ; ﬁ\'é\e\‘
and finite element method (FEM) for the axisymmetric circular 45k h
disk of varying thickness, clamped at the inside edge g -0- n=0
4+ -x- n=1 b
h,/a=1.0 h,/a=0.5 h,/a=0.05 S—
Mode Present FEM Present FEM Present FEM 85 /—
b/a=0.3 3
1 0.9115 09126 0.8733 0.8759 1.0708 1.1723
2 2.4273 2.4282 2.3143 2.3422 2.1581 2.4031€Q) 25
3 25337 25338 2.7258 2.7288 3.2760  3.2815 o
4 3.1673 3.1679 4.1896 4.1914 4.5165 4.6448 A, ——————X
5 3.7296  3.7298 4.5865 4.5954 55833 5.5953 r_’_n_,_«——/-—*"_*_—(
b/a=0.4 1.5 . . N b
1 1.1452 11465 1.0808 1.0843 1.2971  1.4256 © © 6 © ©
2 2.7059 2.7071 2.7412 2.7418 2.5757 2.8275 1t 1
3 2.9242 29243 3.0531 3.0569 3.6438 3.6517 P
4 3.3640 3.3645 4.2172 4.2189 3.3591 5.4806 0.5 o o o - > Py
5 3.9186 3.9190 5.0815 5.0935 5.9965 6.0082
b/a=0.5 0 2 L L L 1 L L .
1 1.4705 1.4720 1.3744 1.3791 15970 1.7608 005 01 015 02 025 03 035 04 045 OS5
2 3.0510 3.0523 3.2454 32454 3.1046 3.3617 THICKNESS PARAMETER (h2/a)
3 3.4566 3.4571 3.4805 3.4850 4.1521 4.1600
4 3.7373 3.7375 4.3262  4.3285 6.4578 6.4662Fig. 6 Frequency € versus thicknessratio h,/a for a clamped-
5 42491 42495 57099 57171 6.5154  6.5295free tapered disk. Parameters used are  b/a=0.0, h,/a=0.50
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Table 3 Comparison of the frequencies obtained from the Table 4 Comparison of the frequencies obtained from the

present analysis and Leissa and So [8]. Cylindrical solid present analysis and Singh and Mirza  [15]. Thick spherical
clamped at the bottom. A—present analysis, B—Leissa and shell clamped at the open edge  ¢=60 deg. A—present analysis,
So [8]. B-Singh and Mirza [15].
L/a=2.0 h/R=0.05
n=0 n=1 n=2 n=3 n=1 n=2 n=3 n=4
Mode A B A B A B A B Mode A B A B A B A B

1 0.7980 0.7975 0.3140 0.3138 1.3410 1.3408 2.0234 2.02D5  0.9007 0.8990 1.0916 1.0790 1.2264 1.2140 1.3998 1.3931
2 1.8365 1.8357 0.8958 0.8955 1.5628 1.5616 2.2961 2.2984  1.2071 1.2092 1.4750 1.4756 1.7741 1.7657 2.2122 2.1028
3 1.9660 1.9653 1.6069 1.6050 2.1424 2.1400 2.6657 2.66D0  1.7884 1.7596 2.2329 2.1842 2.7676 2.6141 3.3418 3.0760
4 25951 25936 1.7702 1.7700 2.3352 2.3320 2.8923 2.88#4  2.2592 2.2397 3.2212 3.0864 4.1377 3.6792 5.0005 4.2431
5 2.6719 2.6650 2.0770 2.0751 2.7103 2.6960 3.3396 3.31BO0  3.0291 2.7194 3.8304 3.3194 4.5975 4.1620 5.5276 5.0022

. The variation of the frequency paramet@rversus the thick-

generator of the middle surface of _the _shell is shown by a Chaﬁréss parametdt/a is examined for a uniform conical shell free
line joining nodes 6 and 8. The cylindrical shell can also be dr%

scribed by this geometry, if the chain line is made parallel to t gt the inner edge 1-8)4and clamped at the other edge 2-6-3.

z-axis. To calculate the natural frequencies we define the foIIolei-fl ;inle(t)e;sntésg g;or: /g\;socg(s)e_ﬁ:?s ?anegnekg/c fhﬁgfnzrgﬂt%egév_
ing geometric parameters. e . hall

ers both thin and thick shells. Figure 7 shows the plot of the
a=rg, b=rg, L=zg3—2z5, h,;=length of side2-6-3, frequencies, both axisymmetrin€0) and asymmetricn(=1),
) versush/a. As can be expected, the frequen@ygenerally in-
and hy=length of sidel1-8-4. (19)  creases with the thickness.

From the given numerical values af b, L, h;, h,, cone angle  case 3. Analysis of Spherical Shells. An attempt is also
(a), etc., the coordinates of the eight-nodal point defining theaqe in this present work to analyze a thick spherical shell for
shell geometry can be easily obtained and used in the compUgich very limited amount of result is available in the literature.
program. ) ] First, a case is run to compare results with those from an earlier

Leissa and Sd7,8] published accurate data for the first 2Qoub|ication by Singh and Mirz415] which is based on the
frequencies of completely free-elastic cylinders. Also included IReissner-Naghdi theory of thin shells. The shell parameter taken
their study is a table containing the frequencies of a clamped-frgg this purpose ares, =0 deg, ¢,=60deg, h/a=0.05, and
solid circular cylinder having the following parameters: »=0.3. The shell is clamped at the open edge 2-6-3. This bound-

b/a=1.0; h,/a=h,/a=1.0; L/a=2.0 and a=0. ary condition is simulated by substituting=v =w=0. Numerical

20) results for the dimensionless frequency parametér
(20) 'S . . 3
i . ) ° _=wa/(p/E) is presented in Table 4 for asymmetric modes of

The numerical results for the shell with parameters given in Egipration corresponding tm=1 through 4. Frequencies in the
(20) is pertinent to the present investigation. To compare the gzt two rows compare reasonably well. But the agreement is not
sults, therefore, a cylindrical solid clamped at the bottore., ey good as the mode number and/or circumferencial wave num-
along the edge 2-6)3s analyzed using the present method bye 'y increase. The main reason for the difference can be attrib-
taking 8 terms along and 4 alongy directions. Table 3 Shows a teq to the two different theories that are used to obtain the re-
very good comparison of the results from the two sources. Itis {915 The Reissner-Naghdi theory of shell is valid only for thin to
be noted here that the excellent agreement here is not due 3 &jerately thick shells. Using the present formulation, some ad-
mere chance. The analysis by Leissa and So is also based onggnal results are calculated with=0 (axisymmetric mode of
Ritz method similar to the present work. vibration) and n=1 (asymmetric mode of vibrationand pre-

1.5 % * ,\ - ,\ p
3 .
05 . L " ) . A A A 0 ) A . A A A : L
005 01 015 02 025 03 035 04 045 05 005 01 015 02 025 03 035 04 045 05
THICKNESS PARAMETER (h/ a) THICKNESS PARAMETER (h/ a)
Fig. 7 Frequency € versus thickness ratio h/a for a conical Fig. 8 Frequency € versus thickness ratio h/a for a spherical
shell free at the top opening and clamped at the bottom. Param- shell clamped at the open end. Parameters used are &b,
eters used are cone angle a=30 deg, L/a=1.0 and »=0.30. =0 deg, ¢,=60deg, and »=0.30.
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sented in Fig. 8 showing the variation 6f against the thickness modal behaviors, namely bending and stretching. The low fre-
to radius ratich/a. A uniform thickness spherical shell clamped atjuency vibrational modes are predominantly the bending type.
¢,=60deg is considered for the results. Generally, the frequenelpwever, there are some in between modes of vibration which
parameter increases with the thickness for all cases shown in thie completely of the stretchir(igr breathing type. The formula-
figure. tion presented in this paper is very general, consistent, and truly
numerical.
Concluding Remarks
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Editorial Department.

Rocking Vibration of Rotating Disk and M, G, + G, @, +[K O+ eK Vg, =0 @)
Spindle Systems With Asymmetric whereK (% is the stiffness matrix of the unperturbed systére.,
Bearings axisymmetric bearingsand eK (%) is the stiffness matrix resulting

from bearing asymmetry. The physics of the rocking motion gov-
erned by(2) depends on the spin speed. At low spin speed, the

J. S. Park gyroscopic effect and bearing asymmetry are equally important.

Graduate Student At high spin speed, the gyroscopic effect becomes dominant. For
perturbation analysis, these two cases need to be considered
separately.

l.'Y. Shen For the low-speed perturbation approach, the unperturbed sys-

Professor tem is thestationary disk/spindle system with symmetric bear-
ings. The perturbation is the bearing asymmetry. Also note that the

Department of Mechanical Engineering, unperturbed system has repeated natural frequencies for rocking

University of Washington, Seattle, WA 98195-2600 motion. To formulate the eigenvalue problem, assume dh)

=vel# where . and v are the natural frequencies and mode
shapes of the perturbed system. THgnbecomes

C.-P. R. Ku [KO— u2M, Jv=—[juG,+ eKV]v. (3)
R&D Director, Western Digital Corporation,

San Jose, CA 95138 Note that[ j uG, + eK;™] is a Hermitian matrix; thereforey will

be real butv could be complex. The solution ¢8) is
v=—H(u)[j G+ eKP]v 4)
This note presents how bearing asymmetry affects natural fRﬁhereH(,u) is the frequency response function of the unperturbed

quencies and mode shapes of a rotating disk/spindle syst
through a perturbation analysis. The analysis will focus on rockg-g%tem' Moreover,

ing motion of the disk/spindle system that consists of rigid-body 2N+4 ugay
rocking of the spindle, one-nodal-diameter modes of each disk, H(u)= 2 5 kz (5)
and deformation of spindle bearinggDOI: 10.1115/1.1544537 k=1 O~ M

Consider a rotating disk/spindle system consistindgNaflenti- where w, andu, are natural frequencies and mode shapes of the
cal elastic circular disks, a rigid spindle hub, a rigid housiog unperturbed system. Also ii%), the overbar denotes the complex
stato), and a pair of ball bearings. The rotational speedjs conjugation, and the mode shapes satisfy the orthonormality con-
According to[1], the motion of the rotating disk pack can beditions
described by

= (6.0 R R ) G @) g . uMu=8, UK Ou=60f (6)
e Ty Ty oL RO EoL oS e HOL O (1) Whered; is the Kronecker delta. To facilitate a perturbation so-
lution through contraction mapping, substitution &) into (4)

whereR,(t) andR,(t) are translation of the disk pack centroid in.oqits in

the disk planeg,(t) and 6,(t) are the rocking of the disk pack,

qSi(t) and gf) ,(t) are generalized coordinates associated with

the one-nodal-diameter cosine and sine modes ofitthedisk. V=
With these generalized coordinates, equation of motion of the

spindle system will take the form of Note thatG, andeK (Y are both small quantities if¥). Therefore,
_ _ o (7) takes the standard form of contraction mappings. Consecutive
Contributed by the Applied Mechanics Division oHE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- iterations of(7) result in a perturbation S.OIUtlon'
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 1, L€t Uz andu, be tWO'Qrthonormal rocking modes of the unper-
2001; final revision, Sept. 27, 2002. Associate Editor: A. A. Ferri. turbed system. In addition, they have repeated natural frequency

2N+4

)

2 2

k=1 M Wy

UE[]MGrJerﬁl)]VJ .
- 2 2 k
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w1=w,, because the unperturbed system is axisymmetric aBthceA, is diagonal,T is the modal matrix oB, and the per-
stationary. To obtain,; andv,, one can normaliz€7) so that the turbed terms i10) and(13) are the elgenvalues &, .

coefficient ofu, is one, i.e., For the high-speed perturbation approach, the unperturbed sys-
1) tem is therotating disk/spindle system with symmetric bearings.
pi= i+ uil[jui G+ eKiM]v;. (8)  To reduce the size of equations of motion, one can define the
Then (7) becomes foIIowmg complex representaﬂons? 0,+j0,, R=R+]Ry,
_—_— and Q) qo 1—iq8). Under this complex formulation, the
Ul j 1 G+ KM vy equation of motion becomes
Vi=ug+ 2 7 Uy - 9 o _
M1 O M@+ GQg+Kag+eK,q=0 (24)
To perform the contraction mapping, replacipg andv; of the \yhere the overbar denotes complex conjugation, and
right side of(8) by w, anduj, results in =(6,R, Q(l) ,Q QBT))T- Moreover, letp be an eigenvec-

Wi~ 02+ Ul[j G, + eK P u, . (10) tor associated Wlﬂﬁ24).. Since the eigenvalue problem (#4) is
) ) ) not self-adjoint, the adjoint system will have a different eigenvec-
In replacingu, andv; of the right side of(9) by w; andu; to  tor h. Explicit expression op andh can be found irf2].

obtain the mode shapg, one finds that the denominator of in Now consider the unperturbed system subjected to sinusoidal
(9) is vanishing because;=w,. To maintain the contraction excitations governed by

mapping,u; and u, cannot be chosen arbitrarily. Instead, they

have to satisfy Mdi(t) +Gq(t) +Kaq (t) =fel (25)
Ua[j G, + eK{Mu,=0. (11) Wheref is the excitation vector anfl is the excitation frequency.
The complex responsg(t) is

In this case, the perturbed mode shape is )
q(t)=H(jQ)fel™ (26)

(12) whereH(jQ) is the transfer function of the unperturbed system.
When the excitation frequenc§) coincides with a natural fre-
quency of the rocking modes, the system may or may not have a
finite response depending érAccording to Fredholm alternative

Vi~Ugt 2 77

2N+4 (—T,. 1
Ug[j 01G, + eK M uy
Uk
k=3 W]~ Wi

Similarly, u, andv, can be derived as

wh~ w3+ U jw,G, + eKM]u, (13) theorem, the solvability condition is"f=0. Moreover, the solv-
oNta ability condition implies that secular terms are eliminated and
uk[ijG +eK< us, periodic solutions are maintained in perturbation analysis.
Vo~ Uyt 2 . Uy (14) Now we can apply Lindsted-Ponéaapproach to find natural

frequency of the perturbed system. First, let's define a new time
with u; andu, satisfy scale 7= wt, wherew is the natural frequency of the perturbed
system. Therefore,

Ui[j ;G + eK[Y]u,=0. (15) L .
To determineu; andu, satisfying(11) and(15), let's consider o=o(@)=wot cwrtwrt .. @7)
two simplest repeated rocking mode shapes wherew, is the natural frequency of the unperturbed system, and
O (1) T w1 andw, are the first and second-order perturbation. The corre-
w;=A4(6,7,0,0R;”,0,1,0,1...,0,1) (16)  sponding perturbed response is
and A(7)=o(7) + €Qy(7) + €2qp(1) + . .. . (28)
=A,(0,6) ,R?,01,0,10...,1,07 (17)  substitution of(27) and (28) into (24) results in
whereg(H=—¢{?, RIP=R® , andA, andA, are normalization L d? d
constants satisfyin¢6). Note that, however, woM a2 +wG ppe +K ) go(7)=0 (29)
W3l @1, + KM Jwy #0. (18)  for ¢ terms,
Therefore, the mode shapas andu, in (10) and (13) must be 92 d
linear combinations ofv; andws,, i.e., (ng P oG ok K |qy(7)
[us,uz]=[wq,w,]T (19) 5 q
whereT is an orthogonal matrix satisfying (ZwowlM 92 +le )qo(r) K10o(7)
TT=I (20) (30)
becausei; andu, are orthonormal with respect #d, . To deter- for ! terms. and
mine T, consider the following matrix: € '
- . d? d
A=[U7,Uz] T} 012G, + K[y, U] (21) (ng T2+ oG 5= +K | Ga(7)
T
According to(10), (11), (13), and(15), the matrixA, in (21) must
be a diagonal matrix. In addition, the diagonal elementa oére +9 M d? N G
the perturbation ta? andw2. Substitute(19) into (21) and recall | (©1+2w00,) a2 TG 7|l
(20) to obtain » d
A,=T BT (22) (2wow1M g2 TGy )ql(T) K10:(7)
where (31)

Br=[wy1,W,]"[jw;G; + fKﬁl)][WLWz]- (23)  for €2 terms.
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Fig. 1 Eigenvalue with respectto w3 from 0 to 10 Hz
The nontrivial solution from(29) is go(7)=pel”. Therefore, h"K  u;
(30) results in ©2= T T ZawoM =] G) g’ (34)
2
d
wiM g 2+wOGd—+K g.(7) As a numerical example, consider the axisymmetric spindle
T 4 system used ifl]. (The major dimensions and properties can be
=w,(20oM —jG)pel ™~ K pe " (32) foundin[1].) The two bearings are identical and symmetric. Now

o ] _~_ consider the case with both bearings being 10 percent stiffer in
Note that the term witfe'” in (32) is the secular term. To elimi- one direction than the other Exact solutions can be found by solv-
nate the secular termy; =0. According to(26), the solution of ng eigenvalue problem of2) numerically. Figures 1 and 2 plot
(32) is q1(7)=—ue )7, whereu;=H(—jwo)K,p. Finally, (31) the natural frequencies and mode shapes, when the spin speed is

becomes from 0 to 10 Hz, and above 10 Hz, respectively. When the disk/
2 d spindle system is stationary, the bearing asymmetry splits a pair of

0IM = + woG — + K | qy(7) repeated rocking modes into two modes with distinct frequencies.
dr dr When the rotational speed increases from zero, the low-frequency
=[wy(2woM—G)p+K Uy ]e” 33) rocking mode evolves into backward precession and the high-

: frequency rocking mode evolves into forward precession. The pre-
Note that the terms witk! 7 in (33) are secular terms. To eliminatecession orbits are elliptical. Figure 3 shows the low-speed pertur-
these secular term, the solvability condition requires that bation. When the rotational speed varies from 0 Hz to 10 Hz, the
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Fig. 2 Frequency split for spindles with and without bearing asymmetry from
10 to 90 Hz
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10 O Eigenvalue Analysis
—— Low-Speed Perturbation
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Fig. 3 Natural frequencies obtained from numerical simulation
and low-speed perturbation, when the rotational speed varies
from O to 10 Hz
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Fig. 4 Natural frequencies obtained from numerical simula-
tion, low-speed perturbation, and high-speed perturbation,
when the rotational speed exceeds 10 Hz

Analytically Approximate Solutions for
Vibrations of a Long Discrete
Chain

W. Lee

Department of Physics, Chung Yuan Christian University,
Chung-Li, Taiwan 32023, ROC

e-mail: wlee@phys.cycu.edu.tw

This brief note studies small transverse vibrations of a long hang-
ing chain of discrete links. Analytical approximate solutions are

obtained when the number of links is considered large while they
still possess nontrivial rotary inertia. The results imply that the

rotary inertia becomes more significant for higher modes of

vibration. [DOI: 10.1115/1.1526120

1 Introduction

Previous attempts have been made to investigate the problem of
small transverse vibrations of a uniform chain hanging vertically
from one end. Treating such a chain as a continuous system, Ber-
noulli first found that the natural frequencies of the chain are
related to the zeros of a power serig¥atson[1]) that was later
known as the Bessel function of order zéRouth[2] and Spiegel
[3]). Historically, earlier literature adopted the terms “chain,”
“string,” and “cable” synonymously, inferring a continuous slen-
der flexible material without any bending resistarfééang[4]).

Small-amplitude transverse vibrations of a hanging chain with
finite number of discrete links have been analyz&inoshenko,
Young, and Weavef5], McCreech, Goodfellow, and Sevil[é]
and Levinsor{7]). Generally speaking, for a fixed chain length, a
chain of fewer links possesses a slightly shorter oscillatory period.
While the effect of the number of links is essential, numerical
comparisons of natural frequencies indicate that the continuum
model, especially for the lower modes, yields very accurate results
for a given chain of a large number of one-dimensional links
(McCreech, Goodfellow, and Sevil[é] and Levinsor{ 7]). Sujith
and Hodge$8] discussed exact solutions for the free vibration of
a hanging cord with a tip mass. Triantafyllou and Howé]
studied the ill-posed problem of a perfectly flexible cable when

low-speed perturbation approximates the exact results very Wik tension becomes negative. They found that the ill-posed prob-
including the veering of the frequency splitting. When the rotggm can be resolved through the inclusion of additional dynamics,
tional speed exceeds 30 Hgee Fig. 4, the low-speed perturba- hased on physical or theoretical grounds. The relationship be-
tion (the thick solid lines in Fig. ploses its accuracy and deviateSyween a discrete chain and a continuous cable of equal length has
from the exact solutior(the markers in Fig. B Figure 4 also peen revealed by Weng and LEEO], who carried out a straight-
compares the frequencies predicted from high-speed perturbatigiyard derivation of the differential equation of motion of a
(th.in solid Iines} and the exact frequencie{mar!(er$, when the hanging cable as a special case of a hanging chain of one-
spin speed varies from 10 Hz to 90 Hz. The high-speed perturk@mensional links. It is shown that the natural frequencies of a
tion approximates the exact results from the num_erlcal S'mma“%nging cable can be obtained from the resulting differential equa-
very well as opposed to the low-speed perturbation. tion that is deduced from the coupled differential equations de-
scribing the motion of a hanging chain of infinitesimal links. The
present note studies theoretically another extreme case of small
transverse vibrations of a hanging chain of discrete links, where
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present explicit derivation steps, beginning from the coupleshere the linear mass density along theirection is given by
equations of motion that govern the behaviors of all links in a=m/h and; is the longitudinal position coordinate of the top
chain system, to reveal the relationships between a hanging strpigot of thejth link and can be written as The first term on the
with rotary inertia and a hanging chain of two-dimensional linkgight side of Eq.(5) can be written as

. d2
2 Analysis (2002)(§;-1~§) = (21/h) ~ [ (y; 1~ y;)/h]
Consider a chain of length supported at one end in a uniform dt
gravitational field and oscillating about stable equilibrium in a 5
vertical plane. The chain is assumed to h&Valentical, rectan- %_(ZI/h)ﬁ_(ﬁ_y @
gular links, each of lengtl, massm, and moment of inertid, g2\ ox)’

connected by light pins at their ends as shown in Fig. 1. If the . . ) o
links, lying on the x-axis in equilibrium, are numbered Similarly, introducing the tension due to the gravitational force at

1,2,...,N beginning at the free end of the chain, then, for th& given by T=Agx and replacing (p—1)h with 2x allow the
general nonequilibrium case, the equation of motion forjthe Second term on the right side of E@) to be expressed as

link may be expressed as (2j—1)mg ay
i ) ) —n Viamyp=—2T 5) (8)
—2mY, Y,=(21/h)6;+(2j—1)mgs,—mY;, j=12,...N, _
=1 Finally, the last term of Eq(5) becomes
1 . . .
W —(M2)(§;-1+§))~—\h, ©

whereg; andY; represent the angular displacement and transverse . ) . o
displacement of the center of mass of ftie link, respectively. Which can be ignored whemis considered to be infinitesimal.

Because each rectangular link is considered to be a rigid body, ond he equation of motion of a hanging chain with a large number

is entitled to write of links can now be approximated as
6;=(yj-1=yp/h @) N ay) ay)
] ] J Y [y — | =
and . Oydx h gt2\ 9x o= 10
Yi=(yj-1+Y))/2, (3) or
wherey; denotes the transverse displacement of the top pivot of Py 2 [ %y P ay
the jth link. (Note thaty, denotes the transverse displacement of )\——)\k2—<—) - _( _) =0. (11)
the free end and thagy=0 at the point of suspensiox=L at? a2\ ax?) x| ox

=Nh.) Substitution of these expressions into EQ.leads to the

following equations of motion: Note that if the radius of gyration of a link, (I=mk?), is taken

to be zero, Eq(11) would reduce to the well-known equation of
(MI2)(Yo+ Y1)+ (21/h%) (Yo—y1) + (Md/h)(yo—Yy1)=0, (4) motion governing the small transverse vibration of a hanging
cable whose natural frequencies, occurs when @,(L/g)*?

and ) =¢,, the nth zero of the Bessel function of the first kindg
-1 (Weng and Led10]). It is also worth mentioning that one could
-m y0+22 VitV | =(21/h2)(§;_1—Y) +[(2j —1)mg/h] have produced Eq11) if the simplifying assumptions had been
i=1 made at the beginning and the system had been seen as a hanging

(Vi 1=y — (M2 (Vi 14V, massive string 'with rotary inertia. As mentioned earlier, thi_s
i1y = (M2 (-1 +y)) discrete-to-continuum approach allows one to see the connection
j=23,... N. (5) between a hanging string with rotary inertia and a hanging chain

As N becomes very large dr roaches zero. the term on th of two-dimensional links.
S N becomes very 1arge drapproaches zero, the term on e 4oy q o\ that, near a position of stable equilibrium, a system

left side of Eq.(f_S), based upon the trapezoidal rule of integrationexecutes harmonic oscillations. To solve E#l), one is, there-
may be approximated as fore, justified to assume that the normal modes can be found by a
-1 X solution with harmonic time dependence characterized by an ex-
Yot 22 Vit j ydx, (6) ponential function with an angular frequenay Let f(x) denote
i=1 0 the spatial part of(x,t); i.e., the mode-shape function or deflec-
tion amplitude of the chain of interest aftthe first derivative of
the functionf(x). The corresponding equation becomes

—m

Xj
~—2)\j ydx=—2\

X0

5 ey (gx— w?k?) "+ gf' + w?f=0. (12)

The identity manipulation of change of variabless (g/4w?)z>
mg + (w?k?/g), permits the above homogeneous differential equation
J to be obtained in the form of Bessel's differential equation of
order zero,

9 22f"+ 2z + 221 =0, (13)

x l” wheref is now considered a function of the varialdegiven by
7?=(4w?lg)(x— w’k?/g) andf’ denotesdf/dz.

y G-1)ymg The solution of Eq(13) subjected to the requirement of finite

(@) b) displacements is obtai_ned as Be_ssel function of_the first kind
of order zero,Jo(z). SinceJy(z) is an even function, whose

Fig. 1 A hanging chain of discrete links. (a) The coordinate mgXImum occurS‘aZ::O for al! real z the local maximum am-

system and (b) the free body diagram of the jth link. Counter-  Plitude of the chain in the section ef’k?/g=x<L takes place at

clockwise displacement angles are taken positive. x=w?k?/g. The maximum deflection amplitude of the whole

{

yix, )
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1.03 T T T T T a further explanation for the natural frequencies to increase with
n=1 increasing rotary inertia as given in E45). It is also essential to
examine whether Eq15) would provide a better approximation
2 1024 i for a real chain than the typical hanging cable approximation
& does. Studies along these lines are underway.
g
[0} n=2
=1 1.014 b
o
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is reminded here that the monotonically increasing function

Io(2) equals tody(iz) andly(0)=Jy(0)=1. The boundary con-

dition atx=L implies that (40%/g)(L — w?k?/g)= &2, where¢,

=2.4048,5_.5291,8.6537. . and_agaln, is thenth root ofJo(;) On Stress—Focusmg Effect in a

=0. The vibration, therefore, exists for all natural frequencigs

that satisfy Uniformly Heated Solid Sphere

wp=(Lg/2kH){1-[1-(KIL)?& 13, (9 4. J. Ding®
where the first minus sign is chosen for the solutions of the qu%—epart?eng%(g\;” Enlgln(e:ﬁ.rlng, Zhejiang University,
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0= QML) &1+ (LA (KIL)"&], (15) By using the separation of variables technique, the dynamic ther-

mal stress responses in an isotropic solid sphere subjected to uni-
where the third and higher powers d{/(_)Zgﬁ in the original form temperature rise all over the sphere and a sudden constant
expansion have been neglected. Note that this expression redudiggsure at the external surface are performed successfully. The
consistently to the result for a hanging cable by setkirgD. It is analytical solutions Qf the radial and hoop dynamic stresses at the
rational to expect thakt/L<1 for a reasonable chain. The abovecenter are also obtained. By means of the present method, integral
equation implies that the rotary inertia will only become importarffansform can be avoided. Numerical results denote that a very
for higher modes for such a long chain with many links. high dynamic stress peak appears periodically at the center of the

It is obvious that, not only is the frequency of an oscillatorysotropic solid sphere subjected to uniform temperature rise all
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the number of links and the moment of inertia of each link. It isurface. [DOI: 10.1115/1.1544514
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1 Introduction wherey;; are the strain components. For the spherically symmet-

. . ric thermoelastic problem of an isotropic solid sphere, the consti-
Recently, the thermally excited mechanical response of str étive equations are

tures is of increasing interest in engineering science and many
works have been done for the dynamic thermoelastic problems. O =(N+2u1) Y+ 2N yg9— (BN +2u) aT(r,1),
Sternberg and Chakravorfi] obtained an exact closed-form so- @
lution for the dynamic problem of a sudden temperature change at  @66= e =N ¥rr t2(N+ 1) v5p— (3N +2) aT(r 1),

the surface_ of a spherical cavity in an infinite solid. 1_'usi _a”G/hereaij andT(r,t) are the stress components and temperature
Kraus [2] discussed the thermal stress-wave propagation in gftrement, respectively and x are the Lameonstants and is

arbitrary thick-walled spherical shell due to thermal shock on thfie coefficient of linear thermal expansion. The equation of mo-
internal surface. ZakdB] investigated the dynamic thermal stresgign is

responses in a spherical shell, which is subjected to arbitrary 5

spherically symmetric temperature fields. The technique is based doy O —0p Uy

on the integral theorem of hyperbolic initial value problem, to- TJFZ r Pz @)
gether with the construction of image temperature fields in the . . _— .
regions outside the actual body. Héta-6] obtained the dynamic Wherep is the mass density. Substituting Ed) into Eq. (2), we
thermal stress responses in a uniformly heated isotropic spheri@8fain

shell and solid sphere, as well as transversely isotropic solid au, u,

sphere by the ray theory. Recently, H&4#d studied the stress- or=(N+2u) 7+2)\ T—(S)\+2,u)aT(r,t),
focusing effect due to an instantaneous concentrated heat source (4)
in a sphere, and War{@] discussed the thermal stress concentra- au, u,

tion in a spherically isotropic solid sphere. Tpp=0gp=N\ o +2(N+pu) T*(37\+2,u,)aT(l’,t).

The dynamic thermoelastic problems are usually solved by the
Laplace transform techniqugl,2,4—8§). But the method will en- Substituting Eq.(4) into Eq. (3), gives the following governing
counter the difficulty of inverse transform in some special casesguation:
The ray theory is a good tool to complete the Laplace inversion.
Howev){ar, it ngeds aglJarge number of r[?ays for a veFr)y thin spherical ﬂ 29u U1 ﬂJr N (1+v) 9T(r,1)
shell and hence becomes impracti¢&l)). In this paper, the sepa- a? roar Tr? ¢t oat? (1-v) or
ration of variables technique is applied to solve the elastodynami?1
problems of the solid sphere subjected to arbitrary sphericaﬁgl
thermal and mechanical loads and thus the integral transform is cL=vV(N+2u)/p. (6)
avoided. Indeed, the method allows avoiding difficulties and inac- N
curacy of the ray theory. First, a new dependent variable is intro- 1 "€ boundary conditions are
duced to rewrite the governing equation, the boundary conditions r=0, u,(0t)=0,
as well as the initial conditions. Second, the thermal and mechani- (7
cal loads are treated as the inhomogeneous item in the boundary du, Uy
conditions and a special function is introduced to transform the =P: (A+2u) —=+2\ == (3N +2u)T(b,t)=p(v),
inhomogeneous boundary conditions to the homogeneous ones. ) ) ) )
Third, by using the orthogonal expansion technique, the equati$fhereb is the radius of the sphere amit) is the prescribed
with respect to the time variable is derived, of which the solutioRféssure on the external surface. The initial conditidrsQ) are

)

erev is the Poisson’s ratio and

is easily obtained. Therefore the displacement solution for the U (r,0)=up(r), U, (r,0=vo(r) ®)
dynamic thermoelastic problem of the solid sphere is finally ob- Y IR " o )
tained. where a dot over the quantity denotes its partial derivative with

Numerical results of a uniformly heated solid sphere, which h&gspect ta, andug(r) andv(r) are known functions.
also been studied by Haf®], are presented by means of the
present method. From the numerical results, we find that the stress
responses at the center pf the_ sph_ere have serious errors in Figs. 2The Solving Technique
and 3 in Hatd5]: (a) the time histories o} ando at the center
(£=0.0) are different; andb) the peak values of the dynamic
stresses near the center appear periodically while those at the cen- uy=r~"Ya(r,t). (9)
ter vary smoothly with the time. The former is apparently unrea-
sonable. The latter is also difficult to explain physically. In fact, if "€ Eas(5), (7), and(8) become
there are periodical peak values for the dynamic stress responses Pw 1ow 9w 1 2w
of of and o} at £€=0.01, then what will be at¢=0.001, WJF PRFFERy A Ry s
0.00QL . .. ? Thereason related to the numerical process was men- L
tioned by Hata[5], which implies the results would be greatly r=0, r Yay0t)=0, (11a)
affected by the error involved in the inverse Laplace transform.

First, a new dependent variabigr,t) is introduced as

+g(r,t), (10)

By the present method, however, the integral transform is avoided _ W w
and the correct results can be obtained. r=b, Er +h T Po(b), (11b)
w(r,00=u,(r), w(r,00=v,(r), (12)
2 Mathematical Formulations of the Problem where
If a spherical coordinate system, §,¢) with the origin identi- aT(r,t) 2n 1

cal to the center of the sphere is used, then for the spherically g(r,t)z,B\/F a = )\+2,u_ 2’
symmetric problem, we have,=u,=0, u,=u,(r,t). So the

strain-displacement relations are VB[ BT(b,t)+p(1)] (1+v)
o(t)= Nt2 o PRy B
_au, oy o L K
Yir = ar’ ’)/66_’)/4;:(;7_?‘ Yro=Yoo= YVer =Y ( ) ul(r)=\/Fu0(r), Ul(r):\/Fvo(r).
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Second, we transform the inhomogeneous boundary conditiomkere
into the homogeneous ones by assuming

2 rb
c
w(r,t)=w,(r,t) +wy(r,t), (14) wi=kic, Qi(t):*N—L.j rg1(r,t)Jg(kirydr.  (28)
iJo
wherew,(r,t) satisfies the inhomogeneous boundary conditions, ) )
and it can be taken as The solution of Eq(27) is
Wo(r,t)=Ar"p,(t), 15 ) 1 [t )
200 Po(t (15) Fi(t)= G4 cosw;t+ Gy smwit+—f gi(7)sinw;(t—7)dr,
wherem=2, and i Jo
1 (29)
A= b(h+2)" (16)  where
. . . _ . 1 b
Substituting Eq(14) into Egs.(10)—(12) gives Gliznj Fu(r) s kir)dr,
Pwy  Lowy 9wy 1 5wy 17 iJo
o7 v A g e tant A0 L
Goi=—— | rva(r)Ja(kir)dr. (30)
r=0, r YAy, (04)=0, (18) 2Ny Jo 2T
oW, Wy Finally, the radial displacement solution can be obtained as fol-
r=b, ——+h—=0, (18)  lows:
ar r
)
Wilr 0)=Ux(1); Wa(r,0)=vs(r), (19) T =1 (0 + (D) 5D
where 4 Numerical Results and Discussions
(rH)=g(r.)+ 1 oawy(r,t) 9 wp(r,t) 1 awp(r,t) Example 1. The dynamic thermoelastic responses in a uni-
St ¢ at? 4 r? roor formly heated solid sphere is considered in this example. The
loads are
FPwy(r,t)
7 T(r,t)=ToH(t), p(t)=0.0, (32)
(20)

-~ _ _ . whereH(t) denotes the Heaviside step function angis a pre-

Ua(r)=Us(N)=wy(r,0),  va(r)=va(r) = Wy(r.0). scribed temperature change. The Poisson’s ratio of the material is
By using the separation of variables technique, the solution tfken as

Eq. (17) can be assumed in the following form:

v=0.3. (33)
Wl(r,t)=2 Ja(kir)Fi(t), (21) The following nondimensional quantities will be used:
i
whereF;(t) are unknown functions af andJs;( ) is the Bessel tr= &t, &= L ot =ﬂ, (i=r,0,9), (34)
function of the first kindk; , arranged in an ascending order, are a b b %o
sequence of positive roots of the following eigenequation: where
(h+3/2)35(kib) + (h—3/2)J55(k;b) =0. (22) «ET,
We notice that T0T 15, (35)
lim r~1235,(kir)=0. (23) In the calculation that follows, we takey(r)=0, vo(r)=0 and
r—0 the first 40 terms in the series in E@1).

By virtue of Egs.(22) and(23), we know thatw,(r,t), as given in The dynamic ther.mal stress responses are shown in Figs. 1-4.
Eq. (21), satisfies the homogeneous boundary conditions in Egomparing Fig. 1 with Fig. 3, we find that, at the cen(#+0.0),

(18). the time history ofo} is the same as that of; , and the peaks of
Substituting Eq(21) into Eq. (17), gives the dynamic stresses appear periodically at an intervaf ef2.
d2F (1) The first peak values of the dynamic stressésand o at dif-
|

_CEE kiZFi(t)J3/2(kir):2 Jaa(kir) TJrc;fgl(r,t)_ ferent locations are listed in Table 1. In the table, the peak values
[ i become higher and higher as the position approaches to the center,
(24)  and the maximum peak values of* and ¢% both appear at

By virtue of the orthogonal property of Bessel functions £=0.0. The stress responsesaif ando, até=0.01, 0.1, and 0.5
b are also depicted in Figs. 2 and 4. They are almost the same as
f rIakin)Jzkr)dr=N;8; , (25) those obtained by Ha{&], except that the peak values are slightly
0 different.

According to the method presented in the paper, for the uni-

where g;; is the Kronecker delta, and formly heated sphere, EL5) reads as

1 d\]'s/z(kib)}2 9) ]
Ni==— 1 b2 ———| +|k?b>— —|[J3(kiD)]?}, (26 T
2ki2{ [ ar i 2 [Ja(kib)] (26) Wyt ) —Eqr2, Ey— BTo . (36)
. Vb(h+2)(x+24)
where dJg(kib)/dr=dJy;(kir)/dr|,—,, we can derive the fol-
lowing equation from Eq(24) Also Eq. (20) becomes
d?Fi(t) 7 )
gz FerFO=ai), (27) 9i(r)=—7E1, u(r)=—Eyr" vy(r)=0.  (37)
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. . . Fig. 3 History of dynamic stress o7 at the center (£=0)
Fig. 1 History of dynamic stress ¢ at the center (£=0)

Utilizing Eqg. (1), the components of strain at the center are ob-

Then qi(t) in Eq. (28) and G;; (j=1,2) in Eg.(30) have the tained as follows:

following forms:

u,(r,t 3 dJg(kir
7CE b Yer (Ot :( r,( ) —Iim[Elrl/2+2 {I’UZS/Z( ")
qi(t):EZi:mEl rdsp(kir)dr. (38) a |y r—ol2 i dr
| 0
1
E, [P — —1 323,k }F- t
Gli:—ﬁforﬁg,z(kir)dr, G, =0.0. (39) 5" Jerkin) [Fi(1)
|
We then get from Eq(29) :E im[r =323kt ) — kit ~ 23 (kP ) JF; (1)
\ | —
Es Es; o
Fi(t)=— +| G3j— — | coswit. (40)
“ “ =2 im[r323kr) IF; (1)
And Eq.(31) becomes i r—o0
1 2 E; E;
ur(r,t>—r1’2[2 J3/2<kir>Fi(t>+E1r2] (41) =23 \/;k?’z[é#( G- 22) coswit}
. : o Y
| ! b ' 42)
5000 20.00
4000 0.0 — E=| 0.01

1 &= 10.01 ]

o, ]
'm-m-I|l|{||lillilllllllilfll -znoo'.”.lr...!,.r‘l....]. T
000 200 400 800 800 10.00 .00 200 400 6.00 8.00 10.00
- -
t t
Fig. 2 History of dynamic stress o} Fig. 4 History of dynamic stress o7
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Table 1 The first peak values at different positions

3 0.0 0.0001 0.001 0.005 0.01 0.05 0.10 0.25 0.50

o* 49.7641  49.7592  49.7251  48.4317 445091 14.9455 9.0218 4.2719  2.2240

cr:’; 49.7641  49.7582  49.7380  48.8329  46.0527 14.2610 7.1121  2.7451 1.3384

30.00
u,(r,t)

‘Y(M(O!t) = yqp(p(ort) =

r=0 16.00 —

0.00 —

—|im[Elrl’2+Z [r3/2J3/2(kir)]Fi(t)]

r—0
. -
= lim[r#2kir) F;(t) o, s
i r—0
1 2 Eo; E; 30.00
3/2| —2i 2i
ZZE\/;ki w—i2+(Gli—w—i2)005wit : |
From Eq.(42), we find that the components of strain at the cente 4500
are the same with each other. Substituting &@) into Eq. (2), .
we obtain 50,00 —— T
0.00 200 4.00 6.00 8.00 10.00
i A )
0 (01)=0pp(0t) =0,,(0t)=(3N+2u) E 3 -k —
! m @i *
t
Eai
+{ Gai— o2 coswit| —aTq. (43) Fig. 5 History of dynamic stress ¢ at the center (£=0)
I
Obviously, the components of stresses at the center should alsc 50.00
identical to each other. This fact has been well illustrated by o .
numerical results as shown in Figs. 1 and 3. 15.00 —
Example 2. The elastodynamic responses in a solid sphe 4
subjected to a sudden constant pressure at the external surfac 000
considered in this example. The loads are B
T(r,t)=0.0, p(t)zipOH(t)l (44) - 1500 —]
o
wherep, is a constant pressure. The other parameters for calc ¢ e
lation and the nondimensional quantities are the same as thost 240,00 —|
Example 1 except that} =g /pg, (i=T1,0,¢). ]
The dynamic responses of ando’ at the center are shown
in Figs. 5 and 6. From the curves, we also find the stress-focusi 4500 —
effect. The analytical expressions for the radial and hoop stres: 4
can also be obtained in this case. 56.00
- T r T ’ T ' T I T
- B - 1 2 ” E4i 0.00 200 4.00 6.00 8.00 190.00
0 (01)=0pp(0t) =0,,(01)=(3N+2u) 23 7_rki w_.2
t*
Eai
+| Ggi— —%|cosw;t |, (45)
Wi Fig. 6 History of dynamic stress o7, at the center (£=0)
where
2
E :EE er (kir)dr spherical shell subjected to an instantaneous constant internal ra-
AN, T3, TR dial pressure and the dynamic thermal stress responses in a uni-
formly heated hollow sphere can also been obtained. The results
E. (b D agree well with those presented in Rdf3] and[4], respectively.
GSi:__SJ’ By kr)dr, Eg=——2 Thus, the validation of the method developed in this paper is
Ni Jo Vb(h+2)(A+2u) additionally supported.
(46)

It is noted here that the present method also can be applied to
study the dynamic problems of spherical shells, for which On@cknowledgments
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By virtue of such a method, the dynamic stress responses irdaion of China(No. 10172075 and No. 10002016
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On the Nonlinear Generalized Maxwell _ _
Fluid Model where § and x are the displacement of the springs and dashpot

from the rest position, respectively=x+ ¢ is the total displace-
ment, and the overdot denotes differentiation with respect to time
t. Solving Eq.(2) for & gives

H. Hu
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Polytechnic University, Xiangtan 411201, Hunan, Peoples’ - 2k, ' “)
Republic of China Obviously, if F=0, we should havé=0. Therefore, we can only
e-mail: huihu2000@21cn.com get

 VAKoF +KE—ky

. 5
An equation describing a nonlinear generalized Maxwell fluid 2k, ©)
model is presented. Model behavior, for constant rate elongationsypstituting Eqs(3) and (5) into Eq. (1) gives
is investigated. A comparison of the results in this study with those
in the literature has been given. The conclusion of Corr et al. that ) +ES ©)
the model has two solutions is questionable. U= ———— c.
[DOI: 10.1115/1.1544538 VakoF +ky

Integrating this equation across the pdirt0, [2], we have

VakoF o+ K= 2k,ug+ Ky, @)

Introduction whereu,=u(0") andFo=F(0").

In a recent papef1], a nonlinear Maxwell fluid spring-and- - _
dashpot modelFig. 1) was developed to describe the complex 1he Characteristic When u(t)=uoh(t)+at. We let
nonlinear behavior of some viscoelastic materials. The closed- u(t)=uoh(t) + at, (8)
form solution of the model was determined for constant-rate ) ) o )
displacement-control testing. In this study, we pursue a somewlN#ierea is a constant, anti(t) is the Heaviside step function. In
different avenue of research. First the differential equation of ti@is case, Eq(6) becomes
load-displacement relationship is presented. Second, a closed-

form solution is given for constant rate displacement. Finally, a L-FF/C:a, 9)
comparison of the results in this study with those in R&f.has \/4k2F+k§

been given. It is pointed out that the argument that “the closed-
form solution of the model has two solutions, corresponding to t

positive and negative roots & [1], is questionable. dF
5 =—dt/c. (20)
(F— ac) Vak,F + ki
Model Derivations Integrating Eq(10) yields
From Fig. 1 we have VakF + 12— ki oy
L e “ale (11)
U=x+4 1) Ak F+I2+K, kl
F=k;6+k,5° (2) wherek;= \/k21+ 4k,ac andA is an integration constant. Solving
: Eq. (11) for F gives
X=Flc (3 F@DforFg
Akize_ kyt/c
Contributed by the Applied Mechanics Division off AMERICAN SOCIETY OF Ft)=ac+ ————F——. (12)
MECHANICAL ENGINEERSfor publication in the ASME QURNAL OF APPLIED ME- ko(1—Ae” klt/c)2
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb. 5,
2002; final revision, Oct. 9, 2002. Associate Editor: D. A. Siginer. ertlng Eq. (11) for t=0" and using Eq(7), we have
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2k2U0+ kl_ ki

 2kpUgtky kT (13)
Discussion
Substituting Eq(12) into Eg. (3), we obtain
Ak 2ekitle
k=t ——— (14)
koc(1—Ae *ale)?
Multiplying this equation bydt and integrating gives
© o AkjZefaledt
x(t)—x(0)=at+f —_—. (15)
0 kc(1—Ae *ac)?
Applying the initial conditionx(0)=0, we find
B ki/ 1 1 16
X(t)—at+k—2 1-A 1_Ae*kit/‘: . ( )

In order to compare our results with those of Corr ef &, we let
uo=0. Then, Eq(13) becomes

klfki

Ttk 0

310 / Vol. 70, MARCH 2003

In this case, we can see that E(&5) and(14) coincide with Egs.
(14) and(15) in Ref. [1], respectively, but we must take

B=(u— Ju?+4éa)l2¢=(k,— Jki+4,ac)/2k,.  (18)
When
B=(u+ Ju?+4£a)I2¢= (ki +\Ki+4,ac)/2k,,  (19)

we cannot obtaix(t) =x(t)=0 even ifa=0. Our understanding

of physics can simplify our mathematical calculations, and math-
ematical solution should make physical sense. The conclusion of
Ref. [1] is questionable that “the closed-form solution of the
model has two solutions, corresponding to the positive and nega-
tive roots ofB.”
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