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Elastic Fields of Quantum Dots in
Multilayered Semiconductors: A
Novel Green’s Function Approach
We present an efficient and accurate continuum-mechanics approach to predict the e
fields in multilayered semiconductors due to buried quantum dots (QDs). Our approa
based on a novel Green’s function solution in anisotropic and linearly elastic multilay
derived within the framework of generalized Stroh formalism and Fourier transform
conjunction with the Betti’s reciprocal theorem. By using this approach, the indu
elastic fields due to QDs with general misfit strains are expressed as a volume int
over the QDs domains. For QDs with uniform misfit strains, the volume integral invo
is reduced to a surface integral over the QDs boundaries. Further, for QDs that ca
modeled as point sources, the induced elastic fields are then derived as a sum
point-force Green’s functions. In the last case, the solution of the QD-induced elastic
is analytical, involving no numerical integration, except for the evaluation of the Gre
functions. As numerical examples, we have studied a multilayered semiconductor s
of QDs made of alternating GaAs-spacer and InAs-wetting layers on a GaAs subs
plus a freshly deposited InAs-wetting layer on the top. The effects of vertical and
zontal arrays of QDs and of thickness of the top wetting layer on the QD-induced e
fields are examined and some new features are observed that may be of interest
designers of semiconductor QD superlattices.@DOI: 10.1115/1.1544540#
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1 Introduction
Owing to their great advantages over those processed by lit

raphy and etching, self-assembled quantum semiconductor he
structures have attracted tremendous attention in recent years
processing of the heterostructures is based on the spontan
growth of small islands from a wetting layer due to its misma
strain to the substrate, i.e., a Stranski-Krastanow growth me
nism. The islands include quasi-zero-dimensional dots~or quan-
tum dots~QDs!! and quasi-one-dimensional wires, on the scale
1–100 nanometers. Experimental studies have shown that
QD nanostructures possess certain special electronic and op
features, rendering fascinating and novel devices, such as the
threshold laser, resonant tunneling device, and huge-cap
memory media, possible,@1,2#. These features are in part relate
to the strain fields induced by the QDs and thus it is importan
understand the latter before the design of devices,@1–3#. In their
device applications, it is often desirable to fabricate the QDs
successive stacks with both vertical and lateral orderings,@4–8#.
The final product is then a multilayered structure with buried
rays of QDs and with each layer being anisotropic. Therefore
efficient and accurate numerical tool for predicting the mechan
fields, based on the theory of generally anisotropic elasticity
layered media, would be much appreciated.

To quantitatively explain and numerically model the QD nan
structures, various numerical methods have been proposed
cluding the continuum finite element~FE! and finite difference
~FD! methods,@9–14#, and the discrete atomic-level simulation
@15–17#. However, the domain-based FE and FD methods and
atomic models are computationally expensive, making them d

1To whom correspondence should be addressed. Present address: Material
ability Division, National Institute of Standards and Technology, Boulder, CO 803

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Dec. 16, 20
final revision, June 8, 2002. Associate Editor: H. Gao. Discussion on the p
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
Copyright © 2Journal of Applied Mechanics
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cult to perform parametric studies in order to interpret the exp
mental phenomena or to reach an economic design strategy.
difficulty is manifested especially in the case of multilayered h
erostructures. Recently, various analytical and semi-analyt
methods, in particular, those related to the Green’s function s
tions, have been proposed and applied to the QD model
@18,19#. Because of their robust features in terms of accuracy
efficiency, these analytical methods, particularly the Green’s fu
tion method, have been found to be very useful in the study of
structures,@18–24#. For QDs in a three-dimensional isotropic in
finite space, Pearson and Faux@23# derived the exact-closed-form
solution for the QD-induced strain when the QDs are in the fo
of pyramids. When the infinite domain is anisotropic, Faux a
Pearson@19# and Andreev et al.@22# derived the induced strain
using, respectively, the Fourier transform method and the se
expansion method. More recently, Pan and Yang@24# examined
the elastic field due to a buried QD in an anisotropic half-sp
substrate using the point-force Green’s function, which is deriv
within the framework of generalized Stroh formalism and Four
transforms, in conjunction with the Betti’s reciprocal theore
Their result has shown clearly the effects of material anisotro
and free surface on the elastic fields.

In this paper, we propose a novel Green’s function approach
the elastic analyses of buried QDs in multilayered semicond
tors, advanced from the authors’ previous works,@24,25#. The
QDs and surrounding matrix are assumed to have the same m
rial property, within the classical inclusion approach of eige
strain, @26#. In this approach, the elastic fields induced by Q
with general misfit strains~i.e., eigenstrains! are expressed as
volume integral over the QDs domains. For QDs with a unifo
misfit strain, the volume integral can be reduced to a surface
tegral over the QDs boundaries. Further, for QDs that can
modeled as point sources, the induced elastic fields can the
derived as a sum of the point-force Green’s functions. In the
case, the QD solution is analytical, except for the numerical ev
ation of the point-force Green’s functions. The proposed appro
then is applied to examine a multilayered system of QDs w
alternating GaAs-spacer and InAs-wetting layers on a GaAs s
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Fig. 1 A multilayered heterostructure with embedded islands of misfit strains
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strate, plus a ‘‘freshly’’ deposited wetting layer on the top. T
theory is described in Section 2. The numerical results are
sented and discussed in Section 3. Conclusions are drawn in
tion 4.

2 Theory

2.1 Integral Equation Formulation of Quantum Dots. In-
clusion problem of misfit strains,@26#, in a heterogeneous, aniso
tropic, linearly elastic matrix can be described in terms of
integral-equation formulation with the integral kernel being t
point-force Green’s function in the same media. This integr
equation formulation is a consequence of the Betti’s recipro
theorem. Let us assume that there are two states associated
the matrix domainD: one for the misfit-strain problem due to
given misfit strain« i j

0 (x), and the other for the Green’s functio
problem due to a point force aty. In these two problems, the
boundary conditions along]D ~boundary ofD! are identical. Ap-
plying the Betti’s reciprocal theorem, we find that the displac
ment up(y) due to the misfit strain« i j

0 (x) can be expressed in
terms of the following integral-equation formulation, as,@26#,

up~y!5E
D
upi* ~x;y!@2Ci jlm~x!« lm

0 ~x!# , jdV~x!, (1)

where upi* (x;y) is the Green’sith displacement component atx
due to a point force in thepth direction applied aty, Ci jlm is the
elastic stiffness, heterogeneous in general, and a repeated
implies the conventional summation over its range. Note tha, j
indicates the partial derivative with respect to field coordinatexj
while ,yp

is used for the partial derivative with respect to sour
coordinateyp . Making use of the Gauss theorem, Eq.~1! can be
rewritten as

up~y!5E
D
upi, j* ~x;y!Ci jlm~x!« lm

0 ~x!dV~x!

2E
]D

upi* ~x;y!Ci jlm~x!« lm
0 ~x!nj~x!dG~x!, (2)

wherenj is the outward normal at a boundary point.
We now consider a special heterogeneous matrix structure a

special misfit strain distribution, as shown in Fig. 1. The spec
heterogeneous matrix structure consists of multiple planar la
of different media. They are homogeneous, anisotropic, and
early elastic. The special misfit-strain field is nonzero only in
number of interior islandsV (n) (n51, . . . ,N). To apply the
above theory, we assume that the islands have the same e
property as their surrounding layer media. This special sys
represents a multilayered semiconductor with coherently stra
QDs, @1#. We remark that there should exist nonzero eigenstr
field in some of the layers~i.e., wetting layers from which the
QDs grow!, similar to that in the QDs. In this case, the elastic fie
to be derived under the above assumption of nonzero eigens
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only in the QDs is in fact the part of a total field induced by t
QDs. The total field can be obtained by applying the rule of
perposition of the induced field to the homogeneous field tha
caused by the nonzero matrix eigenstrain alone~i.e., in the ab-
sence of the QDs! under the same boundary and interfacial co
ditions. For the present multilayered structure, the homogene
elastic field can be solved by applying the classical lamin
theory,@27#.

Under these assumptions, Eq.~2! can be simplified. First, by
using the fact that the misfit strain along the domain boundary]D
is zero, the term of boundary integral in Eq.~2! is eliminated,
which yields

up~y!5E
D
upi, j* ~x;y!Ci jlm~x!« lm

0 ~x!dV~x!. (3)

Then, reducing the integral domain fromD to V (n) (n
51, . . . ,N), Eq. ~3! is rewritten as

up~y!5(
n51

N E
V~n!

upi, j* ~x;y!Ci jlm~x!« lm
0 ~x!dV~x!. (4)

Further, the domain integrals in Eq.~4! can be reduced to the
surface ofV (n) for those QDs in which the misfit strain distribu
tion is uniform. Assuming that all of the islands have a unifor
misfit strain field, we arrive at

up~y!5(
n51

N

Ci jlm
~n! « lm

0~n!E
]V~n!

upi* ~x;y!nj~x!dS~x!, (5)

whereCi jlm
(n) and« lm

0(n) are, respectively, the~uniform! elastic stiff-
ness and misfit strain in thenth island. Note that a uniform distri-
bution of misfit strain in a QD may occur when the QD and mat
~generally mismatched in thermal expansion coefficients! are sub-
jected to a uniform temperature change and if their mismatch
elastic constants can be neglected.

In order to find the induced elastic strain field, the displacem
in Eq. ~5! is differentiated with respect to the observation poiny
~i.e., the source point where the point force is located in the c
responding Green’s function problem!, which yields

«pq* ~y!5(
n51

N
1

2
Ci jlm

~n! « lm
0~n!E

]V~n!
@upi,yq

* ~x;y!

1uqi,yp
* ~x;y!#nj~x!dS~x!. (6)

Subsequently, the stress field is obtained as

spq~y!5Cpqst~y!@«st~y!2«st
0 ~y!#. (7)

Note that«st
0 (y) in Eq. ~7! is nonzero only ify is within a QD.

Finally, the above expressions can be further reduced if
observation pointy is remote to some or all of the QDs compare
to their individual sizes. These remote QDs can be modeled
Transactions of the ASME
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point sources of misfit strain. Without the loss of generality, a
suming the remoteness ofy to all QDs, the misfit strain field is
then expressed as

« lm
0 ~x!5(

n51

N

« lm
0~n!V~n!d~x2x~n!!, (8)

whereV(n) andx(n) are, respectively, the volume and location
the nth QD, andd~x! is the Dirac delta function. By substituting
Eq. ~8! in Eq. ~3!, the induced displacement and strain aty due to
the point sources of misfit strain are analytically found to be

up~y!5(
n51

N

upi, j* ~x~n!;y!Ci jlm
~n! « lm

0~n!V~n!

5(
n51

N

splm* ~x~n!;y!« lm
0~n!V~n!, (9)

«pq~y!5(
n51

N
1

2
@splm,yq

* ~x~n!;y!1sqlm,yp
* ~x~n!;y!#« lm

0~n!V~n!.

(10)

In the derivation of the right-hand side of Eq.~9!, the Hooke’s
law, s lm5Ci jlmui , j , was effected. It is observed in Eq.~9! that the
displacement field in thepth direction aty due to point sources of
misfit strain with components (lm) at x(n) (n51, . . . ,N) is
equivalent to the stress field with components (lm) at x(n) due to
a point force in thepth direction aty, @28#.

We remark that Eqs.~4!, ~5!, and~9! ~and their corresponding
expressions for strain and stress! can be used whenever and whe
ever applicable to most efficiently compute the elastic fields d
to a QD. The idea of applying the point-source approach to
scribe the elastic field remote to a QD, the inclusion approach
describe the field in an intermediate distance to a QD, and
imhomogeneity approach to describe the field close to or insid
QD, has been elaborated recently by Romanov et al.@29#. The
different approaches require different computational tools to e
ciently and accurately solve the problem. The present work p
poses to apply a special Green’s function for anisotropic multil
ers to solve the problem of QDs approached as inclusions
enables a simulation of a relatively large system of QDs in m
tilayered semiconductors. This special Green’s function is
scribed next.

2.2 Green’s Function for Anisotropic Multilayers. Three-
dimensional point-force Green’s function in anisotropic multila
ers, as shown in Fig. 2, can be solved within the framework
generalized Stroh formalism and Fourier transforms,@25,30#. The
elegancy of the formulation has been demonstrated by apply
the derived Green’s functions to the boundary element analyse
stress around a hole in a composite laminate,@31#, and the corre-
sponding delamination crack problem,@32#. In the following, we
summarize the Green’s functions for anisotropic elastostatic m
tilayers. For details of the theory, one may refer to the autho
previous work,@25#, and articles cited therein.

Fig. 2 Point-force Green’s function problem of a multilayered
heterostructure „Fig. 1 …
Journal of Applied Mechanics
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The equilibrium of a multilayered system subjected to a po
force requires that

Cp jlm~x!ul ,m j~x!52 f pd~x2y!, (11)

where f p is the pth component of a point force applied aty. To
solve this problem, the following two-dimensional Fourier tran
form (k1 ,k2) is first applied to the in-plane variables (x1 ,x2) of
ui(x1 ,x2 ,x3),

ũi~k1 ,k2 ,x3!5E E ui~x1 ,x2 ,x3!eixakadx1dx2 , (12)

wheree stands for theexponentialfunction, andi in the exponent
denotes the unit of imaginary number,A21, and the Greek index
takes a value in the range from 1 to 2. The integral limits a
~2`,`! along both the coordinatesx1 andx2 . Thus, in the Fourier
transformed domain, the governing Eq.~11! becomes

Cp3i3ũi ,332 i ~Cpa i31Cp3ia!kaũi ,32Cpa ibkakbũi

52 f peiyakad~x32y3!, (13)

which is valid for each individual homogeneous layer in the s
tem.

Solving this ordinary differential equation in terms ofx3 with f
being a unit force in thepth direction yields the general expres
sion for the transformed-domain Green’s displacement in theith
direction,ũip* , as

ũm* ~x3!5eikayabũm*
~s!~x3!1 ih21~Ām^e2 i p̄mh~x32hm21!&Vm

1Am^e2 ipmh~x32hm!&Wm!c, (14)

where the subscriptm indicates the association of a quantity to th
mth layer where the field pointx resides;ũm* is a function ofk1 ,
k2 and y as well asx3 ; ũm*

(s) , a special solution, is a given
function ofk1 , k2 andy as well asx3 ; andVm andWm are a pair
of unknown tensors, being functions ofk1 , k2 and y3 , to be
determined by imposing boundary and interfacial conditions. T
dummy arguments in these functions, which are not relevant
rectly to the enforcement of boundary and interfacial conditio
are omitted for simplicity. In addition, the overbar denotes t
complex conjugate,~h,u! are the polar coordinates related
(k1 ,k2) by k15h cosu andk25h sinu, and

^e2 iphx3&[diag@e2 ip1hx3,e2 ip2hx3,e2 ip3hx3#. (15)

In addition,p andA5(a1 ,a2 ,a3) are, respectively, the eigenva
ues and eigenmatrix, related to each other by the following ch
acteristic eigenrelation,@33–35#, in an oblique plane spanned b
(n15cosu,n25sinu,0)T and (0,0,1)T, as

@Q1pi~R1RT!1pi
2T#ai50, (16)

with Qi j [Cia j bnanb , Ri j [Cia j 3na , andTi j [Ci3 j 3 .
Let us defines as a vector consisting of the in-plane stre

components in the horizontal plane, andt as a vector consisting o
the corresponding out-of-plane stress components. The comb
tion of these two vectors represents the full stress tensor bec
of its symmetry. The corresponding Green’s functions are giv
by s* [(s11p* ,s12p* ,s22p* ) and t* [(s13p* ,s23p* ,s33p* ), with sub-
script p indicating the unit point-force direction. By applying th
Hooke’s law, t* and s* can be derived from Eq.~14!, in the
transformed domain, as

t̃m* ~x3!5eikayab t̃m*
~s!~x3!1~B̄m^e2 i p̄mh~x32hm21!&Vm

1Bm^e2 ipmh~x32hm!&Wm!c, (17)

s̃m* ~x3!5eikayab s̃m*
~s!~x3!1~C̄m^e2 i p̄mh~x32hm21!&Vm

1Cm^e2 ipmh~x32hm!&Wm!c, (18)
MARCH 2003, Vol. 70 Õ 163



164 Õ Vol. 70,
Fig. 3 Four examples of a heterostructure with alternating layers of GaAs-spacer and InAs-
wetting on a GaAs substrate, plus a fresh wetting layer on the top: „a… a single QD; „b… a vertical
array of QDs; „c… a horizontal rectangular array of QDs; „d… a single QD with varying ratio of
thickness between top wetting and spacer layers
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where t̃m*
(s) and s̃m*

(s) are derived fromũm*
(s) and matrixB andC

are related toA andp, @35#. The matrixC here is different from
the fourth-rank tensor of elastic stiffnessCi jkl .

The derivatives ofũ* , t̃* , and s̃* with respect to source coor
dinatesy can be obtained from the above expressions, as

ũm,ya
* ~x3!5 ikaũm* ~x3!, t̃m,ya

* ~x3!5 ika t̃m* ~x3!,

s̃m,ya
* ~x3!5 ikas̃m* ~x3!, (19)

ũm,y3
* ~x3!5eikayabũm,y3

* ~s!~x3!1 ih21~Ām^e2 i p̄mh~x32hm21!&Vm8

1Am^e2 ipmh~x32hm!&Wm8 !c, (20)

t̃m,y3
* ~x3!5eikayab t̃m,y3

* ~s!~x3!1~B̄m^e2 i p̄mh~x32hm21!&Vm8

1Bm^e2 ipmh~x32hm!&Wm8 !c, (21)

s̃m,y3
* ~x3!5eikayab s̃m,y3

* ~s!~x3!1~C̄m^e2 i p̄mh~x32hm21!&Vm8

1Cm^e2 ipmh~x32hm!&Wm8 !c, (22)

whereVm8 andWm8 are a new pair of unknown tensors, as a fun
tion of k1 , k2 andy3 .

The above unknown tensorsVm , Wm , Vm8 , and Wm8 can be
solved by imposing appropriate boundary and interfacial con
tions provided that the special solutions are given. Yang and
@25# took the first few terms of the expansion solution of trima
rials, @36#, to be the special solutions and solved the problem w
traction-free top-boundary and symmetric bottom-boundary c
ditions and with the perfectly bonded interfacial conditions. T
special solutions may also be taken as the infinite-space Gre
function, @37#, or the bimaterials solution,@30#. The difference
would be in the resulting efficiency in evaluating the physic
domain Green’s functions,@25#. By applying the boundary and
interfacial conditions to the multilayers, a linear system of eq
tions with the same number of unknowns can be formed
solved for each set of (k1 ,k2) in the transformed plane. Then, th
MARCH 2003
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physical-domain Green’s functions are obtained by using the F
rier inverse transform, for example, the displacement field, as

ui~x1 ,x2 ,x3!5
1

~2p!2 E E ũi~k1 ,k2 ,x3!e2 ixakadk1dk2 ,

(23)

where the integral limits in bothk1 andk2 are ~2`,`!.
Above, we have only described the key steps in the deriva

of the three-dimensional Green’s functions for anisotropic elas
static multilayers within the framework of generalized Stroh fo
malism and Fourier transforms. For details of the theory and
evant computational issues, one may refer to@25,30,35,36#, and
articles cited therein.

3 Results and Discussions
In this section, we apply the integral-equation formulation, d

scribed in the previous section, to investigate the elastic fields
to embedded QDs in a multilayered semiconductor system.
fects of vertical and lateral orderings of QDs and of thickness
wetting layer on the elastic fields will be addressed. The multil
ered semiconductor consists of up to four sets of alterna
GaAs-spacer and InAs-wetting layers on a GaAs substrate, pl
‘‘freshly’’ deposited InAs-wetting layer on the top. Four differen
examples as shown in Figs. 3~a–d! are studied. The top surface i
assumed to be traction-free while the interfaces are in the per
bonding condition. The far-field stress and displacement are z
The thickness of the wetting and spacer layers is denoted bl w
and l s , respectively. It is taken thatl w50.1a and l s5a with the
exception in the last example~Fig. 3~d!!. The QDs are assumed t
be cuboidal with dimensionsa3a3a/2. They are seated on th
top of a wetting layer and embedded in the above adjacent Ga
spacer, as shown in Fig. 3~a–d!. It is mentioned that the sides o
the QDs are taken to be along the global coordinates (x1 ,x2 ,x3).
For simplicity, we also assume that the QDs have the same el
property as its surrounding GaAs-spacer, and the misfit strai
the QDs is hydrostatic, i.e.,« i j

0 5«0d i j . The elastic constants fo
Transactions of the ASME



D
s
n

t
n
’

-

t
t

t

ctor
ew

rys-

-
and
ent

tion
n-
e
om-

the
d by

his
e

lter-
set.

cal
n

m
duc-

as in
GaAs areC115118, C12554, C44559 and for InAsC11583,
C12545, C44540 (GPa), with their crystallographic direction
@100#, @010#, and@001# coinciding with the global coordinatesx1 ,
x2 , andx3 , respectively. We remark that there should exist no
zero eigenstrain in the wetting layers, similar to that in the Q
Because of the linearity of the problem, the QD-induced ela
field discussed below and the homogenous field due to the
zero eigenstrain in the wetting layers can be superposed. In
present multilayer structure, the homogenous field can be obta
by applying the classical laminate theory,@27#.

3.1 Example 1: A Single Quantum Dot. A buried single
QD in the layered semiconductor system of top-InAs-wettin
GaAs-spacer/InAs-wetting/GaAs-substrate, as shown in Fig. 3~a!,
is first studied. The cuboidal QD is seated on the top of the in
nal wetting layer and embedded in the spacer, with its ce
located at (0,0,0.85a). The top InAs layer represents a ‘‘freshly
deposited wetting layer where a next generation of QDs is
pected to grow. Figures 4~a! and 4~b! show, respectively, the con
tour plots of the normalized hydrostatic strain«kk /«0 and normal-
ized vertical displacement2u3 /(«0a) on the top surface~i.e., the
free surface of the freshly deposited InAs-wetting layer! above the
QD. Figure 5 shows the vertical variation of the normalized no
zero strain and stress components over the center of the QD.
noted that, in this example, only the diagonal components,«11,
«22(5«11), «33, s11, s22(5s11), ands33, are nonzero.

It is observed from Fig. 4 that due to the coincidence of
crystallographic orientations of the wetting and spacer crys
with the side orientations of the cuboidal QD, the normaliz
hydrostatic strain and vertical displacement are symmetric rela
to the in-plane axes. They reach their maximum values at
origin, ~0,0,0!, right above the QD center on the free surface. W
remark, however, that should the GaAs~111! be used in place of
GaAs~001! for the spacer, the contour plots will be distorted wi
completely different features. The characteristics may be co

Fig. 4 Elastic fields on top surface induced by a single QD
„Fig. 3a…: „a… normalized hydrostatic strain «kk Õ«

0; „b… normal-
ized vertical displacement component Àu 3 Õ„«0a…
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lated to the electronic and optical behaviors of the semicondu
system, and to the growth direction and vertical correlation of n
QDs, @38,39#.

Due to the mismatch between the wetting and spacer layer c
tals, the out-of-plane strain component,«33, and the in-plane
stress components,s11 ands22, are discontinuous across the in
terface, as shown in Fig. 5. However, the other in-plane strain
out-of-plane stress components, as well as all the displacem
components, are continuous, as enforced in the Green’s func
solution, and in turn reflected in the inclusion solution of eige
strains,@26#. It is also interesting to note from Fig. 5 that in th
wetting layer, the magnitude of the in-plane strain and stress c
ponents increases when the observation point approaches
traction-free top surface, a phenomenon that may be explaine
the free-surface bending effect.

3.2 Example 2: A Vertical Array of Quantum Dots. Effect
of a vertical array of QDs on the elastic fields is examined in t
example. Figure 3~b! schematically shows the geometry of th
problem. Simulations were performed with repeated sets of a
nating spacer and wetting layers with a QD embedded in each
The variation of the normalized hydrostatic strain and verti
displacement along a line (x1,0,0) on the top surface is shown i
Figs. 6~a! and 6~b!. In these two figures, the results forn QD
correspond to a semiconductor model made ofn set of GaAs/InAs
~plus a fresh InAs on the top and a GaAs substrate on the botto!.
For instance, the results for one QD correspond to a semicon
tor model with only one set of GaAs/InAs~plus a fresh InAs on
the top and a GaAs substrate on the bottom, exactly the same

Fig. 5 Vertical variation of normalized nonzero strain and
stress components over a single QD „Fig. 3a…: „a… «11„«22
Ä«11… and «33 Õ«

0; „b… s11„s22Äs11… and s33 Õ«
0 in 1011 Pa
MARCH 2003, Vol. 70 Õ 165
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the previous case!, and results for four QDs correspond to a sem
conductor model consisting of four sets of GaAs/InAs, i.e., to
InAs/GaAs/InAs/GaAs/InAs/GaAs/InAs/GaAs-substrate, with
QD in each GaAs-spacer layer.

It can be observed from Fig. 6~a! that the magnitude of the
hydrostatic strain on the surface increases with increasing num
of QDs and converges quickly to the maximum values. This s
gests that a vertical array of QDs should sum up their effects
elastic relaxation on the freshly deposited wetting layer~top wet-
ting layer! where a new generation of QDs is expected to gro
The displacement field, on the contrary, has not shown its
dency of convergence with the number of QDs of the verti
array so far.

3.3 Example 3: A Horizontal Array of Quantum Dots.
Now, effect of a horizontal array of QDs on the elastic fields
studied. Simulations were performed with a horizontal rectang
array of QDs located in the spacer. The semiconductor sys
consists of only one set of alternating spacer and wetting layer
shown in Fig. 3~c!. The spacing between the adjacent QDs~from
center to center! in both in-plane directions is 2a, with size of
array varying from 333 to 939. Variations of the normalized
hydrostatic strain and vertical displacement on the surface ab
the central QD are plotted in Fig. 7.

These results show that, with increasing number of QDs la
ally around the central one, the magnitude of the surface ela

Fig. 6 Induced elastic fields along a line „x 1,0,0… on top sur-
face due to a vertical array of up to nine QDs „Fig. 3b…: „a…
normalized hydrostatic strain «kk Õ«

0; „b… normalized vertical
displacement component Àu 3 Õ„«0a…
166 Õ Vol. 70, MARCH 2003
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strain field decreases and converges to its minimum value. Th
fore, the surrounding QDs in the lateral directions play a role
relaxing the induced elastic field due to the central QD, an eff
opposite to that of a vertical array of QDs as observed ear
Consequently, the existence of laterally neighboring QDs wo
suppress the effect of the central QD on the growth of a new
above it. The vertical displacement component converges w
increasing number of QDs, again in contrast to that in the cas
a vertical array of QDs.

3.4 Example 4: A Single QD With Varied Thickness of Top
Wetting Layer. At last, effect of top wetting layer thickness o
the QD-induced elastic field is studied. The geometry is simila
that studied in the first example~Fig. 3~a!!, but with varied thick-
ness of the top-wetting layer and spacer layer. The total thickn
of these two layers is fixed at 1.1a, as shown in Fig. 3~d!. Similar
to that in the first example, a single QD is located at the bottom
the spacer layer. To distinguish this example from the previ
ones, the varied thicknesses of the top wetting and spacer la
are now indicated byLw andLs , respectively. On the top surfac
at three locations~0,0,0!, (0.5a,0,0), and (a,0,0), the normalized
hydrostatic strain,«kk /«0, and vertical displacement componen
2u3 /(«0a), are evaluated with various combinations of thickne

Fig. 7 Induced elastic fields along a line „x 1,0,0… on top sur-
face due to a horizontal rectangular array of up to 9 Ã9 QDs
„Fig. 3c…: „a… normalized hydrostatic strain «kk Õ«

0; „b… normal-
ized vertical displacement component Àu 3 Õ„«0a…
Transactions of the ASME
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of these two layers. In addition, the extreme case without the
wetting layer ~i.e., Lw50) is solved. The results are shown
Fig. 8.

It can be seen that the variations of these quantities are con
ous with thickness ratio between the top wetting and spacer
ers. However, whenLw50, the strain, as well as stress which
not shown, exhibits a jump. Meanwhile, the vertical displacem
converges atLw50. The jumps in the strain and stress fields
Lw50 are due to the material mismatch between the wetting
spacer layers. It is also observed that the variations of these
induced elastic fields may not be monotonic with the vary
thickness ratio. This may be due not only to the materials m
match between the wetting and spacer layers but also to the
surface bending effect. Therefore, these elastic fields in the fre
deposited wetting layer cannot be modeled accurately by ass
ing identical elastic property to the wetting and spacer layers
matter how thin the wetting layer is, in the multilayered semico
ductor system of InAs and GaAs.

4 Conclusions
In this paper, we have proposed a novel Green’s function

proach to the elastic field in multilayered semiconductors w
embedded coherently strained QDs. The problem of QDs w
misfit strains is modeled as an anisotropic elastostatic inclu

Fig. 8 Variation of elastic fields at three locations on top sur-
face with top wetting layer thickness L w „Fig. 3d…: „a… normal-
ized hydrostatic strain «kk Õ«

0; „b… normalized vertical displace-
ment component Àu 3 Õ„«0a…. The results for the extreme case
L wÄ0 are indicated by symbols.
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problem of eigenstrains,@26#. The unique feature of the approac
is that the point-force Green’s function used for the multilay
system satisfies the boundary and interfacial-continuity con
tions. By applying the Betti’s reciprocal theorem, the elastic fie
induced by QDs with general misfit strains is expressed in te
of a domain integral with the point-force Green’s function as
tegral kernel. The domain integral is reduced to a surface inte
along the boundary of a QD that has a uniform misfit-strain d
tribution. Further, for QDs that can be modeled as point sourc
the induced elastic field is then derived as a sum of the point-fo
Green’s functions. These novel features make the pre
continuum-mechanics approach both accurate and efficient
carrying out a parametric study of QDs-induced elastic field
multilayered semiconductors.

By applying the Green’s function approach, we have analy
the elastic field due to embedded QDs in a system of alterna
GaAs-spacer and InAs-wetting layers on a GaAs substrate, pl
freshly deposited InAs-wetting layer on the top. The QDs emb
ded in the spacer layers are assumed to have the same e
constants as the spacer medium. The effects of vertical and h
zontal arrays of QDs and of thickness of the top wetting layer
the elastic fields are examined and discussed in detail. The foll
ing features have been observed:

• First, the QD-induced out-of-plane strain and in-plane str
components exhibit discontinuities across the interface betw
the wetting and spacer layers due to the materials mismatch
tween these layers.

• Second, the magnitude of the induced in-plane strain
stress components increases when the observation point m
away from the QD source towards the top free surface. This m
be explained by the free-surface bending effect.

• Third, a vertical array of QDs sums up their effects of elas
relaxation on the freshly deposited wetting layer, where a n
generation of QDs is expected to grow. However, a horizon
array of QDs plays a role in deducting the elastic relaxation eff
of the central QD on the top wetting layer, in contrast to that o
vertical array of QDs.

• Finally, when the thickness of the top wetting layer varies,
induced elastic field on the top surface changes continuou
However, when the top wetting layer totally disappears, some
the elastic strain and stress components exhibit a jump, due to
difference of elastic property between the wetting and spa
layers.
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Indentation Problems of
Two-Dimensional Anisotropic
Thermoelasticity With Perturbed
Boundaries
Complex variable representations in the Stroh formalism are used to analyze the pro
of rigid stamp indentation on an irregularly shaped surface of an anisotropic thermoe
tic body. The shape of boundary surface considered in this work includes a cosine
shaped surface and a triangular hole that are assumed to be slightly different fro
straight line and an ellipse, respectively, for which the exact solutions exist. Based
perturbation technique, an approximate solution for the punch problem of rigid st
indentation on a wave-shaped surface or a triangular hole that is viewed as being
turbed from a straight line or an elliptical hole is provided. First-order perturbatio
solutions for both temperature and stress functions are given explicitly. Numerical re
of contact stress under the punch face are discussed in detail and shown in gr
form. @DOI: 10.1115/1.1554414#
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1 Introduction
In the theory of two-dimensional linear elasticity one of t

most powerful techniques for the solution of boundary value pr
lems with awkwardly shaped regions is to transform the reg
into one of simpler shape. For example, the boundary value p
lem associated with an elliptic hole or a polygonal hole for is
tropic materials can be solved by the transformation of the sim
geometry such as a circle hole whose solution is easy to ach
The success of the above method lies in the property that
transformation must be conformal and one-to-one. However, th
are many cases that a one-to-one mapping function canno
found such as the problem with a wave-shaped boundary
triangular hole boundary for anisotropic materials. In order to
lustrate the above argument, let the hole boundary beG and its
image byza5x1pay beGa with pa (a51,2,3) being the eigen
values for anisotropic materials. Obviously,f a(za) is analytic out-
sideGa in the za-plane. It is expected that the transformed fun
tions f a(ma(z)) can be determined by transforming the origin
boundary conditions on an elliptic holeG onto the unit circle in
the z-plane. However, one could not expect that the transform
functions f a(ma(z)) can be found by transforming the bounda
conditions on a nonelliptic holeG onto the unit circle since three
unknown functions f a(ma(z)) appearing in the transforme
boundary conditions on the unit circle in thez-plane will take
different values at three different points. The relations betw
these three points are too much complex in general for a no
liptic hole G and it is impossible to choose the mappingsma(z) so
that the three image points on the unit circle in thez-plane be
always coincident.

When the boundary geometries are simple like the stra
boundary, the main task is the development of a systematic
proach for solving the mixed boundary value problem. For
ample, the punch problem for an anisotropic elasticity w
straight edges was solved by Fan and Keer@1# in detail by em-
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ploying the formalism of Eshelby et al.@2# and the method of
analytical continuation~Muskhelishvili @3#!. As to the problems
with elliptic boundaries, the introduction of conformal mappin
functions was used by Fan and Hwu@4#. As discussed in the
above paragraph, the method based on the conformal map
functions is not valid for solving the problem with awkward
shaped regions. An alternative approach for solving such pr
lems is based on the perturbation method by introducing a sm
parameter which denotes the deviation of the opening from tha
a straight line or an ellipse~Hwu and Fan@5#!. The solution for
the anisotropic media with a straight edge or an elliptical open
will be used as a reference. Then, by the perturbation techniqu
approximate solution for the anisotropic media with openin
slightly different from a straight edge or an elliptical opening c
be found.

The research noted above has considered only the isothe
case. When heat flows between two conducting solids, there
be some resistance to heat flow across the interface and the
tact stress will be influenced by the temperature distribution in
bodies. In certain conditions, separation will occur at the corn
of the punch resulting in incomplete indentation that makes
problem more difficult to solve. The literature on this subject
cludes works by Barber@6,7#, Clements and Toy@8#, and Panek
and Dundurs@9#. More specifically, for the problem with a fric
tionless rigid flat-ended punch, Comninou et al.@10# indicated
that, depending on the magnitude and the direction of the t
heat flux, either perfect thermal contact throughout the punch f
or an imperfect contact region at the center with adjacent per
contact regions occurs. In this paper, based on a perturbation
nique, we like to solve the more complicated problem with p
turbed boundaries. Two kinds of perturbed boundaries will
considered here. One is a boundary perturbed from a straight
such as a cosine wave-shaped surface indented by a rigid
ended punch, the other is a boundary perturbed from an ell
such as a triangular hole boundary indented by a rigid stamp
order to make an analytical solution tractable in the current wo
the stamp is considered to completely adhere to the surface o
elastic body over the contact region such that the displacem
along the contact region can be assumed to be a constant v
Moreover, the magnitude of the total heat flux is properly chos
such that the condition of perfect thermal contact is always sa
fied during the indentation. A general solution up to the first-ord

9,
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perturbation will be obtained by using Stroh’s formalism~Stroh
@11#!, analytical continuation, conformal mapping function, a
perturbation technique. As to higher-order perturbation solutio
general procedure is depicted in this paper. Two numerical
amples of punch problems associated with a cosine wave sh
surface and a triangular hole boundary are studied in detail
shown in graphic form.

2 Basic Equations for Two-Dimensional Anisotropic
Thermoelasticity

The basic equations for linear anisotropic thermoelasticity
the equations for the stress-strain, the equilibrium, the heat
duction, and the balance of energy, which can be expressed

s i j 5Ci jksuk,s2b i j T

s i j , j50
(2.1)

hi52ki j T, j

hi ,i50

whereui , s i j , hi , T stand for the displacement, stress, heat fl
and temperature, respectively, andb i j , ki j , Ci jks are, respec-
tively, the thermal moduli, the heat conduction, and the ela
constants.

For two-dimensional problems which depend onx1 andx2 only,
the general solution to~2.1! may be written by means of fou
holomorphic functions which satisfy all the basic equations giv
in ~2.1! as ~Ting @12#!

T52 Re@g8~zt!#

Q5E h1dx22h2dx152 Re@ ikg8~zt!#
(2.2)

u52 Re@Af ~z!1cg~zt!#

f52 Re@Bf~z!1dg~zt!#

with A5@a1 a2 a3#, B5@b1 b2 b3#, f(z)
5@ f 1(z1) f 2(z2) f 3(z3)#T, k5Ak11k222k12

2 , zt5x11tx2 , za
5x11pax2 , a51,2,3, in whichg andf are functions of the com-
plex variableszt and za , respectively. In the above equation,u
5(u1 ,u2 ,u3) is the displacement vector,f5(f1 ,f2 ,f3) stands
for the stress function vector, which is related to the stressess i j
by s i152f i ,2 , s i25f i ,1 , and the additional multipliers in~2.2!
are defined by

c5@Q1t~R1RT!1t2T#21$b11tb2%, (2.3)

d5~RT1tT!c2b2

where

Qik5Ci1k1 , Rik5Ci1k2 , Tik5Ci2k2 ,
(2.4)

b15@b11b12b13#
T, b25@b21b22b23#

T.

For the latter derivation by means of the analytical contin
tion, the argument of each component function off(z) is written
asz5x11px2 without referring to its associated eigenvaluespa .
Once the solutions of the holomorphic functions are obtained
replacement ofz1 , z2 , andz3 ~or zt) should be made forf(z) ~or
g(z)) to calculate the field quantities from~2.2!.

3 Straight Boundary Perturbation
Let an anisotropic elastic body occupy the lower half-pla

whose boundary is a wave-shaped surface perturbed from
straight linex250 which can be expressed in terms of a sm
parameter« as

x25«w~x1! (3.1)
170 Õ Vol. 70, MARCH 2003
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wherew(x1) is a wave-shaped function. Consider a rigid punch
width 2a which is pressed into a wave-shaped surface by a c
pressive forcep̂ and the total heat fluxQ̂ from the punch to the
half plane as shown in Fig. 1. In this section we consider a m
rial occupying the lower half-planex2.0 and denote this region
by S1, using the notationS2 for the half-planex2,0.

3.1 Temperature Field. In order to solve such a mixed
boundary value problem, we let the temperature functiong8(z) be
expanded in the following perturbation form:

g8~z!5g08~z!1«g18~z!1«2g28~z!1 . . . . (3.2)

For the convenience of formulating boundary conditions along
perturbed boundary, a new variableẑ in place ofz is introduced as

z5 ẑ1t«w~x1!, ẑ5x11t@x22«w~x1!#. (3.3)

With the aid of~3.3!, each termgi8(z) in ~3.2! can be expanded
into

gi8~z!5gi8~ ẑ!1t«w~x1!gi9~ ẑ!1
1

2
@t«w~x1!#2gi-~ ẑ!1 . . . ,

i 50,1,2 . . . . (3.4)

Substituting~3.4! into ~3.2!, we can obtain

g8~z!5g08~ ẑ!1«@g18~ ẑ!1tw~x1!g09~ ẑ!#

1«2Fg28~ ẑ!1tw~x1!g19~ ẑ!1
1

2
t2w2~x1!g0-~ ẑ!G1 . . . .

(3.5)

If there is perfect thermal contact throughout the regionL pressed
by the punch and the remaining part of the half-plane surfac
assumed to be thermally insulated, the boundary conditions a
the perturbed boundaryx2→«w(x1

1) give

dT

dx1
5

d

dx1
2 Re@g8~x1

1!#50, x1PL
(3.6)

h252
d

dx1
2 Re@ ikg8~x1

1!#50, x1¹L.

Fig. 1 A rigid stamp indentation on a wave-shaped surface of
an elastic half-plane
Transactions of the ASME
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Note that~3.6!1 implies that the interface offers no resistance
heat flow in the regions with solid to solid contact while~3.6!2
presumes that no heat is exchanged between the bodies i
regions out of contact.

Substituting~3.5! into ~3.6!, we have

dT

dx1
5

d

dx1
2 Re$g08~x1

1!1«@g18~x1
1!1tw~x1

1!g09~x1
1!#1 . . . %

50, x1PL and
(3.7)

h252
d

dx1
2 Re$ ik~g08~x1

1!1«@g18~x1
1!1tw~x1

1!g09~x1
1!#

1 . . . !%50, x1¹L

Comparing the coefficients of«l (l50,1,2. . . ) onboth equa-
tions of ~3.7!, we obtain

H d

dx1
2 Re@g08~x1

1!#50, x1PL

d

dx1
2 Re@ ikg08~x1

1!#50, x1¹L

H d

dx1
2 Re@g18~x1

1!1tw~x1
1!g09~x1

1!#50, x1PL

d

dx1
2 Re@ ik~g18~x1

1!1tw~x1
1!g09~x1

1!!#50, x1¹L

(3.8)
]

]

The first set of equations in~3.8! for the zero-order perturbation i
identical to that for the mixed boundary value problems w
straight boundary whose solution has been found in~Chao et al.
@13#! as

g09~ ẑ!5
2Q̂

2pkA~ ẑ2a!~ ẑ1a!
, ẑPS1. (3.9)

Using g09( ẑ) as a reference solution, the second set of Eqs.~3.8!
for the first-order perturbation can be treated in a similar way
the final result is

g19~ ẑ!52
d

dz
@tw~ ẑ!g09~ ẑ#. (3.10)

In a similar way, the higher-order perturbation solutions can
solved step by step.

3.2 Stress Field. Let the derivative of the complex functio
f(z) be expanded in the following perturbation form:
Journal of Applied Mechanics
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f8~z!5f08~z!1«f18~z!1«2f28~z!1 . . . . (3.11)

If we introduce a new variableẑ in place ofz by

z5 ẑ1p«w~x1!, ẑ5x11p@x22«w~x1!#, (3.12)

each termf i8(z) in ~3.11! can be expanded into

f i8~z!5f i8~ ẑ!1p«w~x1!f i9~ ẑ!1
1

2
@p«w~x1!#2f i-~ ẑ!1 . . . ,

i 50,1,2, . . . . (3.13)

Substituting~3.13! into ~3.11!, we obtain

f8~z!5f08~ ẑ!1«@ f18~ ẑ!1pw~x1!f09~ ẑ!#

1«2F f28~ ẑ!1pw~x1!f19~ ẑ!1
1

2
p2w~x1!2f0-~ ẑ!G1 . . . .

(3.14)

Since a rigid punch of width 2a is pressed into a wave-shape
half-plane surface by a compressive force, the boundary co
tions for this problem are

du

dx1
5û8~x1!, x1PL

(3.15)
df

dx1
50, x1¹L

whereû8(x1) can be expressed in terms of« as

û8~x1!5û08~x1!1«û18~x1!1«2û28~x1!1 . . . .

Along the perturbed boundaryx2→«w(x1
1) the boundary condi-

tions ~3.15! become

du

dx1
52 Re$A~ f08~x1

1!1«@ f18~x1
1!1pw~x1

1!f09~x1
1!#1 . . . !

1c~g08~x1
1!1«@g18~x1

1!1tw~x1
1!g09~x1

1!#1 . . . !%

5û8~x1!, x1PL and
(3.16)

df

dx1
52 Re$B~ f08~x1

1!1«@ f18~x1
1!1pw~x1

1!f09~x1
1!#1 . . . !

1d~g08~x1
1!1«@g18~x1

1!1tw~x1
1!g09~x1

1!#1 . . . !%

50, x1¹L.

By comparing the coefficients of«l (l50,1,2, . . . ) onboth sides
of ~3.16!, we obtain
H 2 Re@Af08~x1
1!1cg08~x1

1!#5û08~x1!, x1PL

2 Re@Bf08~x1
1!1dg08~x1

1!#50, x1¹L

H 2 Re@A~ f18~x1
1!1pw~x1

1!f09~x1
1!!1c~g18~x1

1!1tw~x1
1!g09~x1

1!!#5û18~x1!, x1PL

2 Re@B~ f18~x1
1!1pw~x1

1!f09~x1
1!!1d~g18~x1

1!1tw~x1
1!g09~x1

1!!#50, x1¹L
(3.17)

]

]
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The first set of equations in~3.17! for the zero-order perturbation
is the same as the one corresponding to the mixed boundary v
problems with straight boundary whose solution has been foun
~Chao et al.@13#! as

f08~ ẑ!5B21H 1

2p i
X~ ẑ!E

L

1

t2 ẑ
@X1~ t !#21M $ i û08~ t !

12 Im@c2AB21d#g08~ t !%dt1X~ ẑ!p0~ ẑ!2dg08~ ẑ!J
(3.18)

whereM52 iBA21 is the impedance matrix andX( ẑ) is the Ple-
melj function for the problem with the straight line bounda
given by

X~ ẑ!5LG~ ẑ! (3.19)

with
n

l

.
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L5@l1 ,l2 ,l3#, G~ ẑ!5^^~ ẑ2a!212da~ ẑ1a!da&&.
(3.20)

The angular bracket̂̂ && stands for the diagonal matrix in whic
each component is varied according to the Greek indexa, da and
la , a51,2,3 are the eigenvalues and eigenvectors of~Ting @12#!

~M̄211e2p idM21!l50. (3.21)

The polynomial functionp0( ẑ) in ~3.18! has the form

p0~ ẑ!5
1

2p i
L21p̂0 . (3.22)

The zero-order solutionf08( ẑ) given in ~3.18! can be used as a
reference to solve the other unknown functionsf i8( ẑ) in ~3.17!. In
order to employ the method of analytical continuation, the sec
set of equations in~3.17! is now rewritten as
H A@ f18~x1
1!1* f18~x1

1!#1c@g18~x1
1!1* g18~x1

1!#1Ā@f18~x1
1!1* f18~x1

1!#1 c̄@g18~x1
1!1* g18~x1

1!#5û18~x1!, x1PL

B@ f18~x1
1!1* f18~x1

1!#1d@g18~x1
1!1* g18~x1

1!#1B̄@f18~x1
1!1* f18~x1

1!#1d̄@g18~x1
1!1* g18~x1

1!#50, x1¹L
(3.23)

where* f18( ẑ)[pw( ẑ)f09( ẑ) and* g18( ẑ)[tw( ẑ)g09( ẑ).

By using the analytic continuation method, a new holomorphic function is introduced as

Q18~ ẑ!5H B@ f18~ ẑ!1* f18~ ẑ!#1d@g18~ ẑ!1* g18~ ẑ!#, ẑPS1

2B̄@f18~ ẑ!1* f18~ ẑ!#2d̄@g18~ ẑ!1* g18~ ẑ!#, ẑPS2. (3.24)

With the aid of~3.24!, ~3.23! becomes

H Q18~x1
1!1MM̄ 21Q18~x1

2!5 iM $û18~x1!22 Re@~c2AB21d!~g18~x1
1!1* g18~x1

1!!#%, x1PL

Q18~x1
1!2Q18~x1

2!50, x1¹L
. (3.25)
d.
s of

s
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t

Equation~3.25! is in the form of Hilbert problem whose solutio
is obtained as

Q18~ ẑ!5
1

2p
X~ ẑ!E

L

1

t2 ẑ
@X~ t !#21M$û18~ t !

22 Re@~c2AB21d!~g18~ t1!1* g18~ t1!!#%dt

1X~ ẑ!p1~ ẑ!, ẑPS1 (3.26)

where the polynomial vectorp1( ẑ) can be determined by the load
ing condition. The first-order perturbation solutionf18( ẑ) can be
immediately obtained by substituting~3.26! into ~3.24!. In a simi-
lar way, the higher-order perturbation solutions can also be so
step by step.

4 Elliptical Boundary Perturbation
Next we consider an anisotropic body containing an open

whose boundary is slightly different from an ellipse which can
expressed in terms of a small parameter« as

x15aFcosq1«(
n51

N

~an cosnq1bn sinnq!G
(4.1)

x25aFc sinq1«(
n51

N

~2an sinnq1bn cosnq!G .

When«50 an ellipse with semi-axesa andac can be described
In other cases with«50, c51, and«50, c→0, the contour stands
for, respectively, a circle and a crack. IfN52, a15b15b250,
-

ved

ing
be

a251, «50.25, a triangle with rounded corners can be plotte
The other cases can be obtained by setting the different value
the coefficients on~4.1!.

An infinite plane with an opening~4.1! can be transformed to
the §-plane with a unit circleu§u51. The transform function is
written as

za5za
e1«wa~§!, a51,2,3,t (4.2)

whereza5x11pax2 and

za
e5va~§!5

1

2
aH ~12 ipac!§1~11 ipac!

1

§ J
wa~§!5

1

2
a(

n51

N H ~an2 ibn!~11 ipa!§n

1~an1 ibn!~12 ipa!
1

§nJ .

Note that the superscript ‘‘e’’ denotes that the transformation i
related to the corresponding elliptical opening. With this transf
mation function ~4.2!, all the solutions given in~2.2! are ex-
pressed in terms of the new variable§ instead ofz ~or zt). On
transforming to the regionu§u>1 of the§-plane, the perfect contac
and perfect insulation conditions can then be expressed as

T,n~s!50, u,n5û8~s!, sPL (4.3)

hm5tm50, s¹L (4.4)

wheres5eiq denotes the point on the unit circle of the§-plane;L
is an arc defined asL5(e2 iw,eiw), û8~s! is the given function of
the displacement gradient along the tangent directionn; hm andtm
Transactions of the ASME
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are the heat flux and the traction function, respectively, along
normal directionm; nT5(cosu,sinu,0), mT5(2sinu,cosu,0);
andu is the angle measured counterclockwise between the tan
vectorn and the positivex1-axis ~Fig. 2!. In this section we con-
sider a material occupying the regionu§u.1 as denoted byS1 and
the regionu§u,1 by S2.

4.1 Temperature Field. Like the problem of straight
boundary perturbation, the complex functiong8(z) can be ex-
pressed as

g8~z!5g08~z!1«g18~z!1«2g28~z!1 . . . . (4.5)

With the definition~4.2!, each termgi8(z) in ~4.5! can be rewritten
as

gi8~z!5gi8~ze1«w~§!!5gi8~ze!1«w~§!gi9~ze!

1
1

2
@«w~§!#2gi-~ze!1 . . . . (4.6)

Substituting~4.6! into ~4.5!, we have

g8~z!5g08~ze!1«@g18~ze!1w~§!g09~ze!#1«2Fg28~ze!

1w~§!g19~ze!1
1

2
w2~§!g0-~ze!G1 . . . . (4.7)

Sincezt
e5v t(§), we can expressgi8(z

e) in terms ofgi8(§) as

Fig. 2 A rigid stamp indentation on a triangular hole boundary
embedded in an elastic infinite body
Journal of Applied Mechanics
the

gent

g8~§!5g08~§!1«@g18~§!1w~§!g09~§!#

1«2Fg28~§!1w~§!g19~§!1
1

2
w2~§!g0-~§!G1 . . . .

(4.8)

Let an anisotropic body contain an opening as indicated in~4.1!
be indented by a rigid stamp under the resultant heat flowQ̂ and
resultant forcep̂ over a segment, which is mapped onto an a
L5(e2 iw,eiw) in the §-domain. Along the perturbed boundaryzt

5v t(s)1«w t(s) with s5eiq the boundary conditions~4.3! and
~4.4! can be rewritten as

dT

dn
5

d

dn
2 Re@g8~s1!#50, sPL

and ~4.9!

hm5
d

dn
2 Re@ ikg8~s1!#50, s¹L.

Substituting ~4.8! into ~4.9! and comparing the coefficients o
«l (l50,1,2. . . ) onboth sides, we have

H d

dn
2 Re@g08~s1!#50, sPL

d

dn
2 Re@ ikg08~s1!#50, s¹L

H d

dn
2 Re@g18~s1!1w~s1!g09~s1!#50, sPL

d

dn
2 Re@ ik$g18~s1!1w~s1!g09~s1!%#50, s¹L

(4.10)

]

In view of ~4.10!1 , the expression for the zero-order perturbati
is identical to the mixed boundary value problems with elliptic
boundary whose solution has been found in~Chao and Gao@14#!
as

g09~§!5§21X0~§!p0~§!, §PS1 (4.11)

whereX0(§) is the Plemelj function for the arc given by

X0~§!5~§2e2 iw!21/2~§2eiw!21/2 (4.12)

andp0(§) is a polynomial function, which can be determined b
the thermal loading condition, expressed as

p0~§!5
2Q̂

4pr
~11§! (4.13)

with

r5aAsin2 q1c2 cos2 q. (4.14)

Onceg09(§) is obtained, it can be used as a reference to solve
other unknown functionsgi8(§). The second set of~4.10! can be
rewritten as
MARCH 2003, Vol. 70 Õ 173



¦

2
is

r
@g19~s1!1w8~s1!g09~s1!1w~s1!g0-~s1!#

1
i

rs
@g19~s1!1w8~s1!g09~s1!1w~s1!g0-~s1!#50, sPL

ks

r
@g19~s1!1w8~s1!g09~s1!1w~s1!g0-~s1!#

(4.15)
1
k

rs
@g19~s1!1w8~s1!g09~s1!1w~s1!g0-~s1!#50, s¹L.
In view of ~4.15!, the termsw8(z)g09(z) and w(z)g0-(z) are not
holomorphic inS1 or S2. In order to employ the analytical con
tinuation theorem, we need the following relationship by differe
tiating ~4.10!1 with respect tos as

2g09~s1!1sg0-~s1!52
1

s3 g0-S 1

s̄2D , sPL
h
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and
~4.16!

g0-~s1!5
2

s3 g09S 1

s̄2D1
1

s4 g0-S 1

s̄2D , s¹L

and introducing
u18~§!5

¦

§g19~§!1
a

2 (
n51

N H ~an1 ibn!~12 ip !
1

§nJ $2ng09~§!1§g0-~§!%

1
a

2 (
n51

N H ~an1 ibn!~12 i p̄ !
1

§nJ §2$2ng09~§!12g09~§!1§g0-~§!%, §PS1

2
1

§
g19S 1

§̄ D1
a

2 (
n51

N

$~an2 ibn!~11 ip !§n%H n

§2 g09S 1

§̄ D2
2

§2 g09S 1

§̄ D2
1

§3 g0-S 1

§̄ D J
2

a

2 (
n51

N

$~an2 ibn!~11 i p̄ !§n%H 2ng09S 1

§̄ D1
1

§
g0-S 1

§̄ D J , §PS2.

(4.17)
With the aid of~4.16! and~4.17!, Eq. ~4.15! can be rearranged to
the following Hilbert problem

H u18~s1!1u18~s2!50, sPL

u18~s1!2u18~s2!50, s¹L.
(4.18)

The first-order perturbation solution to~4.18! is found as

u18~§!5X0~§!p1~§!, §PS1 (4.19)

where the polynomial functionp1(§), similar to the previous ap-
proach, can be determined by the thermal loading condition. T
g19(§) can be directly obtained by substituting~4.19! into ~4.17!.
Similarly, the higher-order perturbation solutionsgi8(§) can also
be determined step by step.

4.2 Stress Field. Similar to the problem of straight bound
ary perturbation, the complex functionf(z) can be expanded into

f~z!5f0~z!1«f1~z!1«2f2~z!1 . . . . (4.20)

Each termf i(z) in ~4.20! can be written as

f i~z!5f i~ze1«w~z!!5f i~ze!1«w~z!f i8~ze!1
1

2
@«w~z!#2f i9~ze!

1 . . . . (4.21)

Substituting~4.21! into ~4.20!, we have
us,

-

f~z!5f0~ze!1«@ f1~ze!1w~§!f08~ze!#

1«2F f2~ze!1w~§!f18~ze!1
1

2
w2~§!f09~ze!G1 . . . .

(4.22)

Sinceza
e5va(§), we can expressf i(z

e) in terms off i(§) as

f~§!5f0~§!1«@ f1~§!1w~§!f08~§!#

1«2F f2~§!1w~§!f18~§!1
1

2
w2~§!f09~§!G1 . . . .

(4.23)

Along the boundarys5eiq the boundary conditions~4.3! and
~4.4! are written as

du

dn
5

d

dn
2 Re@Af ~s1!1cg~s1!#5û,n , sPL

(4.24)

tm5
df

dn
5

d

dn
2 Re@Bf~s1!1dg~s1!#50, s¹L

where

û,n~s!5û0,n~s!1«û1,n~s!1«2û2,n~s!1 . . . .

Substituting~4.23! and~4.8! into ~4.24! for §→s1 and comparing
the coefficients of«l (l50,1,2. . . ) on both sides of~4.24!, we
have
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d

dn
2 Re@Af0~s1!1cg0~s1!#5û0,n~s!, sPL
H d

dn
2 Re@Bf0~s1!1dg0~s1!#50, s¹L

H d

dn
2 Re@A~ f1~s1!1w~s1!f08~s1!!1c~g1~s1!1w~s1!g08~s1!!#5û1,n , sPL

d

dn
2 Re@B~ f1~s1!1w~s1!f08~s1!!1d~g1~s1!1w~s1!g08~s1!!#50, s¹L

(4.25)
]
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Like the problem of straight perturbed boundary, the first set
~4.25! is the equation for the zero-order perturbation which
identical to that for the punch problem with elliptical bounda
whose solution has been found in~Chao and Gao@14#! as

f08~§!5B21~§21Q08~§!2dg08~§!! (4.26)

with

Q08~§!5
1

2p i
X~§!E

L

1

t2§
@X1~ t !#21M $2rû0,n

12 Im@~c2AB21d!tg08
1~ t !#%dt1X~§!p0~§!,

§PS1 (4.27)

where X~§! is the Plemelj function for the arc andp0(§) is a
polynomial function which can be determined by the loading c
ditions. Oncef0(§) is obtained, it can be used as a reference
find the other unknown functionsf i(§).

The second set of~4.25! can be expressed as

s2$A@ f18~s1!1w~s1!f09~s1!1w8~s1!f08~s1!#

1c@g18~s1!1w~s1!g09~s1!1w8~s1!g09~s1!#%

2$Ā@ f18~s1!1w~s1!f09~s1!1w8~s1! f08~s1!#

1 c̄@g18~s1!1w~s1! g09~s1!1w8~s1! g09~s1!#%

5 irsû1,n , sPL

and ~4.28!

2s2$B@ f18~s1!1w~s1!f09~s1!1w8~s1!f08~s1!#

1d@g18~s1!1w~s1!g09~s1!1w8~s1!g09~s1!#%

1$B̄@ f18~s1!1w~s1! f09~s1!1w8~s1! f08~s1!#

1d̄@g18~s1!1w~s1! g09~s1!1w8~s1! g09~s1!#%

50, s¹L.

Unlike the problem of straight boundary perturbation, due to
form of wa(§) in ~4.2! w(z)f09(z) andw8(z)f08(z) in ~4.28! will not
be holomorphic inS1 or S2. To overcome this difficulty, one
needs the additional relationships~see Appendix! such that~4.28!
can be rewritten as the following Hilbert problem of vector for

H Q18~s1!2Q18~s2!50, s¹L

Q18~s1!1MM̄ 21Q18~s2!52 iMũ1~s!, sPL
(4.29)

where

M52 iBA21,
Journal of Applied Mechanics
of
is
y,

n-
to
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m

ũ1~s!52 irû1,n1
a

2 (
n51

N

$~an2 ibn!~11 ip !sn% irFn21

s
û0,n

1û0,n8 G2
a

2 (
n51

N H ~an1 ibn!~12 i p̄ !
1

snJ ir@~12n!sû0,n

1s2û0,n8 #12i ImH ~c2AB21d!Fsg18~s1!1
a

2 (
n51

N

~an

1 ibn!~12 ip !
1

sn @sg09~s1!2ng08~s1!#1
a

2 (
n51

N

~an

1 ibn!~12 i p̄ !
1

sn ~~22n!s2g08~s1!1s3g09~s1!!G J .

The solution to~4.29! is found as

Q18~§!5
21

2p
X~§!E

L

1

t2§
@X1~ t !#21Mũ1~ t !dt1X~§!p1~§!,

§PS1 (4.30)

where the polynomial vector can be determined by the load
conditions. ThusQ18(§) is completely solved and the first-orde
perturbation solutionf18(§) can be obtained by substituting~4.30!
into ~A3!1 . The higher-order perturbation solutionsf i8(§) can be
also solved in a similar way.

5 Examples
In order to demonstrate the use of the present approach an

understand clearly the physical behavior of the indentation pr
lems, numerical examples associated with a cosine wave-sh
boundary and a triangular hole boundary will be discussed in
section.

5.1 A Rigid Flat Punch on a Cosine Wave-Shaped Bound-
ary. We first consider a rigid punch indenting into the cosi
wave-shaped surface of an anisotropic elastic half-plane by a
resultant forcep̂5(0,p,0) and a resultant heat flowQ̂ ~see Fig. 1!.
The wave-shaped surface is slightly perturbed from a straight
by a small amount« in amplitude represented as

x25«w~x1!, w~x1!5cosx1 . (5.1)

The material properties considered in the present study are ch
as

E115144.8 Gpa, E225E3359.7 Gpa,

G125G235G1354.1 Gpa,

n125n235n1350.3, a11520.331026 K21,
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a225a33528.131026 K21, (5.2)

k1154.62 Wm21 K21, k225k3350.72 Wm21 K21.

During the indentation, we assume that the punch is comple
adhered to the half-plane over the contact regionux1u<a in such a
way that no slip occurs. Based on this assumption, the displ
ment of the surface of the half-plane is given as

û~ z̃!5~c1« cosx1!) i2 (5.3)

wherei25(010)T andc is the relative depth of indentation.
For the purpose of clearly expressing the effect of mate

properties, geometric configuration and applied loading on
contact stress, the nondimensional parameterl* defined as

l* 5
a11Q̂E11a

k11p
(5.4)

is used which must be properly chosen such that the conditio
a negative~compressive! contact stress is satisfied. In the prese
case with«50.1, perfect contact is found to maintain througho
the punch face asl* ranges from24.965 to 0.020 up to the
first-order perturbation solution. Whenl* is beyond this region,
either separation to occur near the ends of the punch or impe
contact to occur at the central region will be predicted~Comninou
et al. @10#!. Both the zero-order and first-order perturbation so
tions for the contact stresss22a/p with l*520.5 are displayed in
Fig. 3 which shows that the stress singularity is found near
ends of a rigid stamp. We also observed that the contact stres
the first-order perturbation solution with cosine wave-shaped
face is larger~or less! than that for the zero-order perturbatio
solution with flat surface near the central part~or the edge! of a
rigid punch. The contact stress under the punch face for diffe
values of l* is shown in Fig. 4. The result indicates that th
contact stress near the center of the punch face decreases
increasing the value of2l* . Based on this finding, we anticipat
that a central region of imperfect contact will be developed
l*,24.965. On the other hand, ifp/Q̂ is sufficiently large~or l*
approaches zero!, perfect contact will be maintained througho
the punch face for either direction of heat flow.

Fig. 3 The normal contact stress along a cosine wave-shaped
surface indented by a rigid stamp with l*ÄÀ0.5
176 Õ Vol. 70, MARCH 2003
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5.2 A Rigid Stamp on a Triangular Hole Boundary With
Rounded Corners. As a second example we consider that
equilateral triangular hole, which is embedded in an infinite bo
having the material properties listed in~5.2!, represented byN
52, a15b15b250, a251, «50.25 anda5c51 in ~4.1! is sub-
jected to a resultant forcep̂5(p,0,0) and a resultant heat flowQ̂
approached from the negativex1-axis along the segmentf530°
~see Fig. 2!. Since the stamp completely adheres to the h
boundary, the displacement along the contact region will b
constant value, i.e.,û( z̃)5const. Note that this assumption is di
ferent from that given in~5.3!. In that case the punch profile
differs from the wavy surface on initial contact, while in th
example, the surfaces of the stamp and the hole boundary
assumed to be perfectly matched on initial contact as well
during the subsequent indentation. The nondimensional param
l* for the problem with triangular hole boundary is defined as

l* 5
a11E11Q̂a~c sinw2« sin 2w!

k11p
. (5.5)

In the present case, perfect contact is found to maintain throu
out the punch face asl* ranges from20.712 to 0.013 up to the
first-order perturbation solution. The first-order perturbation so
tion for the contact stresssmm/(p/2a(c sinw2« sin 2w)) with
l*520.3 is shown in Fig. 5 that also reveals the stress singula
behavior at the ends of the rigid stamp. The contact stress
different values ofl* is displayed in Fig. 6 which indicates tha
imperfect contact will be developed atw5615° if the value of
2l* increases and exceeds 0.712. On the other hand, perfect
tact will be maintained throughout the punch face ifp/Q̂ is suffi-
ciently large for either direction of heat flow.

6 Conclusion
The mixed boundary value problems of two-dimensional ani

tropic thermoelasticity with perturbed boundaries are solved
this paper. The boundary surface considered in this work is
one perturbed by a straight line or an ellipse. Based on the Str
formulation, analytical continuation theorem, conformal mapp
function, and perturbation technique, a general solution up to

Fig. 4 The normal contact stress along a cosine wave-shaped
surface indented by a rigid stamp for different values of l*
Transactions of the ASME
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first-order perturbation has been solved explicitly. Two numeri
examples of rigid stamp indentation on a perturbed boundar
an anisotropic elastic body are solved completely and show
graphic form. As discussed in the preceding chapter, in orde
make an analytical solution accessible in this work, we assu
that the stamp is considered to completely adhere to the surfa
an elastic body over the contact region during the indentation
reality, when a rigid indenter is pressed into a half-plane~or a
triangular hole boundary!, the contact area on the half-plane w
not be stationary, but will move over the half-plane with time. F

Fig. 5 The normal contact stress along an equilateral triangu-
lar hole boundary indented by a rigid stamp with l*ÄÀ0.3
Journal of Applied Mechanics
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this case the heat conduction problem will be transient and ne
to be posed in a moving frame of reference. The correct formu
tion of such physical problems requires an incremental treatm
that is beyond the scope of the present study.

Acknowledgments
The authors would like to thank the support by National S

ence Council, Republic of China, through Grant No. NSC 9
2212-E-011-062.

Appendix
In order to obtain the Hilbert problem given in~4.29!, we first

substitute~4.2! into ~4.28!2 as

Fig. 6 The normal contact stress along an equilateral triangu-
lar hole boundary indented by a rigid stamp for different values
of l*
2s@Bf18~s1!1dg18~s1!#1
1

s
@B̄f18~s1!1d̄g18~s1!#2

a

2 (
n51

N H ~an2 ibn!~11 ip !sn111~an1 ibn!~12 ip !
1

sn21J @Bf09~s1!

1dg09~s1!#1
a

2 (
n51

N H ~an1 ibn!~12 i p̄ !s̄n111~an2 ibn!~11 i p̄ !
1

s̄n21J @B̄f09~s1!1d̄g09~s1!#

2
a

2 (
n51

N H ~an2 ibn!~11 ip !nsn1~an1 ibn!~12 ip !
2n

sn J @Bf08~s1!1dg08~s1!#1
a

2 (
n51

N H ~an1 ibn!~12 i p̄ !ns̄n

1~an2 ibn!~11 i p̄ !
2n

s̄n J @B̄f08~s1!1d̄g08~s1!#50, s¹L. (A1)

Differentiating ~4.25!1 with respect tos yields

@Af09~s1!1cg09~s1!#5
22

s3 F Āf08S 1

s̄2D1 c̄g08S 1

s̄2D G2
1

s4 F Āf09S 1

s̄2D1 c̄g09S 1

s̄2D G1 irF21

s2 û0,n1
1

s
û0,n8 G , sPL

F Āf09S 1

s̄2D1 c̄g09S 1

s̄2D G52s4@Af09~s1!1cg09~s1!#22s3@Af08~s1!1cg08~s1!#1 ir@s2û0,n1s3û0,n8 #, sPL

and
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ed
@Bf09~s1!1dg09~s1!#5
22

s3 F B̄f08S 1

s̄2D1d̄g08S 1

s̄2D G2
1

s4 F B̄f09S 1

s̄2D1d̄g09S 1

s̄2D G , s¹L
(A2)

F B̄f09S 1

s̄2D1d̄g09S 1

s̄2D G52s4@Bf09~s1!1dg09~s1!#22s3@Bf08~s1!1dg08~s1!#, s¹L

Based on the relationship expressed in the last two equations of~A2!, ~A1! allows us to introduce a new holomorphic function express
as

Q18~§!5

¦

§@Bf18~§!1dg18~§!#1
a

2 (
n51

N H ~an1 ibn!~12 ip !
1

§n21J @Bf09~§!1dg09~§!#

2
a

2 (
n51

N H ~an1 ibn!~12 i p̄ !
1

§n11J $2§4@Bf09~§!1dg09~§!#22§3@Bf08~§!1dg08~§!#%

1
a

2 (
n51

N H ~an1 ibn!~12 ip !
2n

§n J @Bf08~§!1dg08~§!#2
a

2 (
n51

N H ~an1 ibn!~12 i p̄ !
n

§nJ §2@Bf08~§!1dg08~§!#,

§PS1

1

§
F B̄f18S 1

§̄ D1d̄g18S 1

§̄ D G1
a

2 (
n51

N

$~an2 ibn!~11 i p̄ !§n21%F B̄f09S 1

§̄ D1d̄g09S 1

§̄ D G
2

a

2 (
n51

N

$~an2 ibn!~11 ip !§n11%H 2
2

§3 F B̄f08S 1

§̄ D1d̄g08S 1

§̄ D G2
1

§4 F B̄f09S 1

§̄ D1d̄g09S 1

§̄ D G J
1

a

2 (
n51

N

$~an2 ibn!~11 i p̄ !~2n!§n%F B̄f08S 1

§̄ D1d̄g08S 1

§̄ D G2
a

2 (
n51

N

$~an2 ibn!~11 ip !n§n%
1

§2 F B̄f08S 1

§̄ D1d̄g08S 1

§̄ D G ,
§PS2

(A3)

On the other hand, substitution of~4.2! into ~4.28!1 and using the first two equations of~A2! gives

2AH sf18~s1!1
a

2 (
n51

N F ~an1 ibn!~12 ip !
1

snG@sf09~s1!2nf08~s1!#1
a

2 (
n51

N F ~an1 ibn!~12 i p̄ !
1

snG@~22n!s2f08~s1!1s3f09~s1!#J
2cH sg18~s1!1

a

2 (
n51

N F ~an1 ibn!~12 ip !
1

snG@sg09~s1!2ng08~s1!#1
a

2 (
n51

N F ~an1 ibn!~12 i p̄ !
1

snG@~22n!s2g08~s1!

1s3g0-~s1!#J 1ĀH 1

s
f18S 1

s̄2D1
a

2 (
n51

N

@~an2 ibn!~11 ip !sn#F22n

s2 f08S 1

s̄2D1
1

s3 f09S 1

s̄2D G1
a

2 (
n51

N

@~an2 ibn!~11 i p̄ !sn#

3F 1

s
f09S 1

s̄2D2nf08S 1

s̄2D G J 1 c̄H 1

s
g18S 1

s̄2D1
a

2 (
n51

N

@~an2 ibn!~11 ip !sn#F22n

s2 g08S 1

s̄2D1
1

s3 g09S 1

s̄2D G
1

a

2 (
n51

N

@~an2 ibn!~11 i p̄ !sn#F 1

s
g09S 1

s̄2D2ng08S 1

s̄2D G J 2
a

2 (
n51

N

@~an2 ibn!~11 ip !sn# irFn21

s
û0,n1û0,n8 G

1
a

2 (
n51

N F ~an1 ibn!~12 i p̄ !
1

snG ir@~12n!sû0,n1s2û0,n8 #52 irû1,n , sPL. (A4)

Furthermore, Eq.~A3! can be rearranged as

sf18~s1!1
a

2 (
n51

N F ~an1 ibn!~12 ip !
1

snG@sf09~s1!2nf08~s1!#1
a

2 (
n51

N F ~an1 ibn!~12 i p̄ !
1

snG@~22n!s2f08~s1!1s3f09~s1!#

5B21H Q18~s1!2dS sg18~s1!1
a

2 (
n51

N F ~an1 ibn!~12 ip !
1

snG@sg09~s1!2ng08~s1!#

1
a

2 (
n51

N F ~an1 ibn!~12 i p̄ !
1

snG@~22n!s2g08~s1!1s3g09~s1!# D J
and
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s̄2D1
a

2 (
n51
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@~an2 ibn!~11 i p̄ !sn#F 1
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f09S 1

s̄2D2nf08S 1

s̄2D G1
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2 (
n51
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@~an2 ibn!~11 ip !sn#F22n

s2 f08S 1

s̄2D1
1

s3 f09S 1

s̄2D G
5B̄21H Q18~s2!2d̄S 1

s
g18S 1

s̄2D1
a

2 (
n51

N

@~an2 ibn!~11 i p̄ !sn#F 1

s
g09S 1

s̄2D2ng08S 1

s̄2D G
1

a

2 (
n51

N

@~an2 ibn!~11 ip !sn#F22n

s2 g08S 1

s̄2D1
1

s3 g09S 1

s̄2D G D J . (A5)

With the aid of~A5!, ~A1! and ~A4! can be rewritten as the following Hilbert problem of vector form given in~4.29!.
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Three-Dimensional Green’s
Functions in Anisotropic Elastic
Bimaterials With Imperfect
Interfaces
In this paper, three-dimensional Green’s functions in anisotropic elastic bimaterials
imperfect interface conditions are derived based on the extended Stroh formalism a
Mindlin’s superposition method. Four different interface models are considered: per
bond, smooth-bond, dislocation-like, and force-like. While the first one is for a pe
interface, other three models are for imperfect ones. By introducing certain mod
eigenmatrices, it is shown that the bimaterial Green’s functions for the three impe
interface conditions have mathematically similar concise expressions as those fo
perfect-bond interface. That is, the physical-domain bimaterial Green’s functions ca
obtained as a sum of a homogeneous full-space Green’s function in an explicit form
a complementary part in terms of simple line-integrals over [0,p] suitable for standard
numerical integration. Furthermore, the corresponding two-dimensional bimate
Green’s functions have been also derived analytically for the three imperfect inte
conditions. Based on the bimaterial Green’s functions, the effects of different inte
conditions on the displacement and stress fields are discussed. It is shown that on
complementary part of the solution contributes to the difference of the displacemen
stress fields due to different interface conditions. Numerical examples are given fo
Green’s functions in the bimaterials made of two anisotropic half-spaces. It is obse
that different interface conditions can produce substantially different results for s
Green’s stress components in the vicinity of the interface, which should be of great in
to the design of interface. Finally, we remark that these bimaterial Green’s functions
be implemented into the boundary integral formulation for the analysis of layered s
tures where imperfect bond may exist.@DOI: 10.1115/1.1546243#
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Introduction
Interface modeling has been the subject of numerous studie

material science and composite structure. The importance o
searches in this topic cannot be overemphasized as it is dire
related to the prediction of the overall material properties, dela
nation, transmission of force, etc.~see, e.g.,@1–13#!. The most
ideal interface model, as is well known, is the so-called perfe
bond interface where the displacements and tractions are con
ous across the interface. However, interfaces are seldom pe
and therefore various imperfect models have been introdu
such as the three-phase and linear spring-like models~see, i.e.,
@14–16#!. Although these models are more capable of repres
ing the imperfect interface, the associated Green’s functions
very difficult to derive ~@14–17#!. Perhaps the most frequentl
studied imperfect interface model is the smooth-bond interf
where the normal components of the displacement and traction
continuous across the interface while the shear traction com
nents are zero on the interface from both sides of the bimate
~see, e.g.,@1,2,18#!. This model is much simpler than the thre
phase and linear spring-like models, and has been used to des
the connection between two materials at elevated tempera
~@17#!, and to model the bone implants in biomechanics~@19#!.

1Currently at the Department of Civil Engineering, University of Akron, Akro
OH 44325-3905. e-mail: pan2@uakron.edu

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, May
2001; final revision, Mar. 5, 2002. Associate Editor: D. A. Kouris. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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Recently, Shuvalov and Gorkunova@18# studied the correspond
ing wave propagation in anisotropic bimaterials with smooth-bo
interface where they found certain special features associated
the smooth-bond interface. Besides various homogeneous i
face models mentioned above, Ru@20,21# has recently proposed
an inhomogeneously imperfect interface model where the in
face parameters are functions of the position variable along
interface, instead of constants along the whole interface for
homogeneous case.

While various interface-related studies have been carried
for two-dimensional deformation problems, relatively very fe
literatures are available for the corresponding three-dimensio
deformations, especially with a planar interface. An apparent
son is that most three-dimensional problems are complicated
need to be solved numerically. Since singular stress field is u
ally associated with problems involving interface, a more suita
numerical tool would be the boundary integral equation meth
~i.e., @22#!. However, successful application of the boundary in
gral equation method depends upon the variability of the rela
Green’s functions. Unfortunately, as far as the three-dimensio
bimaterial Green’s functions with imperfect interface are co
cerned, only those with the smooth-bond interface for isotro
@1,23,24#! and transversely isotropic~@25#! materials were ob-
tained previously. More recently, Yu@14# introduced a dislocation-
like model where the interface condition is similar to the line
spring-like model but with the displacement on one side of
interface being assumed to be linearly proportional to that on
other side of the interface. This dislocation-like model enjoys
least two advantages:~1! The interface shear stress predicted
this model agreed qualitatively with experimental measureme
~@15#!, a suitable description on the effect of an imperfect interfa

,

,
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on the load transfer and~2! For this model, the exact closed-form
bimaterial Green’s functions can be derived~@14,15#!.

Besides their application as kernel functions in the bound
integral equation method, the three-dimensional Green’s fu
tions, in particular, the three-dimensional bimaterial Green’s fu
tions with various interface conditions, are of special values in
numerical studies of strained semiconductor quantum dev
where the strain-induced quantum dot growth in semicondu
nanostructures is crucial to the electronic performance~@26–28#!.
While under two-dimensional deformation, the strain-induc
elastic fields can be easily analyzed using the analytical solu
~@29#!, for those in the three-dimensional bimaterial space,
Green’s functions, as embedded in the Eshelby tensor~@30,31#!,
are required in the corresponding studies. Unfortunately, for pr
lems with material anisotropy, as for the strained semicondu
quantum devices, the involved three-dimensional Green’s fu
tions are very difficult to derive.

In recent years, the Stroh formalism, originally developed
Stroh ~@32,33#! for the two-dimensional deformation problem
has been extended to certain three-dimensional Green’s fun
solutions~@34–37#!. This opens a new door to further explorin
the Stroh formalism. The most promising feature, perhaps, is
application of the extended three-dimensional Stroh formal
combined with the Mindlin’s superposition method~@38#!, as in
Pan and Yuan@37#. In doing so, the three-dimensional bimater
Green’s functions can be expressed as a sum of the Kelvin s
tion ~the full-space Green’s function! and a Mindlin’s complimen-
tary part~@37#!. While the former has an explicit expression~@39–
42#!, the latter is expressed in terms of a simple and regular
integral over@0,p#. This is perhaps the most simple and conc
approach available since a direct application of the Fourier tra
form would end up with a Green’s function expression in terms
three-dimensional Fourier integrals for the homogeneous f
space and four-dimensional Fourier integrals for the bimate
full-space~@43#!.

In this paper, we further extend the three-dimensional St
formalism and Mindlin’s superposition method to the study of t
three-dimensional Green’s functions in anisotropic elastic bim
rials with imperfect interface. Four different interface mode
namely perfect-bond, smooth-bond, dislocation-like, and for
like, are considered. While the first model is for a perfect interfa
for which the corresponding bimaterial Green’s functions w
derived by Pan and Yuan@37#, other three models are for impe
fect interfaces for which the corresponding bimaterial Gree
functions are derived in this paper. Furthermore, the dislocat
like model has been generalized by introducing an interf
spring-like matrix, instead of only two parameters, and the for
like model is a complete new one resembling the recently p
posed traction-jump model~@16,44,45#! with its potential applica-
tion yet to be found. We will show that even for the thre
imperfect interface models, the bimaterial Green’s functions
still enjoy the same simple and concise structure as that for
perfect interface model. This is actually achieved by carefu
introducing certain modified eigenmatrices corresponding to
imperfect interface conditions. We also remark that while the g
eralized Mindlin’s problem in an anisotropic elastic half-spa
with general boundary conditions has been recently solved by
author ~@46#!, the corresponding two-dimensional bimater
Green’s functions with the three imperfect interface models
derived analytically in the Appendix of this paper.

A typical numerical example on the Green’s stress distribut
is given for a bimaterial full-space made of two orthotropic ha
spaces with the four different interface models. It is demonstra
clearly that by varying the interface parameters in the dislocat
like and force-like models, various load transfer states can
simulated. It is observed that, for most Green’s stresses, the
different interface models affect only their local distribution b
haviors in the vicinity of the interface, and that among the th
imperfect interface models, the smooth-bond model shows
Journal of Applied Mechanics
ary
nc-
c-

the
ces
tor

ed
tion
the

ob-
tor
nc-

by
,
tion
g
the
sm

al
olu-

ine
se
ns-
of

ull-
rial

oh
he
te-

ls,
e-
ce
re
-
n’s
on-
ce
e-

ro-

e
an
the
lly
the
n-

ce
the

al
are

on
lf-
ted
on-
be

four
e-
ee
the

greatest variation as compared to the perfect-bond results. T
features should be of great interest to the composite struc
analysis, in particular, to the interface design. Since the bimate
Green’s functions for the four interface conditions can be obtai
very efficiently and accurately, they can also be implemented
a boundary integral formulation to investigate the deformati
stress, and fracture problems in anisotropic and layered struct
with imperfect interfaces.

Problem Description
Consider an anisotropic elastic bimaterial full-space wherex3

.0 andx3,0 are occupied, respectively, by materials 1 and
with interface atx350 plane. Without loss of generality, we as
sume that a point forcef5( f 1 , f 2 , f 3) is applied in material 1 at
source pointd[(d1 ,d2 ,d3[d.0), with the field point being de-
noted byx[(x1 ,x2 ,x3[z)2. Following Pan and Yuan@36#, the
problem domain is now artificially divided into three region
z.d ~in material 1!, 0<z,d ~in material 1!, and z,0 ~in
material 2!.

Since each region is now free of the body force, the equation
equilibrium in terms of the elastic displacementsuk can thus be
written as

Ci jkl uk,l j 50 (1)

where Ci jkl is the elastic stiffness tensor of the correspond
region. As a convention, summation is taken for the repea
index from 1 to 3, and an index following the subscript comm
denotes the partial differentiation with respect to the fie
coordinate.

Equation~1! needs to be solved for each region with suitab
continuity conditions along the interface and at the source le
In this paper, four different interface models are considered, w
one being perfect and three being imperfect.

Model 1. The displacement and traction vectors are contin
ous across the interface, i.e.,

uj
~1!uz5015uj

~2!uz502, t j
~1!uz5015t j

~2!uz502; j 51,2,3
(2a)

where the superscripts~1! and ~2! are used exclusively to denot
the quantities in materials 1 and 2, respectively. It is seen that
this model, the two half-spaces are perfectly bonded together,
such an interface is also called perfect-bond~or ideal, welded!
interface~see, e.g.,@1,17,24#!. We further mention that the aniso
tropic bimaterial Green’s functions with this interface conditio
have been derived recently by Pan and Yuan@37# and are included
here for the purpose of comparison to the bimaterial Green’s fu
tions with imperfect interface conditions.

Model 2. The displacement and traction vectors are requi
to satisfy the following conditions across the interface:

u3
~1!uz5015u3

~2!uz502, t3
~1!uz5015t3

~2!uz502
(2b)

ta
~1!uz5015ta

~2!uz50250, a51,2.

This is perhaps one of the most frequently studied imperfect
terface models and is called smooth-bond~or frictionless, slip-
ping, or sliding! interface~@1,17,24,25#!.

Model 3. Across the interface, the traction vector is contin
ous and the displacement vector is discontinuous:

ui
~1!uz5015ki j

u uj
~2!uz502, t i

~1!uz5015t i
~2!uz502; i 51,2,3

(2c)

where the constant matrixku5@ki j
u # describes the bonding cond

tion along the interface. Yu~@14#! recently proposed this imperfec
interface model for the isotropic bimaterial full-space with t

2Thereafter, the scalar variablesz andd will be used exclusively for the third field
coordinatex3 and third source coordinated3 , respectively.
MARCH 2003, Vol. 70 Õ 181
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constant matrixku being diagonal. This new model is calle
dislocation-like because of its similarity to the Somigliana’s d
location ~@31#!. Yu @14# proved that for this new interface mode
the three-dimensional isotropic bimaterial Green’s function p
sesses the same simple structure as that for the perfect-
model, and that the load transfer at the interface predicted w
this model is quantitatively comparable to the experimental m
surement. Furthermore, two special cases can be reduced
this model:~a! If ki j

u is an identity matrix, implying vanishing o
the displacement jumps at the interface, the dislocation-like mo
is then reduced to Model 1, i.e., the perfect-bond interface and~b!
if ki j

u is a zero matrix, then the bimaterial problem is reduced
two separate half-space problems. With a point force being
plied in material 1, the half-space problem for material 1 can
first solved subject to a rigid surface boundary condition~i.e., the
surface displacements are zero!. Then, the solution in the half
space of material 2 can be solved using the traction surface
dition of Eq. ~2c!. Therefore, with the element values of the m
trix ki j

u varying from 0~for rigid-bond! to 1 ~for perfect-bond!, the
dislocation-like model can actually simulate various intermedi
interface conditions between these two extreme cases. Ano
interesting feature associated with this model is that when
matrix ki j

u is diagonal, the first two elements on the diagonal
related to the interface conditions in the tangential directions
the third one to the condition in the normal direction of the int
face. In the following analysis, we assume that the matrixki j

u is
diagonal with values in the interval~0,1! and that its inverse
exists.

Model 4. In contrast with Model 3, here across the interfac
the displacement vector is continuous while the traction vecto
discontinuous:

ui
~1!uz5015ui

~2!uz502, t i
~1!uz5015ki j

t t j
~2!uz502; i 51,2,3.

(2d)

Similarly, the constant matrixkt5@ki j
t # describes the bonding

condition along the interface. This new model, being named
force-like model, describes a traction jump at the interface.
remark that this force-like model resembles the traction-ju
model proposed recently by Benveniste@16#, Benveniste and
Chen @44#, and Hashin@45# and that it includes two previou
models as its special cases:~a! If ki j

t is an identity matrix, imply-
ing vanishing of the traction jumps at the interface, the force-l
model is then reduced to Model 1, i.e., the perfect-bond interfa
and ~b! if ki j

t is a zero matrix, then the bimaterial problem
reduced to two separate half-space problems. With a point fo
being applied in material 1, the half-space problem for materia
can be first solved subject to a traction-free surface boundary
dition. Then, the solution in the half-space of material 2 can
derived using the displacement surface condition of Eq.~2d!.
Consequently, with the element values of the matrixki j

t varying
from 0 ~traction-free! to 1 ~perfect-bond!, the force-like model can
actually be used to simulate the load transfer along various in
mediate interfaces between these two extreme cases. Further
similar to Model 3, if the matrixki j

t is diagonal, then the first two
elements on the diagonal are related to the interface condition
the tangential directions and the third one to the condition in
normal direction of the interface. Again, we assume that the
verse of the matrixki j

t exists.
Besides the interface conditions atz50, one will also need the

condition at the source level in order to solve the bimate
Green’s functions. It is found that, at the source levelz5d where
the point force is applied, the displacement and traction vec
are required to satisfy the following conditions:

u~1!uz5d25u~1!uz5d1
(3)

t~1!uz5d22t~1!uz5d15d~x12d1!d~x22d2!f

where the displacement and traction vectorsu andt are defined as
182 Õ Vol. 70, MARCH 2003
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u5~u1 ,u2 ,u3!
(4)

t[~s13,s23,s33![~ t1 ,t2 ,t3!.

Finally, the Green’s function solutions are required to vanish asuxu
approaches infinity.

Bimaterial Green’s Functions in the Transformed
Domain

To solve the problem described in the previous section,
two-dimensional Fourier transform, i.e., for the displacement,

ũk~y1 ,y2 ,z;d!5E E uk~x1 ,x2 ,z;d!eiyaxadx1dx2 (5)

is applied to Eq.~1! for the three regions. In Eq.~5!, a takes the
summation from 1 to 2. We point out that, when carrying out t
double Fourier inverse transforms later on, a polar coordinate
tem that relates the Fourier variables (y1 ,y2) as

y15h cosu; y25h sinu (6)

will be used,@37#.
Applying the two-dimensional Fourier transform to the con

nuity conditions~2a–d! at the interfacez50 and the condition~3!
at the source levelz5d, the general solution in the transforme
domain that satisfies the source level condition can be expre
in terms of the Stroh eigenvalues and the corresponding eigen
trices as~@34,37#!:

For z.d ~in material 1!:

ũ~1!~y1 ,y2 ,z;d!52 ih21Ā~1!^e2 i p̄
*
~1!h~z2d!&q̄`2 ih21Ā~1!

3^e2 i p̄
*
~1!hz&q̄~1!

t̃~1!~y1 ,y2 ,z;d!52B̄~1!^e2 i p̄
*
~1!h~z2d!&q̄`2B̄~1!^e2 i p̄

*
~1!hz&q̄~1!

(7)

s̃~1!~y1 ,y2 ,z;d!52C̄~1!^e2 i p̄
*
~1!h~z2d!&q̄`2C̄~1!^e2 i p̄

*
~1!hz&q̄~1!.

For 0<z,d ~in material 1!:

ũ~1!~y1 ,y2 ,z;d!5 ih21A~1!^e2 ip
*
~1!h~z2d!&q`2 ih21Ā~1!

3^e2 i p̄
*
~1!hz&q̄~1!

t̃~1!~y1 ,y2 ,z;d!5B~1!^e2 ip
*
~1!h~z2d!&q`2B̄~1!^e2 i p̄

*
~1!hz&q̄~1!

(8)

s̃~1!~y1 ,y2 ,z;d!5C~1!^e2 ip
*
~1!h~z2d!&q`2C̄~1!^e2 i p̄

*
~1!hz&q̄~1!.

For z,0 ~in material 2!:

ũ~2!~y1 ,y2 ,z;d!5 ih21A~2!^e2 ip
*
~2!hz&q~2!

t̃~2!~y1 ,y2 ,z;d!5B~2!^e2 ip
*
~2!hz&q~2! (9)

s̃~2!~y1 ,y2 ,z;d!5C~2!^e2 ip
*
~2!hz&q~2!

where

^e2 ip
*

hz&5diag@e2 ip1hz,e2 ip2hz,e2 ip3hz# (10)

and

q`5~A~1!!Tfeiyada, q̄`5~Ā~1!!Tfeiyada. (11)

In Eqs. ~7!–~9!, pj ( j 51,2,3), andA, B, and C are the Stroh
eigenvalues and the corresponding eigenmatrices, and their
pressions, being functions of the elastic stiffness tensor and
Fourier angular variableu, can be found in Pan and Yuan@37#.
Also in Eqs.~7!–~9!, h is the Fourier radial variable defined b
Eq. ~6!, ands̃ the Fourier transform of the in-plane stress vectos
defined by

s[~s11,s12,s22!. (12)
Transactions of the ASME



r

l

e
t
a

g

ilar
ed

that
ge-
trac-
the
any
is-
ite
o-

,
s

One important feature associated with the extended th
dimensional Stroh formalism is that the Stroh eigenvaluespj and
the corresponding eigenmatricesA, B, andC in Eqs.~7!–~9! are
all independent of the Fourier radial variableh! This is actually
the key in success of carrying out exactly the infinite integral w
respect to the Fourier radial variableh, reducing the bimateria
Green’s function to an expression in terms of a simple line in
gral of u over a finite interval@0,p# ~@37#!. Furthermore, as will be
shown next, similar concise expression can also be obtained
for the three imperfect interface models, upon introducing cer
modified eigenmatrics associated with the imperfect interf
conditions.

To determine the complex vectorsq̄(1) andq(2) in Eqs.~7!–~9!,
one of the interface models should be applied, and they are
cussed below one by one.

Model 1. For the perfect bond, we found~@37#!

A~1!^eip
*
~1!hd&q`2Ā~1!q̄~1!5A~2!q~2! (13a)

B~1!^eip
*
~1!hd&q`2B̄~1!q̄~1!5B~2!q~2!. (13b)

Model 2. For the smooth bond, the interface conditions f
the complex vectorsq̄(1) andq(2) are

S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!

B31
~1! B32

~1! B33
~1!
D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!

B̄31
~1! B̄32

~1! B̄33
~1!
D q̄~1!

5S 2B11
~2! 2B12

~2! 2B13
~2!

2B21
~2! 2B22

~2! 2B23
~2!

B31
~2! B32

~2! B33
~2!

D q~2! (14a)

~A31
~1! A32

~1! A33
~1!!^eip

*
~1!hd&q`2~Ā31

~1! Ā32
~1! Ā33

~1!!q̄~1!

5~A31
~2! A32

~2! A33
~2!!q~2! (14b)

~B31
~1! B32

~1! B33
~1!!^eip

*
~1!hd&q`2~B̄31

~1! B̄32
~1! B̄33

~1!!q̄~1!

5~B31
~2! B32

~2! B33
~2!!q~2! (14c)

S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!D q̄~1!50

(14d)

S B11
~2! B12

~2! B13
~2!

B21
~2! B22

~2! B23
~2!D q̄~2!50. (14e)

It is observed that solving directly these equations for the comp
vectorsq̄(1) andq(2) is very complicated. However, by performin
certain simple additions and subtractions, these equations ca
grouped equivalently into two matrix equations:

S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!

A31
~1! A32

~1! A33
~1!
D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!

Ā31
~1! Ā32

~1! Ā33
~1!
D q̄~1!

5S B11
~2! B12

~2! B13
~2!

B21
~2! B22

~2! B23
~2!

A31
~2! A32

~2! A33
~2!
D q~2! (15a)
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S B11
~1! B12

~1! B13
~1!

B21
~1! B22

~1! B23
~1!

B31
~1! B32

~1! B33
~1!
D ^eip

*
~1!hd&q`2S B̄11

~1! B̄12
~1! B̄13

~1!

B̄21
~1! B̄22

~1! B̄23
~1!

B̄31
~1! B̄32

~1! B̄33
~1!
D q̄~1!

5S 2B11
~2! 2B12

~2! 2B13
~2!

2B21
~2! 2B22

~2! 2B23
~2!

B31
~2! B32

~2! B33
~2!

D q~2!. (15b)

It is very interesting that these two equations have a sim
structure as that for the bimaterial Model 1 with perfectly bond
interface conditions~13a! and ~13b!. Therefore, the solution for
the complex vectorsq̄(1) andq(2) can be found following the same
procedure as for the perfect-bond interface. We further remark
this analogue method also works for other well-posed homo
neous interface conditions, as long as the displacement and
tion vectors do not coupled in the same interface equation. If
displacement and traction components are mixed together in
interface condition, e.g., the spring-like model with interface d
placement jump proportional to the interface traction, the infin
integral overh cannot be carried out exactly even for the tw
dimensional isotropic bimaterial plane case~@17#!.

Model 3. For the dislocation-like model, we have

A~1!^eip
*
~1!hd&q`2Ā~1!q̄~1!5KuA~2!q~2! (16a)

B~1!^eip
*
~1!hd&q`2B̄~1!q̄~1!5B~2!q~2!. (16b)

Model 4. For the force-like model, we have

A~1!^eip
*
~1!hd&q`2Ā~1!q̄~1!5A~2!q~2! (17a)

B~1!^eip
*
~1!hd&q`2B̄~1!q̄~1!5K tB~2!q~2!. (17b)

Since all the equations forq̄(1) andq(2) have similar structures
the solutions for them can therefore be expressed uniformly a

q̄~1!5G1^e
ip

*
~1!hd&q`

(18)

q~2!5G2^e
ip

*
~1!hd&q`.

In this equation, the matricesG1 and G2 for the four different
models are found to be

G152~ Ā̂~1!!21~ M̄̂ ~1!1M̂ ~2!!21~M̂ ~1!2M̂ ~2!!Â~1!

(19)

G25~Â~2!!21~ M̄̂ ~1!1M̂ ~2!!21~M̂ ~1!1M̄̂ ~1!!Â~1!

whereM̂ (a) are the modified impedance tensors defined by

M̂ ~a!52 i B̂~a!~Â~a!!21 ~a51,2! (20)

with the modified eigenmatricesÂ(a) andB̂(a) being given below
for the four different interface models.

Model 1. For the perfect bond~@37#!,

Â~a!5A~a!, B̂~a!5B~a!; ~a51,2!. (21)

Model 2. For the smooth bond,

Â~a!5S B11
~a! B12

~a! B13
~a!

B21
~a! B22

~a! B23
~a!

A31
~a! A32

~a! A33
~a!
D ; ~a51,2! (22a)

B̂~1!5B~1!; B̂~2!5S 2B11
~2! 2B12

~2! 2B13
~2!

2B21
~2! 2B22

~2! 2B23
~2!

B31
~2! B32

~2! B33
~2!

D . (22b)
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Model 3. For the dislocation-like model,

Â~1!5A~1!; Â~2!5KuA~2!

(23)

B̂~a!5B~a!; ~a51,2!.

Model 4. For the force-like model,

Â~a!5A~a!; ~a51,2!
(24)

B̂~1!5B~1!; B̂~2!5K tB~2!.

Equations~7!–~9! are the bimaterial Green’s displacements a
stresses in the Fourier transformed domain. For the four diffe
interface models, the complex vectorsq̄(1) and q(2) in Eqs. ~7!–
~9! have been derived in a unified form. With the exception of
perfect-bond interface, the bimaterial Green’s functions for
three imperfect interface models are new. Similar to the perf
bond bimaterial Green’s functions~@37#!, there are several impor
tant features pertained to these Green’s functions. While a det
discussion can be found in Pan and Yuan@37#, we restate only one
of the features closely related to the present work and add t
new observations associated with the imperfect interf
conditions:

1. As has been observed by Pan and Yuan@37#, for the solu-
tions in material 1 (z.0), the first term in Eqs.~7! and~8! is the
Fourier-domain Green’s function for the anisotropic full-spa
The inverse of this Green’s function, i.e., the physical-dom
solution, has been developed by Tewary@39#, Ting and Lee@40#,
Sales and Gray@41#, and Tonon et al.@42# in an explicit form.
Therefore, the Fourier inverse transform needs to be carried
only for the second term of the solutions, which is similar to t
complementary part of the Mindlin solution,@38#.

2. The modified eigenmatrices are introduced only for the p
pose of determining the complex vectorsq̄(1) and q(2). The ma-
tricesA, B, andC in Eqs.~7!–~9! and later in the final expression
for the physical-domain Green’s functions~Eqs. ~25!, ~27!, ~28!!
are the original ones and should not be altered.

3. The methodology is not restricted to the four interface m
els presented in this paper. The complex vectorsq̄(1) and q̄(2) in
Eqs. ~7!–~9! for other imperfect interface models can be deriv
similarly by introducing the corresponding modified eigenma
ces. The only requirement is that the displacement and trac
components are uncoupled in the interface conditions.

4. Under the assumption of two-dimensional deformation,
corresponding anisotropic bimaterial Green’s functions in
physical domain with the three imperfect interface models can
derived analytically. This is given in the Appendix of this pape

Bimaterial Green’s Functions in the Physical Domain
Having obtained the bimaterial Green’s function in the tra

formed domain, we now apply the inverse Fourier transform
Eqs. ~7!–~9!. To handle the double infinite integrals, the pol
coordinate transform~6! is applied. In doing so, the infinite inte
gral with respect to the radial variableh can be carried out ex
actly. Thus, the final bimaterial Green’s function in the physi
domain is expressed in terms of a regular line-integral over@0,2p#
in the source-free half-space, and as a sum of the homogen
full-space Green’s function and a regular line-integral over@0,2p#
in the point-force loaded half-space. Furthermore, the line inte
over @0,2p# can be reduced to@0,p# using certain properties of th
Stroh eigenvalues and the corresponding modified eigenvec
~@46,47#!. The procedure is very similar to the perfect-bond int
face~@37#! and one needs only to replace the matricesG1 andG2
with those corresponding to the given interface conditions. Lis
below are the final physical-domain bimaterial Green’s functio
for the four different interface models.
184 Õ Vol. 70, MARCH 2003
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Assuming thatzÞ0 or dÞ0, the 333 Green’s displacemen
tensor in material 1, with the first index for the displaceme
component and the second for the point-force direction, is fou
to be

U~1!~x;d!5U`~x;d!1
1

2p2 F E
0

p

Ā~1!Gu
~1!~A~1!!TduG (25)

~Gu
~1!! i j 5

~G1! i j

2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#
.

(26)

In Eq. ~25!, U`(x;d) denotes the homogeneous full-space Gree
displacement tensor with elastic properties of material 1 for wh
an explicit expression is available~@39–42#!. In Eq. ~26!, the in-
dicesi and j take the range from 1 to 3.

Similarly, the bimaterial Green’s stresses~traction and in-plane
stress! in material 1 and the Green’s displacements and stresse
material 2 can be derived as

T~1!~x;d!5T`~x;d!1
1

2p2 F E
0

p

B̄~1!Gt
~1!~A~1!!TduG

(27)

S~1!~x;d!5S`~x;d!1
1

2p2 F E
0

p

C̄~1!Gt
~1!~A~1!!TduG

U~2!~x;d!52
1

2p2 F E
0

p

A~2!Gu
~2!~A~1!!TduG

T~2!~x;d!52
1

2p2 F E
0

p

B~2!Gt
~2!~A~1!!TduG (28)

S~2!~x;d!52
1

2p2 F E
0

p

C~2!Gt
~2!~A~1!!TduG .

In Eq. ~27!, T`(x;d) and S`(x;d) denote the explicit Green’s
stresses in the homogeneous full-space with the elastic prope
of material 1~@42#! and

~Gt
~1!! i j 5

~G1! i j

$2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2

(29)

~Gu
~2!! i j 5

~G2! i j

2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu!]
(30)

~Gt
~2!! i j 5

~G2! i j

$2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2 .

(31)

Therefore, in material 1, the bimaterial Green’s function is e
pressed as a sum of the explicit full-space Green’s function an
complementary part in terms of a line integral over@0,p#; In ma-
terial 2, the bimaterial Green’s function is expressed in terms o
line integral over@0,p# only. Although the bimaterial Green’s
function problem is complicated in nature, the final solution
very concise, indicating that the modified three-dimensional St
formalism is truly mathematically elegant and numerically po
erful ~@34,35#!, especially when used jointly with the Mindlin’s
superposition method. Indeed, a direct application of the Fou
transform would require a three-dimensional integral for the fu
space Green’s function and four-dimensional integral for the h
space Green’s function~@43#!. Furthermore, with regard to thes
physical-domain bimaterial Green’s functions~Eqs.~25!, ~27!, and
~28!!, the following important observations can be made, w
some of them being similar to those made in Pan and Yuan@37#:

1. For the complementary part of the solution in material 1 a
the solution in material 2, the dependence of the solutions on
Transactions of the ASME
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field point x and source pointd appears only through matrice
Gu

(1) , Gt
(1) , Gu

(2) , andGt
(2) defined in Eqs.~26! and ~29!–~31!.

Therefore, the derivatives of the bimaterial Green’s functions w
respect to either the field or source point can be exactly carried
under the integral sign. These derivatives are required in
boundary integral formulation for the internal stress and fract
analyses in bimaterial solids~@48#!.

2. The integrals in Eqs.~25!, ~27!, and ~28! are regular ifz
Þ0 or dÞ0, and thus can be easily carried out by any stand
numerical integral method such as the Gauss quadrature. Actu
Pan and Yang@49# have recently applied an adaptive integrati
version in order to calculate the perfect-bond bimaterial Gree
function.

3. If zÞ0 and d50, the bimaterial Green’s function is sti
mathematically regular although some of its components may
have a direct and apparent physical meaning~@1#!. However, the
author~@46#! has recently given an indirect physical explanati
using an equivalent relation between the Green’s function due
point force and that due to a point dislocation~or infinitesimal
dislocation loop!.

4. When the field and source points are both on the interf
~i.e., z5d50), the bimaterial Green’s function is then reduced
the interfacial Green’s function. For this special case, the
integral involved in the Green’s function expression becomes
gular and the resulting finite-part integral needs to be handled
special approaches. A detailed study for the perfect-bond inter
can be found in Pan and Yang~@49#! and a similar approach can b
followed for the imperfect interface models.

Effects of Interface Conditions
The effect of different interface conditions on the displacem

and stress fields was studied by Dundurs and Hetenyi@1#, Mura
@31#, and Yu@14# for the isotropic bimaterial full-space. Howeve
a systematic discussion on this issue has not been carried ou
not to mention the complexity due to the general anisotro
Based on the extended three-dimensional Stroh formalism
Mindlin’s superposition method, we have found that the effect
different interface conditions on the displacement and stress fi
can be studied with a unified formalism.

When studying the difference of the elastic fields due to diff
ent imperfect interface conditions relative to those with t
perfect-bond interface~i.e., Model 1!, it is noted that the full-
space Green’s function has no influence at all to this differenc
is the complementary part of the bimaterial solution that cont
utes to it! We also notice that it is the matrixG1 or G2 that totally
controls such a difference. This is actually no surprising sin
when deriving the bimaterial solution, it is the complementa
part that takes care of the different interface conditions, and
the matrixG1 or G2 that directly accomplishes the task! Ther
fore, the difference of the displacement and stress fields du
imperfect and perfect interface conditions is directly proportio
to the difference of the integral involving the matrixG1 or G2 .

In the study presented below, we restrict ourselves to the c
where the source pointd is within the material 1 (d.0) but the
field point x can be anywhere in the bimaterials. Again, the d
ference is relative to the bimaterial Green’s function solution c
responding to the perfect-bond interface~i.e., Model 1!. We also
mention that results for the derivatives of the displacements
stresses will not be given but can be obtained trivially.

For the field point in material 1~i.e., z.0), we found

U~1!~x;d!um2U~1!~x;d!u15
1

2p2 F E
0

p

Ā~1!DGu
~1!~A~1!!TduG

(32)

T~1!~x;d!um2T~1!~x;d!u15
1

2p2 F E
0

p

B̄~1!DGt
~1!~A~1!!TduG

(33)
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S~1!~x;d!um2S~1!~x;d!u15
1

2p2 F E
0

p

C̄~1!DGt
~1!~A~1!!TduG

where

~DGu
~1!! i j 5

~G1um2G1u1! i j

2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#
(34)

~DGt
~1!! i j 5

~G1um2G1u1! i j

$2 p̄i
~1!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2 .

(35)

In Eqs.~32!–~35!, the displacement and stress fields with a ve
cal line followed by subscript 1 are the bimaterial Green’s fun
tions corresponding to the perfect-bond interface~i.e., Model 1!,
and those by subscriptm ~52, 3, and 4! correspond to the three
imperfect interface models.

Similarly, for the field point in material 2~i.e., z,0), we
obtained

U~2!~x;d!um2U~2!~x;d!u152
1

2p2 F E
0

p

A~2!DGu
~2!~A~1!!TduG

T~2!~x;d!um2T~2!~x;d!u152
1

2p2 F E
0

p

B~2!DGt
~2!~A~1!!TduG

(36)

S~2!~x;d!um2S~2!~x;d!u152
1

2p2 F E
0

p

C~2!DGt
~2!~A~1!!TduG

where

~DGu
~2!! i j 5

~G2um2G2u1! i j

2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu!]
(37)

~DGt
~2!! i j 5

~G2um2G2u1! i j

$2pi
~2!z1pj

~1!d2@~x12d1!cosu1~x22d2!sinu#%2 .

(38)

Numerical Examples
Having derived the bimaterial Green’s functions for the fo

different interface models, and discussed the effect of differ
imperfect interface conditions on the displacement and st
fields, we now present numerical examples for these bimate
Green’s functions. We first mention that the present bimate
Green’s functions have been checked with previously availa
solutions~@1,37#! for some special cases in isotropic and anis
tropic bimaterials.

In the present examples, materials 1 and 2 are both orthotro
Material 1 is the NASA fabric, a composite material made
stacking layers of a carbon warp-knit fabric that was stitched w
Kevlar-29 thread prior to introducing 3501-6 epoxy resin~@37#!.
Material 2 is a graphite/epoxy composite with strong material
isotropy~@37#!. In using these two materials, their principal mat
rial axes (E1 andE2), originally coincide with thex-y–axes, have
been rotated 45 deg counterclockwise with respect to thex-axis.
Thus the stiffness tensorCi jkl of both materials in the structura
coordinates (x,y,z) is monoclinic with symmetry plane atz50.
This bimaterial full-space actually corresponds to the case II
Pan and Yuan~@37#!, and the elastic stiffness in the reduced a
dimensionless form for materials 1 and 2 are given, respectiv
in Tables 1 and 2.

Some dimensionless Green’s stress components in such a b
terial full-space are presented in Figs. 1 to 5. In these figures,
point force of a unit magnitude is applied at (0,0,d51). The
stresses are plotted at field points (x,y,z)5(1,1,z) with z varying
from 23 to 3.
MARCH 2003, Vol. 70 Õ 185
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First, the effect of the interface matriceski j
u andki j

t ~in Models
3 and 4! upon the bimaterial Green’s stresses is studied. For s
plicity, these interface matrices are assumed to have the s
diagonal structure, i.e.,

Ku5K t5diag@k,k,1# (39)
wherek varies from 0 and 1. Therefore, for Model 3, the norm
displacement component is assumed to be continuous while
tangential components are not. Similarly, for Model 4, the norm
traction component is assumed to be continuous but the s
components are not.

Shown in Figs. 1~a! and 1~b! are the variations of the dimen
sionless Green’s stress componentsxx due to a point force applied
in thez-direction for Models 3 and 4, respectively. For both mo
els, the interface parameterk in Eq. ~39! takes the values of 1, 0.5
0.1, 0.01, and 0.0001. Whilek51 corresponds to the perfect-bon
interface~i.e., Model 1!, otherk values are for the imperfect bon
with k50.0001 simulating the tangential zero-displacement a
shear traction-free interfaces, respectively, for the dislocation-
and force-like models~the result fork50.0001 is nearly identica
to that fork50.000001). It is observed from Figs. 1~a! and 1~b!
that this Green’s stress component is discontinuous across th
terface for both models. Furthermore, it is found that for t
dislocation-like model~Fig. 1~a!!, the amount of discontinuity is
the largest for the perfect-bond interface and decreases in ge
with decreasingk, reaching a final value when the tangential d
placements are zero~i.e., k50). For the force-like model~Fig.
1~b!!, however, the amount of discontinuity is the smallest for
perfect-bond interface and increases with decreasingk, reaching a
final value when the shear tractions are zero~i.e., k50). There-
fore, by varying thek value in the dislocation-like and force-lik
models, various load transfer situations across the interface ca
simulated.

We now compare the stress distributions for the four models
Figs. 2 to 5, cases 1, 2, 3, and 4 correspond to the perfect-b
smooth-bond, dislocation-like, and force-like models, resp
tively. For models 3 and 4, the interface matriceski j

u andki j
t are

given by Eq.~39! with k being fixed at 0.5.
The variations of the Green’s stressessxx and sxy due to a

point force in thex and z-directions are shown in Figs. 2 and
with all of them being discontinuous across the interface. It
observed that the magnitudes of the Green’s stress compon
due to the point force inx-direction are much larger than thos
due to the point force inz-direction ~about four-five times!. It is
also clear that, locally, i.e., in the vicinity of the interface, diffe
ent interface models can have a great influence on the stress
tribution. Among the four models, the smooth interface mod
i.e., model 2, shows the largest influence on the stress field

Table 1 Elastic stiffness Cij in material 1

.83514624D1 .33934624D1 .57053231D0 .0 .0 .17804512
.83514624D1 .57053231D0 .0 .0 .17804512D

.15949776D1 .0 .0 .65283587D-
.605 .035 .0

.605 .0
.34414318D1
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Fig. 1 Variation of the bimaterial Green’s stress sxx with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
z-direction for different interface parameter k of dislocation-
like model „a… and force-like model „b…
D1
1

Table 2 Elastic stiffness Cij in material 2

.71726275D1 .54524875D1 .62233525D0 .0 .0 .51191753
.71726275D1 .62233525D0 .0 .0 .51191753D

.16217043D1 .0 .0 .11350357D0
.64977 2.03046 .0

.64977 .0
.54251991D1
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the interface. Furthermore, such an influence can be extended
relatively far distance away from the interface, as compared to
perfect-bond model~Figs. 2~b! and 3~b!!.

Shown in Figs. 4~a! and 4~b! are the variation of the shea
stresssxz due to the point force inx andz-directions, respectively
For this shear stress component, its magnitudes due to the
force in x and z-directions are roughly the same. Similar to th
behavior of the stressessxx andsxy , the most affected region by
the different interface models is found in the vicinity of the inte
face. Again, the smooth-bond model causes the greatest vari

Fig. 2 Variation of the bimaterial Green’s stress sxx with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
Journal of Applied Mechanics
to a
the

r

oint
e

r-
tion

relative to the perfect-bond model. We also mention that acr
the interface, whilesxz is continuous for models 1–3, it is discon
tinuous for model 4 as assumed in the model.

Finally, shown in Figs. 5~a! and 5~b! are the variations of the
vertical stressszz due to the point force inx and z-directions,
respectively. For this case, the magnitude of the stress due to
point force inz-direction is about three times larger than that d
to the point force inx-direction. An interesting feature is tha
while different interface models have nearly no effect on t
stress component, the smooth-bond model, however, has a s

Fig. 3 Variation of the bimaterial Green’s stress sxy with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
MARCH 2003, Vol. 70 Õ 187
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influence on this stress component when the point force is
z-direction. Furthermore, such an influence seems to extend
larger region away from the interface.

Conclusions
We have derived the three-dimensional Green’s functions

anisotropic bimaterials for four different interface models, name
perfect-bond, smooth-bond, dislocation-like, and force-like. Wh
the first model is for the perfect interface for which the cor
sponding bimaterial Green’s functions were derived by Pan
Yuan @37#, other three models are for the imperfect interface

Fig. 4 Variation of the bimaterial Green’s stress sxz with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
188 Õ Vol. 70, MARCH 2003
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which the corresponding bimaterial Green’s functions are deri
for the first timein this paper. A remarkable result is that for the
imperfect interface models, the bimaterial Green’s functions en
the same simple and concise structure as that for the prefec
terface model. For the case of two-dimensional deformation,
corresponding bimaterial Green’s functions are also derived a
lytically for the three imperfect interface models. We further me
tion that the methodology of deriving the bimaterial Green’s fun
tions with imperfect interface conditions is quite general. On
assumption that the interface displacement and traction vector
uncoupled in the interface conditions, one needs only to const
the eigenmatrices for the given interface model in order to de

Fig. 5 Variation of the bimaterial Green’s stress szz with field
point „1,1,z«†À3,3‡… due to a point force at d Ä„0,0,1… in the
x -direction „a… and z-direction „b…. Cases 1, 2, 3, and 4 corre-
spond to models 1, 2, 3, and 4, respectively.
Transactions of the ASME
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the corresponding Green’s functions. Therefore, the bimate
Green’s function corresponding to a more general interface m
that combines the dislocation-like and force-like models toget
can be easily derived. However, it is also worthwhile to emphas
that should the interface displacement and traction vectors
coupled together, one will be unable to carry out the infinite in
gral overh exactly. Consequently, the bimaterial Green’s functi
corresponding to such an interface condition would be very co
plicated even for the two-dimensional isotropic bimater
case~@17#!.

Numerical examples have been also carried out to study
dependence of the bimaterial Green’s stresses on the inte
matriceski j

u andki j
t and the effect of different interface models o

the stress fields. It is observed that by varying the element va
of the interface matriceski j

u and ki j
t in models 3 and 4, various

load transfers across the interface can be simulated. It is
shown that, among the three imperfect interface models wit
middle interface value for the parameterk(50.5), the smooth-
bond model shows the greatest influence on the bimaterial Gre
stresses as compared to those for the perfect-bond interface.
these bimaterial Green’s functions can be obtained very efficie
and accurately, they can be easily implemented into a boun
integral formulism~@22#! to investigate the deformation, stres
and fracture problems in anisotropic and layered structures
imperfect interfaces.

Appendix

Two-Dimensional Bimaterial Green’s Functions With
Imperfect Interfaces. Similar to the three-dimensional bimate
rial problem presented in the main text, we consider an an
tropic full-space made of two anisotropic half-spaces with int
face atz50. Here, however, we assume that the deformation
independent of they-coordinate~i.e., the generalized plane-stra
deformation in the (x,z) plane!. We further let a line forcef and a
line dislocation with Burgers vectorb be applied at (x,z)
5(0,d) with d.0 in material 1.

It is known that the general bimaterial Green’s functions~dis-
placements and stress functions! can be expressed as~@34,48#!

u~1!5
1

p
Im$A~1!^ ln~z

*
~1!2p

*
~1!d!&q`%

1
1

p
Im (

j 51

3

$A~1!^ ln~z
*
~1!2 p̄ j

~1!d!&qj
~1!%

(A1)

f~1!5
1

p
Im$B~1!^ ln~z

*
~1!2p

*
~1!d!&q`%

1
1

p
Im (

j 51

3

$B~1!^ ln~z
*
~1!2 p̄ j

~1!d!&qj
~1!%

for z.0 ~material 1!, and

u~2!5
1

p
Im (

j 51

3

$A~2!^ ln~z
*
~2!2pj

~1!d!&qj
~2!%

(A2)

f~2!5
1

p
Im (

j 51

3

$B~2!^ ln~z
*
~2!2pj

~1!d!&qj
~2!%

for z,0 ~material 2!. In Eqs. ~A1! and ~A2!, Im stands for the
imaginary part, and the superscripts~1! and ~2! denote, as in the
text, the quantities in the material domain.pj

(a) andA(a) andB(a)

are the eigenvalues and the eigenmatrices similar to those giv
the main text but depending upon the elastic stiffness coeffic
only. Also in Eqs.~A1! and ~A2!,
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^ ln~z
*
~1!2p

*
~1!d!&5diag@ ln~z1

~1!2p1
~1!d!, ln~z2

~1!2p2
~1!d!, ln~z3

~1!

2p3
~1!d!#

^ ln~z
*
~1!2 p̄ j

~1!d!&5diag@ ln~z1
~1!2 p̄ j

~1!d!, ln~z2
~1!2 p̄ j

~1!d!, ln~z3
~1!

2 p̄ j
~1!d!# (A3)

^ ln~z
*
~2!2pj

~1!d!&5diag@ ln~z1
~2!2pj

~1!d!, ln~z2
~2!2pj

~1!d!, ln~z3
~2!

2pj
~1!d!#

with the complex variablezj
(a) being defined as

zj
~a!5x1pj

~a!z. (A4)

It is seen that the first term in Eq.~A1! corresponds to the full-
plane Green’s functions~with material properties of material 1!
with

q`5~A~1!!Tf1~B~1!!Tb. (A5)

The second term in Eq.~A1! and the solution in material 2~Eq.
~A2!! are the complementary parts of the solution with the co
plex constant vectorsqj

(a) ~a51,2; j 51,2,3) to be determined
For a perfect-bond interface atz50, these constants are require
to satisfy the following conditions~@34#! ~for j 51,2,3):

A~1!qj
~1!1Ā~2!q̄j

~2!5Ā~1!I j q̄
`

(A6)
B~1!qj

~1!1B̄~2!q̄j
~2!5B̄~1!I j q̄

`

with

I15diag@1,0,0#

I25diag@0,1,0# (A7)

I35diag@0,0,1#.

Equation~A6! has a similar structure as Eq.~13a,b!. Therefore, the
solution for the involved complex constants are found to
~@34,48#!

qj
~1!5~A~1!!21~M ~1!1M̄ ~2!!21~M̄ ~2!2M̄ ~1!!Ā~1!I j q̄

`

(A8)
qj

~2!5~A~2!!21~M̄ ~1!1M ~2!!21~M ~1!1M̄ ~1!!A~1!I jq
`

whereM (a) are the impedance tensors~defined as Eq.~20!! with
the eigenmatricesA andB dependent upon the material properti
only.

Following the same procedure, the complex constants invol
in the bimaterial Green’s solutions~A1! and ~A2! for the three
imperfect interface models can also be determined. Similar to
~A8!, they are obtained as

qj
~1!5~Â~1!!21~M̂ ~1!1M̄̂ ~2!!21)~ M̄̂ ~2!2M̄̂ ~1!!Ā̂~1!I j q̄

`

(A9)

qj
~2!5~Â~2!!21~ M̄̂ ~1!1M̂ ~2!!21~M̂ ~1!1M̄̂ ~1!!Â~1!I jq

`

whereM̃ (a) (a51,2) are the modified impedance tensors defin
by Eq. ~20!, and the modified eigenmatricesÂ(a) and B̂(a) (a
51,2) by Eqs.~22!, ~23!, and ~24! for the three imperfect inter-
face models. The difference between the two-dimensional
three-dimensional expressions for the modified impedance ten
and eigenmatrices is that for the two-dimensional deformati
they are functions of the elastic stiffness tensor only~u50!; for
the three-dimensional deformation, however, they depend als
the Fourier transform variableu. We further emphasize that, fo
both the two-dimensional and three-dimensional deformations,
modified eigenmatrices are used only in the process of determ
ing the involved complex constants.

With the bimaterial Green’s displacements and stress funct
being given by Eqs.~A1! and ~A2!, their derivatives with respec
to the field and source points can be analytically carried out
MARCH 2003, Vol. 70 Õ 189
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the resulting Green’s functions can then be applied to vari
problems involving bimaterial plane with imperfect interfaces.
for the corresponding three-dimensional deformation, the tw
dimensional bimaterial Green’s functions for the three imperf
interface models have not been reported in the literature.
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The Initial Post-buckling Behavior
of Face-Sheet Delaminations in
Sandwich Composites
Should an interface crack between the layers of the composite face-sheet or betwe
core and the composite face-sheet of a sandwich beam/plate exists, local bucklin
possible subsequent growth of this interface crack (delamination) may occur under
pression. In this study, the buckling, and initial post-buckling behavior is studied thro
a perturbation procedure that is based on the nonlinear beam equations with trans
shear included. Closed-form solutions for the load and midpoint delamination defle
versus applied compressive strain during the initial postbuckling phase are derive
lustrative results are presented for several sandwich construction configurations, in
ticular with regard to the effect of material system and transverse shear.
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Introduction
Delaminations~layer interface cracks! constitute a common

failure phenomenon in laminated composites and they are m
easily introduced from impact loads. These delaminations m
deteriorate the performance of the structure under compres
loading~e.g., Yin et al.@1# and Simitses et al.@2#!. A large number
of studies on the behavior of delamination buckling and po
buckling in composites have been carried out by many resea
ers, e.g., Chai et al.@3# by using a one-dimensional model, Whi
comb @4# and Shivakumar and Whitcomb@5# by using finite
elements and Rayleigh-Ritz analysis, Kardomateas@6# by con-
ducting monotonic compressive tests, Kardomateas@7# by using
elastica theory to account for large deformations during po
buckling, Kardomateas et al.@8# by studying both experimentally
and analytically the fatigue growth of delaminations during cyc
compression, etc.

Although the general principles are not very different, delam
nation failure in sandwich structures is just beginning to be
plored in detail. In this regard, differences in the behavior
delamination buckling and post-buckling within a sandwich str
ture from that of a laminated composite structure arise due to
fact that the substrate in a delaminated sandwich structure
cludes a much different kind of material, namely a transvers
flexible core made of foam or low strength honeycomb. To t
extent, the contribution of the shear stresses and shear defo
tions of the core are expected to be noteworthy and there
should be included in the formulation.

A typical sandwich structure is composed of two thin compos
laminated faces and a thick soft core made of foam or l
strength honeycomb. Due to its exceptional properties, ma
high stiffness and strength with little resultant weight pena
sandwich structures have been used in aircraft, marine, and o
types of structures. Research into sandwich structural beha
and failure modes can be traced following World War II in a rath
sporadic fashion but intensified in the 1990s, especially with
gard to proper modeling of the core through high-order theo

1Presently at Lucent Technologies.
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MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Septe
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Discussion on the paper should be addressed to the Editor, Prof. Robert M. McM
ing, Department of Mechanical and Environmental Engineering University
California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
four months after final publication of the paper itself in the ASME JOURNAL OF
APPLIED MECHANICS.
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~e.g., Kant and Patil@9#, Hunt and Da Silva@10,11#, Frostig@12#,
and Frostig and Baruch@13#!. Recently, there have been man
contributions presented at symposia dedicated to sandwich s
tures, e.g. Rajapakse et al.@14#.

Although these high-order theories are expected to render m
accurate results, they involve considerable effort in addressing
complexities of the formulation of the problem of post-bucklin
of delaminated beams, and therefore, in the present work, a
linear beam equation including transverse shear, properly for
lated for an unsymmetric sandwich section~meaning face sheet
not of the same geometry and/or material! is used to model the
delaminated, substrate, and base parts. The same approach c
used to study either a delamination within the face sheet o
debond at the interface between the face sheet and the core.

Formulation

Governing Equations and Boundary Conditions. Let us
consider a sandwich beam, of length 2L, and widthw, consisting
of two face sheets of thicknessf 1 and f 2 , extensional moduliEf 1
andEf 2 , and shear moduliGf 1 andGf 2 , respectively. The core
of thicknessc, has an extensional modulus,Ec , and shear modu-
lus Gc ~Fig. 1!. The delamination, of length 2a, is symmetrically
located at a distanceh from the top. Over the region of the
delamination, the sandwich beam consists of two parts:
delaminated layer of the upper face sheet~referred to as the
‘‘delaminated part,’’ of thicknessh) and the part below the
delamination~‘‘substrate part,’’ of thicknessf 12h1c1 f 2 , which
includes the core and the lower face sheet!. The region outside the
deamination is referred to as the ‘‘base part’’ and consists of
entire section of the sandwich beam, i.e., of thicknessf 11c
1 f 2 . We shall also denote the base part with 1, the delamina
part with 2, and the substrate part with 3. Let us also assume
the beam is clamped-clamped.

The characteristic of sandwich construction is that the neu
axis for the base and the substrate parts is in general no long
the middle of the corresponding sections. With respect to a re
ence axisx through the middle of the core, the neutral axis of t
base section is defined at a distancee1 ~Fig. 2!, as

e1~Ef 1f 11Ecc1Ef 2f 2!5Ef 2f 2S f 2

2
1

c

2D2Ef 1f 1S f 1

2
1

c

2D ,

(1a)

and that of the substrate part is at a distancee3 given by

-
s.
eek-
of
until
003 by ASME MARCH 2003, Vol. 70 Õ 191
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rdo-
mateas@15#. For the base part~1!,
e3@Ef 1~ f 12h!1Ecc1Ef 2f 2#5Ef 2f 2S f 2

2
1

c

2D2Ef 1~ f 12h!

3S f 12h

2
1

c

2D . (1b)

Moreover, while for the delaminated layer, which is homog
neous, the bending rigidity per unit width is

D25Ef 1

h3

12
, (2a)

for the base part, the equivalent flexural rigidity of the sandw
section per unit width, is~Fig. 2!

D15Ef 1

f 1
3

12
1Ef 1f 1S f 1

2
1

c

2
1e1D 2

1Ef 2

f 2
3

12
1Ef 2f 2

3S f 2

2
1

c

2
2e1D 2

1Ec

c3

12
1Ecce1

2, (2b)

and for the substrate~again, per unit width!,

Fig. 1 Definition of the geometry for a delaminated sandwich
beam Õplate
192 Õ Vol. 70, MARCH 2003
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D35Ef 1

~ f 12h!3

12
1Ef 1~ f 12h!S f 12h

2
1

c

2
1e3D 2

1Ec

c3

12
1Ecce3

21Ef 2

f 2
3

12
1Ef 2f 2S f 2

2
1

c

2
2e3D 2

. (2c)

The nonlinear differential equations including transverse sh
for the three parts of the sandwich beam-plate~Fig. 1!, namely the
base part~1!, delaminated part~2!, and substrate part~3!, are
~Huang and Kardomateas@15#!

Di

d2u

ds2
1PS a i P

2AiḠi

sin 2u1sinu D 50,

which, after Taylor series expansion of the sinu, becomes

Di

d2u i~xi !

dxi
2

1S a i Pi
2

AiḠi

1Pi D u i~xi !2S 2a i Pi
2

3AiḠi

1
Pi

6 D u i
3~xi !50,

i 51,2,3 (3a)

whereu i(x) is the rotation of the normal to the cross section,Di
is the bending rigidity,a i is the shear correction factor,Pi is the
axial load,Ai are the cross-sectional areas andḠi is the ‘‘average’’
shear modulus of each part, calculated from the compliance
the constituent phases@15#

f 11c1 f 2

Ḡ1

5
f 1

Gf 1

1
c

Gc

1
f 2

Gf 2

; Ḡ25Gf 1 ;

A15~ f 11c1 f 2!w; A25hw (3b)

f 12h1c1 f 2

Ḡ3

5
f 12h

Gf 1

1
c

Gc

1
f 2

Gf 2

;

A35~ f 12h1c1 f 2!w. (3c)

The shear correction factors can be found in Huang and Ka
Fig. 2 Force and moment resultants at the tip of the delamination
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a15Ḡ1A1w (
i 51,2

Ef i
2

4D1
2Gf i

Fai
4f i2

2

3
ai

2~ai
32bi

3!1
1

5
~ai

52bi
5!G

1
Ef i

2

D1
2Gc

F f i
2ci

2bi1
2

15

Ec
2

Ef i
2 bi

51
2

3

Ec

Ef i
f icibi

3G (3d)

where

ai5 f i1
c

2
1~21! i 11e1 ; bi5

c

2
1~21! i 11e1 ;

ci5
f i

2
1

c

2
1~21! i 11e1 , i 51,2. (3e)

Notice that since the delaminated part is homogeneous,a256/5,
and for the substrate part,a3 is found from (3d,e) by substituting
f 12h in place of f 1 , andD3 , A3 , Ḡ3 , e3 in place ofD1 , A1 ,
Ḡ1 , e1 .

The way the geometry was configured, gives the following c
ditions atxi50:

u i~0!50, i 51,2,3. (4)

The above condition is valid fori 51 because of the clamped-en
and for i 52,3 because of symmetry.

Furthermore, a kinematic condition of common slope betwe
the different parts at the section where the delamination start
ends reads

u1~L2a!5u2~2a!5u3~2a!5uA . (5)

The force and moment~about the neutral axis of the base pa!
equilibrium conditions are~Fig. 2!

P15P21P3 , (6)

M12M22M32P2S f 11
c

2
1e12

h

2D1P3~e32e1!50. (7)

Finally the axial displacement continuity condition at the tip
~Fig. 1! is

u2
A5u3

A , (8)

where

u2
A5

1

2 E2a

0

u2
2dx21

P2a

Ef 1wh
1uA

h

2
, (9)

u3
A5

1

2 E2a

0

u3
2dx31

P3a

@Ef 1~ f 12h!1Ecc1Ef 2f 2#w

2uAS e31
c

2
1 f 12hD . (10)

Asymptotic Expansion. Now, let us expandPi andu i as

Pi5Pi
(0)1jPi

(1)1j2Pi
(2)1j3Pi

(3)1 . . . , (11)

u i~xi !5ju i
(1)~xi !1j2u i

(2)~xi !1j3u i
(3)~xi !1 . . . , (12)

where the~0! superscript corresponds to the pre-buckling sta
the ~1! to the buckling state and the~2!, etc., to the post-buckling
state. Also, let us setj to be the common slope of the section
the delamination tip A, i.e.,

j5uA . (13)

From ~5! and ~12!, this gives the additional conditions

u1
(1)~L2a!51; u1

(2)~L2a!5u1
(3)~L2a!5 . . . 50, (14)

and

u i
(1)~2a!51; u i

(2)~2a!5u i
(3)~2a!5 . . . 50, i 52,3.

(15)
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Substituting Eqs.~11! and ~12! into Eq. ~3! and ~4!–~10! and
rearranging the terms based on the order ofj, we obtain separately
the equations and boundary conditions for the pre-buckling, bu
ling, and initial post-buckling problem. The asymptotic expans
is an efficient way of deriving closed-form solutions for the initi
post-buckling behavior and has also been used previously by
domateas@5# in the study of delaminations in monolithic compo
ites in conjunction with the elastica theory.

Pre-buckling State, O„j0
…. The major characteristic of the

pre-buckling state for a sandwich section is that under unifo
compressive strain there are nonzero bending moments~as op-
posed to a monolithic one in which the bending moments
zero! but zero bending deflections.

Under a uniformly applied compressive strain,e0 , the resultant
forces~per unit width! for the base part~1!, delaminated part~2!,
and substrate part~3!, are~Fig. 2!

P1
(0)5e0~Ef 1f 11Ecc1Ef 2f 2!, (16a)

P2
(0)5e0Ef 1h; P3

(0)5e0@Ef 1~ f 12h!1Ecc1Ef 2f 2#.
(16b)

The pre-buckling moments~per unit width! are then found as
~Fig. 2!

M1
(0)5e0FEf 1f 1S f 1

2
1

c

2
1e1D1Ecce1

2Ef 2f 2S f 2

2
1

c

2
2e1D G ; M2

(0)50, (17a)

M3
(0)5e0FEf 1~ f 12h!S f 12h

2
1

c

2
1e3D1Ecce3

2Ef 2f 2S f 2

2
1

c

2
2e3D G . (17b)

These pre-buckling forces and moments satisfy identically
force and moment equilibrium equation~about the neutral axis o
the base part!, Eqs.~6! and~7!. Furthermore, since a state of pu
axial compressive strain exists without bending deflections,
compatibility of shortening, Eq.~8! is also satisfied.

Buckling „First-Order … Equations, O„j1
…. From ~3! and

~11,12!, the first-order differential equation for the three parts

Di

d2u i
(1)~xi !

dxi
2

1S a i Pi
(0)2

AiḠi

1Pi
(0)D u i

(1)~xi !50, i 51,2,3

(18a)

and the corresponding boundary conditions from~4! are

u i
(1)~0!50, i 51,2,3, (18b)

and from~5!,

u1
(1)~L2a!5u2

(1)~2a!5u3
(1)~2a!5uA

(1)51. (18c)

The first-order moment equilibrium from~7! is

D1

du1
(1)

dx1
U

x15L2a

2D2

du2
(1)

dx2
U

x252a

2D3

du3
(1)

dx3
U

x352a

2P2
(1)S f 11

c

2
1e12

h

2D1P3
(1)~e32e1!50, (18d)

and the first-order force equilibrium,

P2
(1)1P3

(1)5P1
(1) . (18e)

Finally, the first-order compatibility equation from~8! becomes,
sinceuA

(1)51,
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Fig. 3 Critical strain versus delamination length for the case of a glass-
polyester ÕPVC sandwich composite
e
c-

be

the

l

P3
(1)a

@Ef 1~ f 12h!1Ecc1Ef 2f 2#w
2S e31

c

2
1 f 12hD5

P2
(1)a

Ef 1hw
1

h

2
.

(18g)

Let’s set

l i5AS a i Pi
(0)2

AiḠi

1Pi
(0)D Y Di , i 51,2,3 (19)

where P1
(0) , P2

(0) , and P3
(0) are given in~16! in terms of the

uniform compressive straine0 . Then, the solutions for Eqs.~18a!
that satisfies the boundary conditions~18b!, is

u i
(1)5Ci

(1) sin~l ixi !, i 51,2,3. (20)

Now, the constantsC1
(1) , C2

(1) , C3
(1) are determined from the

common slope Eq.~18c!, as

C1
(1)51/sinl1~L2a!; C2

(1)521/sinl2a; C3
(1)521/sinl3a.

(21)

The characteristic equation is found in terms ofe0 by eliminat-
ing P1

(1) , P2
(1) , andP3

(1) from the previous equations. This is don
as follows.

The moment equilibrium Eq.~18d!, becomes

D1l1 cotl1~L2a!1D2l2 cotl2a1D3l3 cotl3a

5P2
(1)S f 11

c

2
1e12

h

2D2P3
(1)~e32e1!. (22a)

By using the neutral axis definitions~1a! and ~1b!, we obtain

e32e15S f 11
c

2
1e12

h

2D Ef 1h

@Ef 1~ f 12h!1Ecc1Ef 2f 2#
,

(22b)

therefore~22a! becomes
2003
e

P2
(1)

a

Ef 1hw
2P3

(1)
a

@Ef 1~ f 12h!1Ecc1Ef 2f 2#w

5
@D1l1 cotl1~L2a!1D2l2 cotl2a1D3l3 cotl3a#a

Ef 1hwS f 11
c

2
1e12

h

2D .

(23)

By comparing~18g! and~23!, we can see that the left-hand sid
of ~23! can be eliminated. Thus, we obtain the following chara
teristic equation:

@D1l1 cotl1~L2a!1D2l2 cotl2a1D3l3 cotl3a#a

Ef 1hwS f 11
c

2
1e12

h

2D
1S e31

c

2
1 f 12

h

2D50. (24)

Equation~24! is a nonlinear algebraic equation which can
solved numerically for the critical straine0 ~or critical load from
~16!!. In the numerical procedure, a solution is sought near
Euler buckling strain of the delaminated layer, which ise0

5p2h2/(12a2).

Initial Post-buckling, Second-order Equations, O„j2
….

From ~3! and ~11,12!, we obtain the second-order differentia
equation

Di

d2u i
(2)~xi !

dxi
2

1S a i Pi
(0)2

AiḠi

1Pi
(0)D u i

(2)~xi !

52S 2a i Pi
(0)Pi

(1)

AiḠi

1Pi
(1)D u i

(1)~xi !, i 51,2,3

(25)

and from~4! and ~14,15!,

u i
(2)~0!50, i 51,2,3 (26a)

u1
(2)~L2a!5u2

(2)~2a!5u3
(2)~2a!50. (26b)
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Fig. 4 „a… Comparison of the two material sandwich systems with regard to
the delamination midpoint deflection during the initial post-buckling phase. „b…
Comparison of the two material sandwich systems with regard to the midpoint
delamination-substrate opening during the initial post-buckling phase.
The second-order moment equilibrium from~7! is

D1

du1
(2)

dx1
U

x15L2a

2D2

du2
(2)

dx2
U

x252a

2D3

du3
(2)

dx3
U

x352a

2P2
(2)S f 11

c

2
1e12

h

2D1P3
(2)~e32e1!50, (27)

and the second-order force equilibrium is

P2
(2)1P3

(2)5P1
(2) . (28)
hanics
Finally, the second-order displacement compatibility from~8!–
~10! and ~11,12! is

1

2 E2a

0

u3
(1)2~x3!dx31

P3
(2)a

w@Ef 1~ f 12h!1Ecc1Ef 2f 2#

5
1

2 E2a

0

u2
(1)2~x2!dx21

P2
(2)a

Ef 1wh
. (29)
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Fig. 5 „a… Comparison of the two material sandwich systems with regard to
the delamination load during the initial post-buckling phase. „b… Comparison of
the two material sandwich systems with regard to the substrate load during the
initial post-buckling phase.
n

The general solution for the second-order differential Eq.~25!
is

u i
(2)~xi !5Ci

(2) sinl ixi1Bi
(2) cosl ixi

1
Pi

(1)

2l iDi
S 2a i Pi

(0)

AiḠi

11D Ci
(1)xi cosl ixi . (30)

The constantsBi
(2) are zeros due to the boundary conditio

~26a!,
2003
s

Bi
(2)50, i 51,2,3. (31)

Applying the conditions~26b!, we can find the constantsCi
(2)

as

C1
(2)52

P1
(1)

2l1D1

C1
(1)~L2a!cotl1~L2a!S 2a1P1

(0)

A1Ḡ1

11D ,

(32a)

and
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Fig. 6 Effect of the length over core thickness aspect ratio on the midpoint
delamination deflection during the initial post-buckling phase for glass-
epoxy Õpolyester
f
and,
er

der

me

der
Ci
(2)52

Pi
(1)

2l iDi

Ci
(1)a cotl iaS 2a i Pi

(0)

AiḠi

11D , i 52,3.

(32b)

Now the displacement compatibility Eq.~29!, becomes

P2
(2)

a

Ef 1wh
2P3

(2)
a

w@Ef 1~ f 12h!1Ecc1Ef 2f 2#

5
1

4 FC3
(1)2S a2

sin 2l3a

2l3
D2C2

(1)2S a2
sin 2l2a

2l2
D G . (33)

The moment equilibrium~27!, by substituting the second-orde
deflections~30! and again the relationship for the neutral axes
the substrate and the base part~22b!, becomes

F P2
(2)

a

Ef 1wh
2P3

(2)
a

w@Ef 1~ f 12h!1Ecc1Ef 2f 2#
G

3

Ef 1whS f 11
c

2
1e12

h

2
D

a

5D1H C1
(2)l1 cosl1~L2a!1

C1
(1)P1

(1)

2l1D1
S 2a1P1

(0)

A1Ḡ1

11D
3@cosl1~L2a!2~L2a!l1 sinl1~L2a!#J
2 (

i 52,3
DiFCi

(2)l i cosl ia1
Ci

(1)Pi
(1)

2l iDi
S 2a i Pi

(0)

AiḠi

11D
3~cosl ia2al i sinl ia!G . (34)
anics
r
of

Comparing~34! and~33!, we can eliminate the left-hand side o
the latter equation, which contains the second-order forces,
by using also~32!, thus obtain one equation for the first-ord
forces, i.e.,

a2P2
(1)1a3P3

(1)5
1

4 FC3
(1)2S a2

sin 2l3a

2l3
D2C2

(1)2

3S a2
sin 2l2a

2l2
D G Ef 1whS f 11

c

2
1e12

h

2D
a

,

(35)

where

ai5
C1

(1)

2l1
S 2a1P1

(0)

A1Ḡ1

11D Fcosl1~L2a!2
~L2a!l1

sinl1~L2a!
G

1
Ci

(1)

2l i
S 2a i Pi

(0)

AiḠi

11D S al i

sinl ia
2cosl iaD , i 52,3.

The second equation for the first-order forces is the first-or
compatibility Eq.~18g!.

The system of these two linear equations,~35! and ~18g!, can
be solved for the first-order forces,P2

(1) andP3
(1) .

The solution for the higher-order terms can proceed in the sa
fashion.

The first-order applied loadP1
(1) is in turn found from the

second-order force equilibrium, Eq.~28!. Notice that from~11!,
sinceP1

(0)5Pcr , the perturbation parameterj can be found from
the applied external load,P̄, as

j5
P̄2Pcr

P1
(1) . (36)

This, of course, presumes that we only account for the first-or
load terms.
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Deflections. The deflections can be found by integrating t
relationship~Huang and Kardomateas@15#!

dyi

dxi

5sinu i1
a i Pi

2AiḠi

sin 2u i . (37a)

Introducing the asymptotic expansions~11! and ~12! and the first
and second-order expressions~20! and ~30!, gives

dyi

dxi

5jS 11
a i Pi

(0)

ḠiAi
D u i

(1)1j2F S 11
a i Pi

(0)

ḠiAi
D u i

(2)1
a i Pi

(1)

ḠiAi

u i
(1)G

1O~j3!, (37b)

and therefore by integrating with the boundary condition

y1~0!50; and yi~2a!50; i 52,3 (37c)

gives the first-order deflections as

y1
(1)5

C1
(1)

l1
S 11

a1P1
(0)

Ḡ1A1
D ~12cosl1x1!, (38a)

yi
(1)5

Ci
( i )

l i
S 11

a i Pi
(0)

ḠiAi
D ~cosl ia2cosl ixi !; i 52,3

(38b)

and the second-order deflections as

y1
(2)5S 11

a1P1
(0)

Ḡ1A1
D F S Q1

(1)

l1
2

2
C1

(2)

l1
D ~cosl1x121!

1
Q1

(1)

l1

x1 sinl1x1G1
C1

(1)

l1

a1P1
(1)

Ḡ1A1

~12cosl1x1!,

(39a)

yi
(2)5S 11

a i Pi
(0)

ḠiAi
D F S Qi

(1)

l i
2

2
Ci

(2)

l i
D ~cosl ixi2cosl ia!

1
Qi

(1)

l i

~xi sinl ixi2a sinl ia!G1
Ci

(1)

l i

a i Pi
(1)

ḠiAi

~cosl ia

2cosl ixi !; i 52,3 (39b)

where

Qi
(1)5

Pi
(1)Ci

(1)

2l iDi
S 2a i Pi

(0)

ḠiAi

11D ; i 51,2,3. (39c)

Discussion of Results
For an illustration of the results from the previous analys

consider a sandwich beam with~in mm! f 15 f 253, c525, h
53, w520, andL5150. Two types of core were used:~a! a PVC
core with ~in MPa! Ec593, Gc535, and~b! an aluminum hon-
eycomb core withEc51, Gc5200 ~data from Gibson and Asby
@16#!. The corresponding face-sheets were~a! E-glass/polyester
unidirectional with~in GPa! Ef 15Ef 2526 andGf 15Gf 253 and
~b! graphite/epoxy unidirectional withEf 15Ef 25140 andGf 1
5Gf 255. In the results presented, the case of no transverse s
effect corresponds toa i50.

The shear correction factors for the case of glass-polyester/P
system area151.215,a251.200, anda351.044. More impor-
tant are the corresponding ratiosa i /ḠiAi , as these represent th
magnitude of the effect of transverse shear and these were, re
tively, 0.45331024, 0.66731025, and 0.47631024. The first
and the last numbers are larger because they include the
unlike the second number which is for the delaminated layer o
198 Õ Vol. 70, MARCH 2003
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For the graphite-epoxy/honeycomb, the corresponding data
a151.209,a251.200, anda350.482, whereas thea i /ḠiAi ra-
tios are 0.79431025, 0.40031025, and 0.38631025. The last
set of numbers shows the importance of the low extensio
modulus of the honeycomb core.

Figure 3 shows the critical strain,ecr for a range of delamina-
tion lengths in the case of sandwich material system~a!. It is seen
that the critical strain decreases with longer delaminations, as
pected, and that the effect of transverse shear is to lower
critical strain, again as expected.

The initial post-buckling results which follow are produced f
delamination lengtha5L/3. This solution is an asymptotic solu
tion, so accuracy is expected to be compromised as we m
away from the critical point. Figure 4(a) shows the midpoint
delamination deflection versus applied strain for the two mate
systems and Fig. 4(b) shows the midpoint delamination-substra
opening. Both deflections are higher for the glass-polyester/P
case, which is expected due to the lower stiffness of the f
sheet. The delamination load~normalized with the critical load! is
shown in Fig. 5(a) and the substrate load is shown in Fig. 5(b).
For both material systems the delamination load and the subs
load increases with applied strain, but no definite trend ex
between the two material systems—the normalized~with Pcr)
delamination load being higher in the material system~b! but the
normalized substrate load being higher in the material system~a!.

Finally, Fig. 6 shows the effect of the length over core thickne
aspect ratio on the midpoint delamination deflection during
initial post-buckling phase for glass-epoxy/polyester material s
tem. The face sheet thickness and delamination length was
constant and the critical strain is essentially the same in both c
~slightly lower for the higher aspect ratio!. But the case of a
thicker core~lower aspect ratio! shows a higher delamination de
flection.
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Bounds on Texture Coefficients
The orientation distribution function (ODF) is expanded in terms of generalized sphe
harmonics and bounds on the resulting texture coefficients are derived. A necessa
sufficient condition for satisfaction of the normalization property of the ODF is a
provided. These results are of significance in, for example, microstructural optimizati
materials and predicting texture coefficients based on wave velocity measurements
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Introduction
A polycrystal, at a sufficiently large length scale, can app

macroscopically homogeneous and isotropic if the anisotro
single crystals which comprise the polycrystal are not prefer
tially distributed spatially nor orientationally. If a polycrystal ex
hibits a preferential orientation of its grains then it is said to e
hibit texture. As a consequence of texture, a polycrystal will,
general, exhibit anisotropy which can be quantified regardles
material anisotropy,@1#. If the texture varies spatially then at tha
same length scale the polycrystal will be nonhomogeneous.

The texture of a polycrystal may be quantified by the orien
tion distribution function~ODF! which is, in essence, a probabi
ity distribution function; the random variable being the orientati
of a single crystal. The texture of the polycrystal can be equi
lently quantified by texture coefficients which are the coefficie
of a harmonic expansion of the ODF. The terms of the expans
are the generalized spherical harmonics~GSH! and the expansion
is termed the Viglin expansion,@2#.

The use of ODFs and texture coefficients are not limited
polycrystals. The analysis of many modern composite mater
necessitates the appropriate characterization of the compo
texture by quantifying the orientation distribution of each co
stituent. Thus, texture, and its quantification, is important not o
in polycrystals, @3–6#, but also, more generally, in composi
materials,@7–10#.

Increasing technological interest in composite materials in
areas of, for example, thermal barrier coatings,@11#, and function-
ally graded materials,@12,13#, will lead ultimately to optimally
designed microstructures of materials,@14,15#. If the texture of the
material is taken as a design parameter then it would be conc
able to optimize the texture coefficients. As a result of the trun
tion theorem,@6#, not all texture coefficients affect the effectiv
properties. However, optimizing those texture coefficients wh
are relevant necessitates that only physically plausible texture
efficients be considered. For this reason bounds on the tex
coefficients are significant. Bounds are also of relevance w
using inversion techniques to estimate the texture coefficie
based on wave velocity measurements,@16,17#.

Preliminaries
The orientation distribution function~ODF! is denoted byf (g)

wheregª(c1 ,f,c2)PSO(3) is the Euler triad andc1 , f, and
c2 are the Euler angles andSO(3) is the group of proper orthogo
nal rotations. Letxi andxi8 , i P$1,2,3%, denote the Cartesian axe

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 5, 20
final revision, July 26, 2002. Associate Editor: L. T. Wheeler. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
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of the global and local coordinate frames, respectively, which
indistinguishable apart from a translation. The Euler anglesc1 , f,
and c2 are successive rotations about thex38 , x18 , and x38 axes,
respectively. For a graphical illustration see Fig. 1. The Euler tr
g thus describes the orientation of the local coordinate frame r
tive to the global coordinate frame. The quantityf (g)dg is the
probability of an orientation within the ‘‘interval’’@g,g1dg) be-
ing achieved wheredg51/(8p2)sinf dc1dfdc2.

The ODF, being a probability density function, possess cer
properties. Namely,~a! f (g) is a real quantity;~b! f (g) is strictly
positive: f (g)dg>0; and~c! f (g) is normalized such that it inte
grates to unity: r f (g)dg51, where r(•)dgª1/(8p2)*0

2p

3*0
p*0

2p(•)sinf dc1dfdc2.
Generalized spherical harmonics~GSH! are the matrix elements

of the irreducible representation of the three-dimensional rota
group. They are defined by~see, for example, Bunge@4#!

Tl
mn~g![Tl

mn~c1 ,f,c2!ªeimc2Pl
mn~cosf!einc1 (1)

where Pl
mn(cosf) are the generalized Legendre functions. W

note thatP0
00(cosf)51 and, thus,T0

00(g)51. We also note that
Tl

mn(0,0,0)5dmn, Tl
mn(0,p,0)5(21)ldmn̂ and, finally,

Pl
mn~cosf!5Pl

nm~cosf!

5Pl
m̂n̂~cosf!5~21! l 1m1nPl

m̂n~2cosf! (2)

wherem̂ª2m.
The GSH form a complete set of orthonormal functions,~@4#, p.

352!, meaning that

R Tl
mn~g!T̄l 8

m8n8~g!dg5
1

2l 11
d l l 8d

mm8dnn8 (3)

where d i j [d i j is the Kronecker delta and an overbar deno
complex conjugation. We should remark that, throughout this
per, summation convention isnot invoked.

A Viglin expansion,@2#, of the ODF is now given in terms o
the GSH

f ~g!5(
l 50

`

(
m52 l

l

(
n52 l

l

Cl
mnTl

mn~g! (4)

where Cl
mn are the coefficients of the expansion. These coe

cients are termed texture coefficients and are given by the inv
relation

Cl
mn5~2l 11! R f ~g!T̄l

mn~g!dg. (5)

Bounds
As discussed above, the orientation distribution function~ODF!

is a real-valued, strictly positive function which is normalized
unity. Thus, by means of Eq.~5!, these properties of the ODF

2;
the
art-
nta
after
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Fig. 1 The orientation of the local coordinate system „x 18x 28x 38… with respect to the global coordinate system
„x 1x 2x 3…, as shown in „d…, is described in terms of a sequence of Euler angle „gª„c1 ,f,c2…… rotations as
illustrated in „b…, „c…, and „d… given the initial relative orientation of the coordinates systems in „a…
p
h

-
e of

he
must imply constraints on the texture coefficients. For exam
the requirement that the ODF be a real quantity implies t
Cl

m̂n̂5(21)m1nC̄l
mn , @2,4#. We now present another constrain

namely, bounds on the texture coefficients.
The generalized spherical harmonicsTl

mn , for 2 l<m,n< l
form a unitary matrix. That is,(s52 l

l Tl
msT̄l

ns5dmn. It follows that

15 (
s52 l

l

Tl
ms~g!T̄l

ms~g!5 (
s52 l

l

uTl
ms~g!u25 (

s52 l

l

uPl
ms~cosf!u2

(6)

which is a result that can be found in@@18#, p. 89#. It follows that

uPl
ms~cosf!u<1. (7)

It follows from Eq. ~5! that

uCl
mnu5~2l 11!U R f ~g!T̄l

mn~g!dgU (8)

<~2l 11! R f ~g!uT̄l
mn~g!udg (9)
of Applied Mechanics
le,
at

t,

5~2l 11! R f ~g!uPl
mn~cosf!udg (10)

<~2l 11! R f ~g!dg (11)

52l 11. (12)

In arriving at Eq. ~9! from Eq. ~8! we made use of Ho¨lder’s
inequality and the fact thatf (g)dg>0. Equation~11! follows
from Eq. ~10! by use of Eq.~7!. This concludes the proof, how
ever, details are given below for more rigorous bounds on som
the texture coefficients, namely, the coefficientsCl

mn for which
umuÞunu.

Further restrictive bounds onC0
00 can be achieved by making

use of the normalization requirement of the ODF. In fact, t
normalization requirement is satisfied if and only ifC0

0051. This
result has been recorded without proof in@5# so we shall provide
the proof below.
MARCH 2003, Vol. 70 Õ 201
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To prove necessity, evaluateC0
00 using Eq.~5!. This leads to

C0
005r f (g)dg51 becauseT̄0

00(g)51. To prove sufficiency, we
begin by noting that

R Tl
mn~g!dg5H 1, l 5m5n50

0, otherwise
(13)

which follows directly from the orthonormal property~3! of the
generalized spherical harmonics~GSH!. To complete the proof

15 R f ~g!dg5 R (
l 50

`

(
m52 l

l

(
n52 l

l

Cl
mnTl

mn~g!dg (14)

5(
l 50

`

(
m52 l

l

(
n52 l

l

Cl
mn R Tl

mn~g!dg

(15)

5C0
00. (16)

The last result follows from Eq.~13!. This concludes the proof.
As mentioned above, more rigorous bounds can be ascerta

on some of the texture coefficients. We investigate this issue n
Consider the unidirectional ODFf (g)5kd(c1)d(f)d(c2) where
d is the Dirac delta function andk is a normalizing constant de
termined such thatr f (g)dg51. Substituting this ODF into Eq
~5! after evaluating the normalizing constantk, and recalling that
Tl

mn(0,0,0)5dmn, yields Cl
mn5(2l 11)dmn. Thus, Cl

mm52l 11
from which it follows that more restrictive bounds cannot be
determined onCl

mm without additional information on the ODF
Similarly, by considering the unidirectional ODFf (g)
5k8d(c1)d(f2p)d(c2) and recalling that Tl

mn(0,p,0)
5(21)ldmn̂ it can be determined thatCl

mn5(21)ldmn̂. Thus,
uCl

n̂nu52l 11 from which it follows that more restrictive bound
can not be determined onCl

n̂n , or, equivalently,Cl
nn̂ since 2 l

<n< l , without additional information on the ODF.
This leaves the remaining texture coefficientsCl

mn with umu
Þunu for which we cannot conclude that a maximum modulus o
2l 11 can be achieved. In fact, more restrictive bounds are p
sible on these texture coefficients. We proceed by bounding
corresponding generalized Legendre functionPl

mn(cosf) and re-
turning to Eq.~10! to yield the result

uCl
mnu<a l

mn~2l 11!, 0<a l
mn<1 (17)

where a l
mn is the least upper bound touPl

mn(cosf)u. From the
relations~2! we can conclude, for a givenl, m, andn, that

a l
mn5a l

m̂n̂5a l
m̂n5a l

mn̂. (18)

From those same relations we also conclude thata l
mn5a l

nm .
From our previous results we know thata l

mn51 for umu5unu. The
result~17! yields the most restrictive bounds possible without a
ditional information on the ODF.

For l 51 andl 52 we can consider the closed-form expressio
for Pl

mn(cosf) given by Bunge~@4#, pp. 352–353!. For l 51 we
have P1

0152( i /A2)sinf where i 2521. Thus,a1
0151/A2, and,

with the assistance of Eq.~18!, we tabulate the values ofa1
mn in

Table 1. Forl 52 the values ofa l
mn are presented in Table 2.

For l>3 we proceed by considering a Fourier series expans
of Pl

mn(cosf) as given by Bunge@4, Section 14.3#. It is also
necessary at this stage to implement a numerical procedure
determining the least upper bound touPl

mn(cosf)u. Because we
need only consider those cases for whichumuÞunu, and because o
the relations~18!, it is only necessary to find the least upper bou
to l ( l 11)/2 functions in distinction from the (2l 11)2 general-
ized Legendre functions—for a givenl. Results from implement-
ing such a numerical procedure forl 53 andl 54 are presented in
Tables 3 and 4, respectively.
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In closing, we make mention of two additional points. Firs
satisfaction of the bounds~17! is not a sufficient condition for a
strictly positive ODF. Consider the set of texture coefficien
C0

0051, C2
00525 and all otherCl

mn50. These texture coefficient

satisfy the bounds~17! but yield the function f (g)5125@
1
4

1
3
4 cos(2f)#, for which, clearly,f (g)dg takes on negative values

Secondly, if more information on the ODF is known, for examp
in terms of its symmetries, then relations among the text
coefficients may be deduced~see, for example, Ferrari an
Johnson@9#!.

Closure

This paper has derived bounds, namely,uCl
mnu<2l 11, on the

texture coefficientsCl
mn as deduced from properties of the orie

tation distribution function~ODF!. It has also been shown tha
more rigorous bounds can, in general, be proven whenumuÞunu.
The form of the bounds onCl

mn can then be written asuCl
mnu

<a l
mn(2l 11) wherea l

mn is the least upper bound to the modulu
of the generalized Legendre functionPl

mn(cosf). Results fora l
mn

have been tabulated forl 51, 2, 3, and 4. It has also been prove

Table 1 Bounding coefficients a1
mn

„zC1
mn zÏ3a1

mn
…

a1
mn

m n

0 61

0 1 1/&
61 1/& 1

Table 2 Bounding coefficients a2
mn

„zC2
mn zÏ5a2

mn
…

a2
mn

m n

0 61 62

0 1 A6/4 A6/4
61 A6/4 1 3)/8
62 A6/4 3)/8 1

Table 3 Bounding coefficients a3
mn

„zC3
mn zÏ7a3

mn
…

a3
mn

m n

0 61 62 63

0 1 0.596285 0.527046 0.559017
61 0.596285 1 0.601333 0.573775
62 0.527046 0.601333 1 0.633938
63 0.559017 0.573775 0.633938 1

Table 4 Bounding coefficients a4
mn

„zC4
mn zÏ9a4

mn
…

a4
mn

m n

0 61 62 63 64

0 1 0.590337 0.508223 0.480326 0.52291
61 0.590337 1 0.591869 0.516186 0.53069
62 0.508223 0.591869 1 0.597026 0.55808
63 0.480326 0.516186 0.597026 1 0.62665
64 0.522913 0.530690 0.558088 0.626655 1
Transactions of the ASME
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thatC0
0051 is a necessary and sufficient condition for satisfact

of the normalization property of the ODF:r f (g)dg51.
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Determination of the Local
Stress-Strain Response of Foams
A new specimen for determining the local stress-strain response of foams under un
compression is presented along with the corresponding theory. The drawback of
conventional cubic specimens is that average stresses and strains are calculated,
introduces size effects due to structural and material inhomogeneities of comm
foams. Under compression, foam cubes develop unstable regimes, which involve loc
deformation. The instabilities cause difficulties in establishing the correct stress-s
response of the material. Tapering specimens can enable controlled motion of the b
ary separating the unstable and stable regimes. This concept is exploited in the p
paper in experiments on closed-cell aluminum foam trapezoids. A crushing front p
gates down the tapered specimen during compression, while the deformed region de
a new lateral shape. The experimental results are used along with several assumpti
extract a more representative stress-strain response of foam. The response is cha
ized by the initial plateau stress, shape exponent and densification strain. The sign
effect of the variable Poisson’s ratio during crushing is also introduced. The res
provide a basis for developing local constitutive behavior of foams.
@DOI: 10.1115/1.1546242#
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1 Introduction
This paper deals with the determination of local stress-st

response of foams for finite element applications. In finite elem
modeling of three-dimensional bodies, decisions must be mad
the size and constitutive equation governing a solid element
continuum mechanics, the physical law is independent of the
tial discretization. However, for cellular materials such as foam
which are inhomogeneous, the mechanical properties are dir
related to the size of the solid element.

The significant drop of the peak shear stress with the heigh
the foam specimen has been reported~see, e.g., Andrews et a
@1#!. Wierzbicki @2# provided a qualitative explanation of this ph
nomenon in relation to honeycomb blocks in shear. Different f
ure modes were observed experimentally and numerically dep
ing on block height. Short specimens developed uniform sh
buckling patterns. Intermediate height blocks evolved diago
shear bands. Higher specimens underwent nonuniform comp
sion along loaded edges. Hanssen et al.@3# observed different
stress-strain curves for slender and stocky foam cubes. A
nounced size effect was confirmed in a series of compression
on ductile and brittle aluminum foam cubes~Wierzbicki et al.
@4#!. Depending on specimen size, different initial plateau stres
and different stress-strain curves were obtained. A typical str
strain curve obtained from the compression of a regular foam c
is shown in Fig. 1. One can clearly distinguish an initial elas
regime up to the yield point, followed by the initial plateau stre
and subsequent hardening all the way to densification and lock

While the nature of size effect has not been clearly descri
and quantified in the literature, a recent study has contribute
the understanding of this phenomenon. Using digital image co
lation analysis, Bastawros and Evans@5# detected formation of
discrete bands of concentrated strain across sections of c
pressed foam cubes. These bands were spaced at a distan
three to four cells. The actual local strains in uniformly com

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Sept.
2001; final revision, Apr. 16, 2002. Associate Editor: K. Ravi-Chandar. Discussio
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
ICS.
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pressed cubes are thus different from the average strains obta
by dividing the end displacement by specimen height. Theref
the question as to what is the proper reference size to mea
strains in foams must be asked. The Bastawros and Evans’ re
suggest that this height must be equal to three to four cell di
eters. But in finite element application, the size of the solid e
ments could be much smaller.

The situation becomes quite different for loading cases invo
ing strain gradients. An example is indentation of a block of foa
with a hemispherical punch. Deformation patterns under
punch show a clear interface between zones of fully crushed
uncrushed cells~Fig. 2!. This interface propagates down the foa
block with increasing punch displacement. Each collapsing
develops increasing strains and enters the densification stage
the next row of cells starts to deform. The local crushing str
can be obtained by dividing the total resistive force by the p
jected cross-sectional area~Doyoyo and Wierzbicki@6#!. How-
ever, the local strains cannot be measured easily in this typ
test. Finite element codes require the correct true stress-s
curve of the material as an input. This information can be obtai
neither from spherical punch indentation tests nor from uniax

7,
on
art-

nta
after

Fig. 1 A typical stress-strain curve of a closed-cell metallic
foam cube under uniaxial compression. The plastic regime is
characterized by a plateau stress, followed by a hardening re-
gion, which eventually leads to densification and locking.
003 by ASME Transactions of the ASME
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compression of cubes. To overcome this difficulty, a new type
test is designed for foams and performed in our laboratory. T
test involves crushing of tapered specimens~foam trapezoids!. In
the compressed specimen, stress at the smallest upper cros
tion is the largest so that a front of crushed cells propagates f
the upper edge down the specimen. From the deformed lat
surface, local stresses and strains can be calculated and the
true stress-strain curve of the foam can be found.

The idea of inducing inhomogeneous stress and strain state
determine mechanical properties of solids is not new. Marcin
@7# proposed a method of calculating the stress-strain curve
copper from tensile testing of conical rods. McClintock and Zhe
@8# used slightly tapered specimens to study initiation and pro
gation of necking and fracture in ductile metals. More recen
Doyoyo and Weirzbicki@9,10# used butterfly-shaped specimens
determine biaxial yield of brittle and ductile aluminum foams. T
present scheme is a promising way of acquiring local compres
properties of foams, which can then be used directly in fin
element modeling of complex boundary value problems.

2 Analysis of Nonuniform Crushing of a Foam
Several tests on closed-cell aluminum foam trapezoids~which

will be reported fully in the next section! were performed and the
following observations were made:

• There is always a clear boundary between the continu
crushed and uncrushed regions.

• The front separating the above two regions is moving do
the specimen as the load is increased.

• The material above the front continues to deform after
front has passed and higher stresses buildup in this region.

• Because of the boundary effect, the front is slightly curv
but for the sake of simplicity, it is assumed to be flat.

• The width of the front is of the order of the average cell si
but for strain calculation, it is assumed to be just a geometr
line.

• At some load level, the crushing front reaches the bottom
the specimen. The test should stop at this point or earlier beca
our analysis is not valid beyond this point.

• A unique feature of the present method is that the en
stress-strain curve is reconstructed from the final configurat
Therefore, there was no need to monitor the position of the tr
eling front. Various cross sections of the deformed specimen
respond to different stress and strain states.

• In the following analysis, we will determine the local stres
strain response of foams subjected to large crushing displ
ments. Thus, the elastic regime will be ignored and the anal
begins at the initial plateau stress.

We introduce a spatial coordinate system (x,y), which moves
with the front wherex is aligned with the front andy is perpen-
dicular to it, Fig. 3~a!. Consider three points on the original spec
men; A, B, and C, Fig. 3~b!. The point C defines the current
position of the front. The width of the front is denoted byb. The
current positions of the pointsA andB are denoted byA1 andB1,
respectively. Consider the current cross section defined by

Fig. 2 A section through a block of Cymat aluminum alloy
foam, which was indented by a hemi-spherical punch „Doyoyo
and Wierzbicki †6‡…. A distinct boundary Õinterface separates the
crushed and uncrushed regions.
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point B1 and its mirror reflection of the other side of the symme
axis. The width of this cross section is (b22x). The correspond-
ing normal local true stress is

syy5
P

wo~b22x!
(1)

where wo is the constant thickness of the trapezoid andb
5b(P). Note that the true stresssyy is equal to the engineering
stressSyy . Because the trapezoid is truncated, it follows fro
geometry thatb2bo/2,x. The normal yield stress should rema
constant at the front, thus

so5
Po

wobo
5

P

wob
(2)

wherePo is the initial peak load. Eliminatingb between Eqs.~1!
and ~2!, then

Fig. 3 „a… A schematic of the original tapered specimen „dot-
ted line … and the deformed specimen „solid line …. The crushing
front propagates down the specimen, separating the crushed
cells „shaded region … from the uncrushed cells ahead of the
front. The effect of the plastic Poisson’s ratio is shown when
point A moves vertically „v … and horizontally „u … to point A 1

during loading. „b… A schematic showing how the original
points A and B in the undeformed specimen travel to their cur-
rent positions A 1 and B 1 in the deformed specimen during
loading.
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syy5PH woS bo

P

Po
22xD J 21

(3)

which is more convenient becauseP is readily measurable whileb
is not. From geometry of the deformed specimen, the local nor
engineering strainEyy is

Eyy512
~11n!y8

~y8!o
(4)

and the true~logarithmic! «yy strain is

«yy5 ln
~11n!y8

~y8!o
(5)

where (y8)o5dyo /dxo5tanuo and y8(x)5dy(x)/dx, and n is
the local plastic Poisson’s ratio. Equation~3! has a vertical asymp
tote when the normal strain reaches the densification st
(Eyy)d , thus

bo

P

Po
22xuEyy5~Eyy!d

50. (6)

The Poisson’s ration is defined as the negative ratio of the loc
lateral strainExx to the local normal strainEyy

n52
Exx

Eyy
(7)

this is not a constant, but varies withEyy from the initial valueno
to nL at full densification. The initial plastic Poisson’s rationo is
roughly zero for low-density foams. The variation ofn with Eyy
has not been reported in the literature. Here,n is assumed to
follow the power law

n5no1b~Eyy!
m (8)

where the two material constantsb and m are to be determined
from the following two conditions. First, it is observed that at fu
densification the foam becomes a solid for whichn5nL

nL5no1b@~Eyy!d#m. (9)

Secondly, what is measured at full densification is not the cur
plastic Poisson’s ratio but the accumulated Poisson’s ratio, g
by

nacc52
~Exx!d

~Eyy!d
5E

0

~Eyy!d

@no1b~Eyy!
m#dEyy . (10)

From Eqs.~9! and ~10!, the two unknown parameters can be e
pressed in terms of the measurable quantities (Eyy)d , nacc, andno

m5
nL2no

nacc2no
~Eyy!d and b5

nL2no

@~Eyy!d#m . (11)

Note that for foams made up of metallic alloys, which are inco
pressible, the plastic Poisson’s ratio at full densificationnL50.5,
whereas it can lie between21 and 0.5 for foams made up o
compressible materials.

3 Testing of Tapered Foam Specimens Under Uniaxia
Compression

In this section, the results of tests on two different foam tra
ezoids under uniaxial compression are reported. The follow
were the measurement objectives:

• The variation of the loadP with displacementd during speci-
men crushing had to be measured. The initial peak loadPo nec-
essary to propagate the crushing front will be deduced from
variation.

• The lateral shape functiony(x) of the crushed specimen a
the end of the test had to be measured. The final crushing f
width bL will be deduced from this function.
206 Õ Vol. 70, MARCH 2003
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• The accumulated plastic Poisson’s rationacc had to be
measured.

The specimens were composed of ductile closed-cell alumin
foam of commercial name Alporas. Alporas was manufactured
the Shinko Wire Company, Amagasaki, Japan. The cell walls w
made up of an aluminum alloy with small percentages of Ca
Ti. The nominal density of the foam was 257 kg/m3 or 9.5 percent
relative to solid aluminum (rAl52700 kg/m3). The specimens
were extracted from foam blocks supplied by the manufactu
using EDM. The geometry and dimensions of the trapezoids
described in the schematic of Fig. 3~a!.

Several foam trapezoids were tested in an MTS servo-hydra
testing machine with a 200 kN load cell~Model 45G, MTS, Eden
Prairie, MN!. The specimens were placed between parallel plat
and then compressed. Load and displacement were acquired
Testworks software~Sintec Division, MTS!. The photographs of
the specimens at different stages of crushing were taken wi
digital camera.

It appeared during testing that the choice of the taper angleuo
is important for producing reliable results.In this study, the taper
angle was not quantified or fully optimized. Instead, only a con-
ceptual definition of the ‘‘optimum taper angle range’’ is mad
This angle should be large enough to override a tendency
developing localized deformation. At the same time, it cannot
too small because the propagating front ceases to be flat. Fo
above foam, specimens in taper angle rangeuo575 deg– 80 deg
evolved approximately flat crushing fronts. Two specimens of d
ferent sizes and different taper angles in this optimum range
now presented.

i. First specimen: This specimen had a taper angleuo
575 deg with top widthbo5100 mm, heightho5300 mm and
thicknesswo5100 mm. It was compressed at 0.05 mm/s down
a height of 130 mm. The load-displacement curve for the sp
men is shown in Fig. 4. The load increases linearly with displa
ment. If a best-fit line were to be drawn through the data poin
the load at which the line intersects the load axis is the initial p
load Po50.91 kN, thus the corresponding initial plateau stre
so50.91 MPa.

ii. Second specimen: This specimen had a taper angleuo
580 deg with top widthbo575 mm, heightho5300 mm and
thicknesswo5100 mm. It was compressed at 0.1 mm/s down t

Fig. 4 The variation of load with crushing displacement during
compression of foam trapezoids. The load increases linearly
with crushing displacement beyond the initial plateau load.
Transactions of the ASME
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Fig. 5 „a… Photographs of the 80 deg tapered specimen at subsequent stages
of uniaxial compression. „b… The photograph of the original 75 deg tapered
specimen and the deformed tapered specimen after compression down to a
height of 130 mm. The specimen develops new lateral shapes during compres-
sion.
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height of 125 mm. Its load-displacement response is presente
Fig. 4 with initial peak loadPo50.70 kN andso50.93 MPa.

The change of shape of the second specimen during comp
sion is shown photographically in Fig. 5~a!. The initial and final
configurations of the first specimen are shown photographicall
Fig. 5~b!. The photographs of the final shapes are digitized and
points describing these shapes are plotted in Fig. 6~a!. Points
along and perpendicular to the crushing front are denoted byx and
y, respectively. The point of reference is the position at which
front intersects the specimen surface. In the logarithmic scale
of Fig. 6~b!, the points lie in a straight line, suggesting a pow
type shape function

y5tanuox2axn (12)

where n51.21, a50.98 and the final crushing front widthbL
5240 mm for the first specimen whilen51.21,a51.65, andbL
5163 mm for the second specimen.

The parametersb and m defined in Eq.~11! are required in
order to determine the variation of the local plastic Poisson’s r
with local normal strain. These parameters depend on local d
sification strain, initial and accumulated Poisson’s ratios. For
low-density foam under consideration, the initial plastic Poisso
ratio is assumed to be zero. The local densification strain is
culated directly from the final specimen shape in the next sect
Therefore, the accumulated plastic Poisson’s ratio related
strains at full densification is the only unknown quantity. Th
quantity is obtained by crushing a foam block to full densificatio

A foam block of height 27 mm and cross-sectional area 50 m
by 50 mm is extracted from the same block from which foa
trapezoids were cut. The block is compressed at 0.05 mm/s
hanics
d in
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the
n’s
al-
on.

to
is
n.
m

m
ntil

the load is about 80~!! times the initial plateau load. The photo
graph of the crushed and uncrushed blocks is shown in Fig. 7~a!.
The corresponding engineering stress-strain curve for the te
given in Fig. 7~b!. The vertical asymptote of this curve is th
average normal strain at full densification

~Eyy!d
av'0.91. (13)

The cross-sectional area of the crushed block is 54.5 mm by
mm. Therefore, the average lateral strain at full densification

~Exx!d
av5

50-54.5

50
'20.09. (14)

The accumulated plastic Poisson’s ratio for the above foam is t

nacc52
~Exx!d

av

~Eyy!d
av 52

~20.09!

~0.91!
'0.1. (15)

4 Determination of the Local Stress-Strain Response
of Foams

In this section, the local stress-strain response of foams is
termined for two different cases, namely;~i! the local plastic Pois-
son’s ration remains zero during deformation and~ii ! the local
plastic Poisson’s ration varies with deformation. Case~i! is typi-
cally assumed for low-density foams~see, e.g., Gibson and Ashb
@11#!. Although physically realistic, case~ii ! is a new concept,
which has been previously ignored for foams.
MARCH 2003, Vol. 70 Õ 207
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Eq.
„i… Local Stress-Strain Response of Foams for Zero Plastic
Poisson’s Ratio. When the local plastic Poisson’s ratio remai
zero during crushing, the local normal engineering strain, obtai
by combining Eqs.~4! and ~13! is

Eyy5E5
a

tanuo
nxn21. (16)

Eliminating x from Eq. ~1! using the above expression, the loc
normal engineering stress becomes

Syy5S5PH woS bo

P

Po
22S tanuoE

an D 1/n21D J 21

. (17)

The above equation has a vertical asymptote when the no
strain reaches (Eyy)d5Ed at full densification, so that

bo

P

Po
22S tanuoEd

an D 1/n21

50. (18)

Fig. 6 „a… Final shapes of the crushed regions of the tapered
specimens obtained from digitized photographs. „b… The evalu-
ation of the power-type function, which describes the lateral
shape of the deformed specimens.
208 Õ Vol. 70, MARCH 2003
s
ed

al

mal

Combining Eqs.~17! and ~18! by eliminatingboP/Po , one gets
the local engineering stress-strain response of foams

S

So
5F12S E

Ed
D 1/n21G21

(19)

where the normal local strain at full densification is also uniqu
determined,

Ed5
a

tanuo
nbL

n21. (20)

The local true stress-strain curve is obtained by using the st
conjugate relation

E512exp$2«%. (21)

Note that«yy5« and (E,«)>0. Recalling thatSyy5syy5s, then
the local true stress-strain response is found by substituting
~21! into Eq. ~19!

Fig. 7 „a… Foam block crushed to 80 times the initial peak load
is compared photographically to the uncrushed block. „b… The
conventional stress-strain curve corresponding to the crushing
of the foam block to densification and locking.
Transactions of the ASME
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so
5F12S 12exp$2«%

12exp$2«d%
D 1/n21G21

(22)

and the local true strain at full densification is

«d52 lnS 12
a

tanuo
nbL

n21D . (23)

The measured stress-strain curve parameters (Ed ,n,so) for the
two specimens are given in Table 1. The parameters are iden
for the two specimens.

„ii … Local Stress-Strain Response for Variable Plastic Pois-
son’s Ratio. When the local plastic Poisson’s ratio varies wi
deformation, the local engineering strain is obtained by combin
Eq. ~4! with Eq. ~14!,

E52n1~11n!
a

tanuo
nxn21. (24)

After substitutingx from the above equation into Eq.~3! and
observing that the stress approaches infinity at full densificati

bo

P

Po
22F ~Ed1nL!

~11nL!

tanuo

an G1/n21

50. (25)

Simplifying Eq.~3! by eliminatingx andboP/Po , it can be shown
that the local engineering stress-strain response is

S

So
5H 12F E1n~E!

Ed1n~Ed!G
1/n21J 21

(26)

wheren(E) is given by Eq.~7!. The expression for the enginee
ing densification strain becomes

Ed52nL1~11nL!
a

tanuo
nbL

n21. (27)

The local true stress-strain response is obtained by substitu
Eq. ~21! into the above equation

s

so
5H 12F12exp~2«!1no1b~12exp~2«!!m

12exp~2«d!1nd
G1/n21J 21

(28)

and the true densification strain is given by

«d52 lnS 11nL2~11nL!
a

tanuo
nbL

n21D . (29)

The measured stress-strain curve parameters (Ed ,n,so ,m,b) for
the two specimens are given in Table 2. The parameters are i
tical for the two specimens. The variation of the plastic Poisso
ratio with strain for average values ofEd ,m,b'0.83,4.10,1.13
deduced from Table 2 is plotted in Fig. 8.

5 Discussions
The analysis of the previous sections demonstrates that a si

local stress-strain response of foams can be obtained by te
foam trapezoids. The stress-strain curve depends on the in
peak stressso , densification strainEd , shape exponentn, first

Table 1 Stress-strain curve parameters assuming zero plastic
Poisson’s ratio for the 257 kg Õm3 dense Alporas foam. The
thicknesses and heights: w oÄ100 mm and h oÄ300 mm are the
same for the two specimens.

First Specimen Second Specimen

Taper angleuo ~in degrees! 75 80
Top width bo (mm) 100 75
Shape exponentn 1.21 1.21
Initial plateau stressso (MPa) 0.91 0.93
Densification strainEd 0.87 0.89
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and second Poisson’s ratio parametersm,b. These parameters ca
be determined from a single test and were identical for the te
foam trapezoids.

Although the physical meanings of the initial peak stress a
densification strain are known, it is not immediately obvious wh
the shape exponent represents. Figure 9 shows the dependen
the local stress-strain response on the shape exponent. It ca
seen that foams that harden during crushing have higher value

Table 2 Stress-strain curve parameters assuming variable
Poisson’s ratio for the 257 kg Õm3 dense Alporas foam

First Specimen Second Specime

Taper angleuo ~in degrees! 75 80
Top width bo (mm) 100 75
Shape exponentn 1.21 1.21
Initial plateau stressso (MPa) 0.91 0.93
Densification strainEd 0.81 0.84
First Poisson’s ratio parameterm 4.05 4.15
Second Poisson’s ratio parameterb 1.17 1.08

Fig. 8 The variation of local plastic Poisson’s ratio with local
engineering strain during crushing of the 257 kg Õm3 dense
Alporas foam trapezoid

Fig. 9 Local stress-strain response in foams for different val-
ues of n , according to Eq. „17… for zero plastic Poisson’s ratio.
The pattern is similar for the variable Poisson’s ratio case in
Eq. „23… as the values of n are the same for the two cases.
MARCH 2003, Vol. 70 Õ 209
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n than foams that crush at constant plateau stresses. Thus
shape exponent is a measure of foam hardening during crus
beyond the initial plateau point.

Figure 10 gives the conventional stress-strain responses o
present foam cubes of cross-sectional area 50 mm by 50 mm
heightsho55 – 167 mm. The responses are clearly dependen
specimen size. The above conventional stress-strain curves
compared with the present local stress-strain curves in Fig.
Note that the average values of the parameters for the two sp
mens in Tables 1 and 2 were used for the local stress-strain cu
The stresses for each specimen were normalized by the in
plateau stresses.

It can be seen in Fig. 11 that if a cubic specimen is used~with
the same initial peak stress as the tapered specimen!; then the
foam would appear to absorb more energy than it is possi
Further, the foam material would appear to begin its densificat
phase at lower strains. Thus, the two methods already yield
ferent results before size effect is considered~e.g., so

Fig. 10 The effect of specimen size in conventional stress-
strain curves obtained by compressing the 257 kg Õm3 dense
Alporas foam cubes

Fig. 11 The local versus conventional stress-strain responses
in the 257 kg Õm3 dense Alporas foam
210 Õ Vol. 70, MARCH 2003
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'0.91– 0.93 MPa for tapered specimens whileso51.5– 3.0 MPa
for cubic specimens!. The local stress-strain responses for ze
and variable plastic Poisson’s ratios during crushing are also c
pared in Fig. 11. The energy absorption capacity for the foam
underestimated by neglecting the variation of the Poisson’s r
with strain.

Finally, it should be mentioned that the optimum taper an
range is dependent on foam density and cellular structure. Ind
the taper angle range 75–80 deg obtained in this study is o
valid for the 257 kg/m3 dense Alporas foam tested.

Conventional Versus New Locally Based Densification
Strain. Hanssen et al.@3# defined full densification strain for
cubic specimens as

Ed
av512

r f

rs
(30)

wherer f and rs are the densities of the foam and solid, respe
tively. The superscript ‘‘av ’’ is used to distinguish between con
ventional strain from cubic specimens and local strain from
pered specimens. This strainEd

av corresponds to a complet
closure of all cells so that the density of the foam becomes eq
to that of the solid. For zero plastic Poisson’s ratio during cru
ing, the above expression for the locking strain can be deri
from the conservation of rate of energy per unit mass~work con-
jugancy! ~Malvern @12#!

1

r f
savd«av5

1

rs
SavdEav. (31)

At full densificationr f5rs andEav5Ed
av . Noting that the plastic

Poisson’s ratio is initially zero, and observing thatsav5Sav and
using the strain conjugate relation in Eq.~21!, then Eq.~30! is
recovered. For the foam under consideration withr f /rs50.095,
then Ed

av'0.9. This strain compares closely with densificati
strains obtained from tapered specimens for zero plastic Poiss
ratio (Ed50.87,0.89 in Table 1!.

6 Conclusions
A new procedure to obtain the local compressive stress-st

response of foams has been presented. The method allows o
calculate local strains and stresses directly from the final shap
compressed foam trapezoid. Tests were conducted on speci
composed of ductile closed-cell aluminum foam. For the optim
taper angle range, a roughly flat crushing front evolved un
uniaxial compression, separating crushed from uncrushed c
while a new specimen shape was formed. The local stress-s
curve depends on several parameters: initial plateau stress, s
exponent, densification strain, and Poisson’s ratio parameters
obtained from a single test. These parameters were identica
the two specimens of different sizes and different taper angle
was demonstrated that the constitutive behavior obtained from
present method is very different from that obtained from foa
cubes. Further, the effect of the variable plastic Poisson’s r
with strain in the stress-strain curve was introduced. An assum
power-law variation illustrated that an incorrect constitutive
sponse is obtained if this effect is neglected. The actual varia
should be incorporated in the scheme. This can be done in
ways: by measuring lateral and normal strains during crush
with digital image correlation analysis; or by finding an analytic
procedure and/or developing the specimen such that both s
components can be calculated directly from the final sha
Among future improvements, this scheme should be quanti
and fully optimized with respect to specimen size and taper an
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Comparison of Double-Shearing
and Coaxial Models for
Pressure-Dependent Plastic Flow
at Frictional Boundaries
The qualitative difference in solution behavior in the vicinity of maximum friction surfa
is demonstrated for two distinct models of pressure-dependent plasticity (the do
shearing and coaxial models) using closed-form solutions for planar flow through
infinite wedge-shaped channel and plane-strain compression of an infinite block be
parallel plates. Singular velocity fields (some components of the strain rate tenso
proach infinity at the friction surface) occur in the solutions based on the double-shea
model. This is similar to behavior in the vicinity of maximum friction surfaces in class
plasticity of pressure-independent materials. A singular velocity field is also obtaine
the solution based on the coaxial model for the problem of channel flow; but, in con
to the double-shearing model and classical plasticity, sticking must occur at this fric
surface. For the problem of compression of a material obeying the coaxial mode
solution based on conventional assumptions exists with the maximum friction law. T
quite different from both the corresponding solution based on the double-shearing m
and the channel flow solution based on the coaxial model.@DOI: 10.1115/1.1532319#
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1 Introduction
Models of pressure-dependent plasticity incorporating the

compressibility equation are applicable to soil, granular materi
and conventional metals. A brief review of such models has b
given in Ostrowska-Maciejewska and Harris@1# where also a new
model has been proposed. General properties of equations fo
ferent models have been investigated by Spencer@2,3#,
Ostrowska-Maciejewska and Harris@1#, Hill and Wu @4,5#, Harris
@6#, and Lubarda@7# among others. Most of these studies ha
dealt with the deformation of granular material or soil. Howev
pressure dependence of the yield criterion is also a featur
conventional metals~Yoshida et al.@8#, Spitzig et al.@9#, Spitzig
@10#, and Kao et al.@11#!. For such materials, the angle of intern
friction ~in the terminology of soil mechanics! is very small and
one would expect that its influence on solutions of classical p
ticity is negligible. Nevertheless, this is not true in some cas
This paper concerns two models, the coaxial model and
double-shearing model~in Ostrowska-Maciejewska and Harris@1#
these models are also referred to as Hill’s model and Spenc
model, respectively! under plane-strain conditions and emphasiz
the interaction between the constitutive laws and a modi
Tresca frictional law. Note that the original Tresca frictional law
very popular in the modeling of metal forming processes~see, for
example, Schey@12#!. Using analytical solutions for flow through
an infinite wedge-shaped channel and compression between
parallel plates, it is shown that the solutions may be qualitativ
different for these two models and may not reduce to the co
sponding solution of classical plasticity at the vanishing inter
friction angle in the case of maximum friction. The reason for t
is that the velocity fields in rigid/perfectly plastic materials a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Nove
ber 30, 1999; final revision, August 19, 2002. Associate Editor: B. M. Moran. D
cussion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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singular at the maximum friction surface. For smooth yield cri
ria, this result in most general form has been presented in A
androv and Richmond@13#. Also, such behavior of the velocity
field has been found in the cases of Tresca’s nonsmooth y
criterion ~Alexandrov and Richmond@14#! and thermoplasticity
~Alexandrov and Richmond@15#!.

The double-shearing model has been discussed in deta
Spencer@2# and the solutions to the aforementioned problems
that model have been found by Pemberton@16# and Marshall@17#.
A brief description of the equations of the coaxial model and
solutions based on this model are given in the present paper. A
some features of the maximum frictional law~Tresca’s frictional
law with the friction factorm51) are discussed for various con
stitutive models.

2 Coaxial Model and Frictional Boundary Condition

Constitutive Equations. A plane-strain yield criterion for
pressure-dependent materials may be written in the form

A4sab
2 1~saa2sbb!252~k cosf2s sinf! (1)

where ab is an arbitrary plane orthogonal coordinate syste
saa , sbb , and sab are the components of the stress tensor
these coordinates;s5(saa1sbb)/2 is the mean stress;k is the
cohesion; andf is the angle of internal friction.~The terminology
for k andf is from the theory of granular materials.! For conven-
tional metalsf is a very small parameter.

It is supposed that the principal axes of the stress and the s
rate tensors coincide. This gives

saa2sbb

2sab
5

jaa2jbb

2jab
(2)

wherejaa , jbb , and jab are the components of the strain ra
tensor. The material is assumed to be incompressible, there
these components should obey the following equation:

jaa1jbb50. (3)
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Since the yield criterion~1! depends on the hydrostatic stress, it
clear that the associated normality flow rule is not satisfied for
material model. To obtain a closed-form system, one needs to
two equilibrium equations to~1!–~3!.

The yield criterion ~1! is automatically satisfied by the
substitution

saa5s1~k cosf2s sinf!cos 2c

sbb5s2~k cosf2s sinf!cos 2c (4)

sab5~k cosf2s sinf!sin 2c.

Then,~2! may be transformed to

tan 2c5
2jab

jaa2jbb
. (5)

Frictional Law. One of the most popular frictional laws i
the theory of metal forming is Tresca’s which states that the f
tion stress is equal to a portion of the shear yield stress~see, for
example, Schey@12# p. 16!. A particular case of this law is called
the maximum friction law if the friction stress is equal to the she
yield stress. This law is of special interest because its applica
may lead to such features of solutions as nonuniqueness, no
istence, and singularities. In particular, in the case of rig
perfectly plastic materials velocity fields are singular at the fr
tion surface~Alexandrov and Richmond@13#!. Such a singular
behavior may cause computational difficulty and explain cert
physical phenomena in subsurface layers. For other press
independent constitutive models, studies of solution behavio
the vicinity of maximum friction surfaces have been carried o
by Alexandrov and Richmond@13,18#, Alexandrov et al.@19#, and
Alexandrov and Alexandrova@20,21#. These studies show tha
the behavior of the solution is very sensitive to the constitut
model chosen. Computational difficulties with the application
the maximum frictional law have been reported by Rebelo a
Kobayashi@22# and Appleby et al.@23#.

A modification of the maximum friction law for pressure d
pendent materials has been proposed by Alexandrov and D
anov@24#. This law states that a plane of maximum shear stres
the plastically deforming material is tangent to the friction s
face. In the formulation of particular problems for the doub
shearing model, another modification of the maximum fricti
law has been applied by Pemberton@16# and Marshall@17#. This
law states that the friction surface coincides with an envelop
characteristics. In this case the plane of maximum shear stre
not tangent to the friction surface, but the frictional stress obtai
by Pemberton@16# and Marshall@17# is the maximum possible
among all solutions to the considered problems. This is an ef
of the pressure dependence of the material. The reason fo
latter formulation is that an envelop of characteristics is a nat
boundary of the analytical solution. For pressure-independent
terials both formulations of friction coincide with each other a
with the classical formulation. However, for pressure-depend
materials several questions arise:~1! How can one formulate the
second law of friction for nonhyperbolic equations? In genera
may be possible since isolated characteristics and envelopes
exist even in the case of nonhyperbolic equations in bulk. T
conditions for the existence of characteristic surfaces for
three-dimensional equations of classical plasticity based on M
yield criterion have been derived by Craggs@25#. ~2! How can one
formulate the frictional law for models whose equations do
have the property, as in the double shearing model, that the c
acteristic fields for stress and velocity coincide? The present p
does not address these and other questions of the formulatio
the maximum friction law for pressure dependent materials,
shows that both formulations coincide for the considered pr
lems. Therefore, the difference in solutions is solely a con
quence of distinctive features of the constitutive laws.
Journal of Applied Mechanics
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Assume a generalization of Tresca’s frictional law for the m
terial defined by~1! and ~2! in the form

t5m~k cosf2s sinf! (6)

at the friction surface at sliding. Heret is the frictional stress and
m is the friction factor (0<m<1). At m51 the maximum fric-
tion law for the material under consideration is obtained. Atf
50 the frictional law ~6! reduces to the corresponding law
classical plasticity. If ana ~or b! line coincides with a friction
surface then combining (4)3 and ~6! gives

usin 2cu5m. (7)

At m51 this equation corresponds to the formulation proposed
Alexandrov and Druyanov@24#. Coincidence of~7! at m51 with
the formulation proposed by Pemberton@16# and Marshall@17# is
demonstrated for each problem separately.

3 Flow Through a Wedge-Shaped Channel
A solution to this problem for a pressure-independent rig

perfectly plastic material has been found by Nadai and Hill~see
Hill @26#! and modified by Durban and Budiansky@27# for a rigid/
plastic linear-hardening material and by Alexandrov et al.@19# for
a rigid/perfectly plastic three-layer material. Using the doub
shearing model, Pemberton@16# has solved the problem for a
pressure-dependent material. As follows from the general the
~Alexandrov and Richmond@13#! singular velocity fields have
been obtained in the solutions of classical plasticity. A singu
velocity field also occurs in the solution for the pressu
dependent material. Since this has not been mentioned in Pem
ton @16#, this aspect of the solution is discussed in an Append
The solution for the rigid/plastic hardening material obtained
an arbitrary value ofm is not valid form51. The reason for this
is that there would have to be sticking with this frictional la
~Alexandrov and Alexandrova,@21#!, which is not possible due to
the a priori assumptions. A solution for the coaxial model is giv
and discussed in this section.

It is convenient to introduce a polar coordinate systemru, in-
stead ofab, with its origin at the channel apex 0~Fig. 1!. Since
the flow is converging,sab.0 at the channel wall and, therefore
c.0 and~7! should be written in the form

sin 2c5m (8)

at u5u0 whereu0 is half of the total angle of the channel. More
over, due to symmetry,

c50 (9)

at u50.

Fig. 1 Flow in wedge-shaped channel and coordinate systems
MARCH 2003, Vol. 70 Õ 213
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Fig. 2 Variation of the parameter c 1 with the angle u0 at fÄ0.01
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The circumferential velocity is zero at the wall (u5u0) and at
the axis of symmetry (u50). Therefore, it is reasonable to a
sume that this velocity is zero everywhere, as in the case of
aforementioned solutions~Hill @26#, Pemberton@16#, Durban and
Budiansky@27#, and Alexandrov et al.@19#!. Then, the radial ve-
locity v is determined from the incompressibility Eq.~3! as

v5u~u!/r (10)

whereu(u) is an arbitrary function ofu. Using this solution, Eq.
~5! may be transformed to

tan 2c52
1

2u

du

du
. (11)

Substituting~4! into the equilibrium equations gives

r ~12sinf cos 2c!
]s

]r
2sin 2c sinf

]s

]u

12 cos 2c~k cosf2s sinf!S dc

du
11D50

2r sinf sin 2c
]s

]r
1~11cos 2c sinf!

]s

]u

12 sin 2c~k cosf2s sinf!S dc

du
11D50 (12)

where we have taken into account thatc is independent ofr as
follows from ~11!. It is convenient to introduce a new variable b
the equation

q5 ln~k cosf2s sinf!. (13)

It is important to mention that this variable can be introduced
any small value off, but not for f50 ~in this caseq5const)
which corresponds to the pressure-independent yield condi
Substituting~13! into ~12! gives

2r
~12sinf cos 2c!

sinf

]q

]r
1sin 2c

]q

]u
12 cos 2cS 11

dc

du D50

r sin 2c
]q

]r
2

~11sinf cos 2c!

sinf

]q

]u
12 sin 2cS 11

dc

du D50.

(14)

These equations are compatible if

q5c ln r 1p~u! (15)

wherec is constant andp is a function ofu. Combining~14! and
~15!, after some algebra we arrive at the following equations:
H 2003
-
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du

dc
5

2~cos 2c1sinf!

c122~cos 2c1sinf!
(16)

dp

dc
5

2c1 cos2 f sinf sin 2c

c122~cos 2c1sinf!
(17)

where c15c cos2 f/sinf. Using the boundary condition~9! the
solution to~16! may be written as

u52E
0

c ~cos 2z1sinf!

@c122~cos 2z1sinf!#
dz (18)

wherez is an auxiliary variable. Integration in~18! can be per-
formed analytically, but it is actually easier to deal with the for
of solution given in~18!. The value ofc1 is determined from~8!
and ~18! in implicit form:

u052E
0

~1/2!arcsinm ~cos 2c1sinf!

@c122~cos 2c1sinf!#
dc. (19)

At m51, corresponding to the maximum friction law, the vari
tion of c1 with u0 is presented in Fig. 2 forf50.01. This value of
f is typical for metals, for example for a low carbon steel inve
tigated by Kao et al.@11#. Equation~17! may be integrated to give

p5~1/2!c1 cos2 f sinf lnu2 sinf2c112 cos 2cu1 ln p0
(20)

wherep0 is a constant but cannot be found for an infinite chann
Combining~13!, ~15!, and~20! we obtain

s sinf5k cosf2p0r cuc122 sinf2cos 2cub (21)

whereb5c cos4 f/2. For the pressure-independent yield conditi
(f50), the mean stress is proportional to lnr rather than to a
power ofr ~Hill @26#!. Such a dependence is obtainable from~21!
as the limit asf→0 if p05k. A difference between the solution
for the pressure-dependent and pressure-independent yield c
tions is that atr 50 the mean stress is bounded in the former c
and is infinite in the latter case. All components of the stre
tensor may be found from~4! and ~21!. Of special interest is the
componentsuu which is given by

suu5
k cosf

sinf
2p0r cuc122 sinf22 cos 2cub~1/sinf1cos 2c!.

(22)

One can see thatsuu.0 at r 50 and, therefore, in a vicinity of
this point. This means that the solution is not valid in this vicin
since any frictional law requires a negative normal stress on
Transactions of the ASME
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friction surface. For a pressure-independent material such in
sistency has been mentioned by Alexandrov and Goldstein@28#.

Using ~16! the functionu(u) involved in ~10! is determined
from ~11! as

u

u0
52~cos 2c! tF c122~11sinf!

c122~cos 2c1sinf!G
n

(23)

where

t5
2 sinf

c122 sinf
and n5

c1

c122 sinf
(24)

andu0.0 is constant which may be found if a flux,Q, is given.
Then,

Q52u0E
0

~1/2!arctanm ~cos 2c1sinf!~cos 2c! t

@c122~cos 2c1sinf!#

3F c122~11sinf!

c122~cos 2c1sinf!G
n

dc. (25)

To demonstrate that the solution obtained satisfies the fric
law used by Pemberton@16#, we mention that the stress chara
teristics are defined by the following equations~Pemberton@16#!:

r
du

dr
5tanS c7

p

4
7

f

2 D (26)

whereas the velocity characteristics are defined by

r
du

dr
5tanS c7

p

4 D . (27)

Sincec is independent ofr, the envelopes of these characteris
curves are given by

u5const (28)

at c5cs5p/41f/2 and c5cv5p/4, respectively. We have
taken into account thatc>0. But ~7! at m51 shows thatc
5p/4 at the wall and, therefore,~28! should be replaced byu
5u0 and this line is an envelope of the velocity characteristi
On the other hand, an envelop of the stress characteristics~26! is
not reachable becausec is a monotonically increasing function o
u, c50 at u50 andcv,cs . Thus, for the problem under con
sideration the only possible interpretation of the friction law us
by Pemberton@16# is to assume that the friction surface coincid
with the envelope of velocity characteristics. As we have j
seen, this leads to condition~7! at m51.

We have mentioned that in the case of pressure-indepen
perfectly plastic material the velocity fields are singular at
maximum friction surface. To check the possibility of such a b
havior in the present solution, we note that it follows from~10!
that a singularity in the velocity field may be involved in th
functionu(u) only. Equations~24! and Fig. 2 show thatt.0 and
n.0. Therefore,u50 and v50 at c5p/4 ~maximum friction
surface! as follows from~10! and ~23!. Thus, there is sticking a
this surface. Nevertheless, substituting~23! into ~11! shows that
the velocity field is singular~nondifferentiable! since

du

du
;2u0~cos 2c!~ t21!F c122~11sinf!

c122~cos 2c1sinf!G
n

sin 2c

as c→ p

4
, (29)

and then

lim
c→p/4

~du/du!→`. (30)

We have here taken into account thatt21,0 as follows from Eq.
(24)1 and Fig. 2.
Journal of Applied Mechanics
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Thus, in the vicinity of the maximum friction surface the sol
tion obtained is qualitatively different~singular velocity field and
sticking! from solutions based on other constitutive laws. In t
case of the pressure-independent perfectly plastic material the
locity field is also singular, but sliding occurs. Moreover, the ra
at whichdu/du tends to infinity in~30! is different from the rate
for the pressure-independent material. In the latter case the ra
independent of the shape of the yield surface on the deviat
plane and isdu/du5O(1/Au02u) for the problem under consid
eration, see Alexandrov and Richmond@13#. At m51, it follows
from ~16! that in the vicinity ofu5u0 we have

c5p/42
~c122 sinf!

2 sinf
~u02u!1o~u02u!2. (31)

Therefore, cos 2c is expressible as

cos~2c!5
~c122 sinf!

sinf
~u02u! (32)

to leading order. Substituting~32! into ~29! gives

du/du5O~u02u! t21. (33)

In the case of the pressure-independent hardening plastic m
rial, sticking occurs but the velocity field is not singular. Actuall
no solution has been found for radial flow through an infin
channel. It is easy to check by direct substitution that the solu
proposed by Durban and Budiansky@27# fails for the maximum
friction law. However, for many hardening laws it is possible
show that there is no sliding and that velocity fields are not s
gular at the maximum friction surface~see Alexandrov and Alex-
androva,@21# for axisymmetric flow!.

In the case of the double-shearing model the radial velocit
describable by nondifferential functions~see Appendix!, but the
rate at which its derivative with respect tou tends to infinity is
different from ~33!. In addition, this solution requires sliding a
the friction surface. In general, the qualitative behavior of t
solution is very similar to that of classical plasticity.

4 Compression of a Block Between Two Parallel Plates
A solution to this problem for a pressure-independent rig

perfectly plastic material was found by Prandtl and Nadai~see
Hill @26#! and modified by many authors to include various e
fects. For example, Collins and Mequid@29# have proposed solu
tions for hardening and anisotropic materials, Adams et al.@30#
for a viscoplastic material, and Nepershin@31#, for a thermovis-
coplastic material. For the double-shearing model the problem
been solved by Marshall@17#. The singular behavior of the veloc
ity field in this solution is discussed in the Appendix. A solutio
for the coaxial model is given in the present section. As in the c
of flow through the wedge-shaped channel, the behavior of
solution in the vicinity of the maximum friction surface depen
on the constitutive law.

Introduce a Cartesian coordinate systemxy, instead ofab, with
its origin at the intersection of the axes of symmetry of the blo
~Fig. 3!. Only a quarter of the block,2L<x<0 and 0<y<H,

Fig. 3 Compression of block between parallel plates and co-
ordinate system
MARCH 2003, Vol. 70 Õ 215
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needs to be considered due to symmetry. Moreover, as in o
solutions to this problem, regions in the vicinity ofx50 andx
52L are not covered by the solution and, therefore, the bound
conditions at those positions are not satisfied. Nevertheless,
assumed that the material flows in the negative direction of
x-axis. Therefore,sab.0 andc.0 at the friction surface and~8!
holds aty5H.

Assume the velocity field has the form

uy52u0y/H and ux5w01u0x/H1u0f ~y! (34)

whereu0.0 is the velocity of the plates,w0 is constant, andf (y)
is an arbitrary function ofy. The velocity field~34! satisfies the
incompressibility Eq.~3! and the boundary conditions for velocit
at y50 andy5H. Using this velocity field, Eq.~5! may be trans-
formed to

tan 2c5
H

2

d f

dy
. (35)

It follows from this equation thatc is independent ofx. Then,
substituting~4! into the equilibrium equations gives

~12sinf cos 2c!
]s

]x
2sinf sin 2c

]s

]y

12 cos 2c~k cosf2s sinf!
dc

dy
50

(36)

~11sinf cos 2c!
]s

]y
12 sin 2c~k cosf2s sinf!

dc

dy

2sinf sin 2c
]s

]x
50.

Assuming that

q5cx1p~y! (37)

whereq is defined by~13!, c is constant andp(y) is a function of
y, Eqs.~36! reduce to

dc

dy
5

c1

2~sinf1cos 2c!
(38)

dp

dy
5

c sin 2c

sinf1cos 2c
(39)

where, as before,c15c cos2 f/sinf. Equation~38! may be inte-
grated with the boundary conditionc50 at y50 ~zero shear
stress at the axis of symmetryy50) to give

yc152c sinf1sin 2c. (40)

The value ofc1 is determined from~8! and ~40! as

c15
arcsinm sinf1m

H
. (41)

Also, combining~38! and ~39! and integrating we find

p52
sinf

cos2 f
cos 2c1p0 (42)

wherep0 is constant. Substituting~40! into ~35! with the use of
~41! and integrating gives

f 52
2@sinf ln~cos 2c!1cos 2c#

~arcsinm sinf1m!
. (43)

Since the exact boundary condition for the velocity atx50 cannot
be fulfilled, the constantw0 in ~34! may be found from Eq.~3!
integrated over the entire area of the block assuming the e
boundary conditions everywhere. This gives
216 Õ Vol. 70, MARCH 2003
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w052
2u0L

H
2

u0

H E
0

H

f ~y!dy.

Substituting~43! into this equation and using~38! and ~41! we
arrive at

w0

u0
5

4

~arcsinm sinf1m!2 E
0

~1/2!arcsinm

@sinf ln~cos 2c!

1cos 2c#~sinf1cos 2c!dc. (44)

In particular, form51 integration in~44! can be performed ana
lytically to give

w0

u0
5

2~p14 sinf!

~p sinf12!2 . (45)

The components of the stress tensor may be obtained from~4!,
with the use of~13!, ~37!, ~41!, and~42!, in the form

sxx5k
cosf

sinf
1S cos 2c2

1

sinf D
3expH sinf

cos2 f F ~arcsinm sinf1m!
x

H
2cos 2cG1p0J

syy5k
cosf

sinf
2S cos 2c1

1

sinf D
3expH sinf

cos2 f F ~arcsinm sinf1m!
x

H
2cos 2cG1p0J

(46)

sxy5expH sinf

cos2 f F ~arcsinm sinf1m!
x

H
2cos 2cG1p0J sin 2c.

The parameterp0 may be found from the integral conditio
*0

Hsxxdy50 at x52L which replaces the exact conditionsxx

50 at x52L. Using (46)1 and ~38! we have

k/ep05

2 expF2
sinf

cos2 f

L

H
~arcsinm sinf1m!G

~arcsinm sinf1m!

3E
0

~1/2!arcsinm

~12sinf cos 2c!~sinf1cos 2c!

3expS 2
sinf cos 2c

cos2 f Ddc. (47)

The solution for the pressure-independent material is obtain
from ~46! as the limit asf→0 if

p05 ln k and dp0 /df5arcsinm/m1A12m21mL/H
(48)

at f50. It is easy to check by direct substitution that~47! results
in ~48!. Thus, the solution for stress~46! approaches the solution
for the pressure-independent material~Hill @26#! asf→0.

The situation with the solution for velocities is quite differen
Of special interest is the distribution of the velocityux at m51
which may be found from~34!, ~41!, ~43!, and~45! as

ux

u0
5

x

H
1

2~p14 sinf!

~p sinf12!22
4@sinf ln~cos 2c!1cos 2c#

~p sinf12!
.

(49)

It follows from ~49! that the velocity field found by Nadai~see
Hill @26#! is obtainable atf50. However, at any small value o
fÞ0 the solution does not have a physical meaning sinceux
approaches infinity at the friction surface (c5p/4). Moreover,ux
is positive there which contradicts the solution for stress. It
Transactions of the ASME
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Fig. 4 Variation of the parameter s , which is involved in the condition of zero
tangent velocity at the interface, with the friction factor m
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clear that this contradiction should also appear form,1. It fol-
lows from ~34!, ~41!, and~43! thatux is positive at the interface if

s5
w0

u0
2

sinf ln~12m2!12A12m2

arcsinm sinf1m
.

x

H
(50)

for anyx in the interval of interest. The value ofw0 /u0 in ~50! is
defined by~44!. Variation of the parameters with the friction
factorm at f50.01 is shown in Fig. 4. Because the solution und
consideration may be in general acceptable for sufficiently la
values ofx/H, one can see from this figure that the contradicti
occurs for values ofm which are very close to 1. For example, fo
x/H51.5, which is quite a small magnitude,ux.0 at m.0.999.
For larger values ofx/H the value ofm at which inequality~50! is
satisfied is even closer to 1.

To demonstrate that the frictional law~7! at m51 coincides
with the law used by Marshall@17#, we mention that the stres
characteristics are defined by the following equations~Marshall
@17#!:

dy

dx
5tanS c7

p

4
7

f

2 D (51)

whereas the velocity characteristics are defined by

dy

dx
5tanS c7

p

4 D . (52)

Sincec is independent ofx, the envelopes of these characteris
curves are given by

y5const (53)

at c5cs5p/41f/2 and c5cv5p/4, respectively. We here
taken into account thatc>0. But ~7! at m51 shows thatc
5p/4 at the wall and, therefore,~53! should be replaced byy
5H and this line is an envelope of the velocity characteristics.
the other hand, an envelop of the stress characteristics~51! is not
reachable becausec is a monotonically increasing function ofy,
c50 at y50 andcv,cs . Thus, for the problem under consid
eration the only possible interpretation of the friction law used
Marshall@17# is to assume that the friction surface coincides w
the envelope of velocity characteristics. As we have just seen,
leads to condition~7! at m51.

The nonexistence of the found solution atm51 andfÞ0 is
probably a consequence of the fact that the velocity field~34!
assumes no sticking. For the same reason the solutions give
Collins and Mequid@29#, Adams et al.@30#, and Nepershin@31#
fail at m51. On the other hand, the solutions found by Nadai~see
Hill @26#! and Marshall@17#! exist, but involve nondifferentiable
functions. It is interesting that the solutions for both of the co
hanics
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sidered problems based on the same constitutive law show
same main features, but the solutions based on the coaxial m
are quite different.

Conclusions
Two classical problems of plane-strain plasticity theory, flo

through an infinite wedge-shaped channel and compression
tween parallel rough plates, have been solved analytically
pressure-dependent materials obeying the coaxial model. A c
parison between these solutions and those found earlier for m
rials obeying the double-shearing model and pressure-indepen
materials has been made with the main emphasis on the solu
behavior in the vicinity of the maximum friction surface. It ha
been demonstrated that the qualitative behavior of the solut
depends on the constitutive law chosen. In the case of fl
through an infinite channel, the solutions are singular~some com-
ponents of the strain rate tensor approach infinity!, but sticking
occurs for the coaxial model whereas the other models req
sliding. Moreover, the rate at which the components of the str
rate tensor approach infinity depends on the specific constitu
law, but the same for the pressure-independent material and
double-shearing model. In the case of compression between
allel rough plates, no solution exists for the coaxial model at
maximum friction condition whereas the solutions for the oth
models exist, but are singular~some components of the strain ra
tensor approach infinity! and the rate at which the components
the strain rate tensor approach infinity is the same.

Since the solutions for both of the considered problems ba
on the equations of classical plasticity and the double-shea
model show that same main features, it is expected that the us
the latter model with the maximum friction law should not lead
any difficulty other than the singularity of velocity field. On th
other hand, a possibility of the use of the coaxial model with
maximum friction law may depend on specific problems.

It is believed that for successful applications, including nume
cal simulation, of both models it is necessary to perform a gen
study on the solution behavior in the vicinity of maximum frictio
surfaces and to clarify the formulation of this frictional law fo
pressure-dependent materials, as mentioned in Section 2.
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Appendix
The solutions found by Pemberton@16# and Marshall@17# in-

volve singular velocity fields with very large gradients in the v
cinity of the maximum friction surface~some components of th
strain rate tensor are infinite at the surface!. This aspect of the
solutions has not been mentioned by the authors, but has co
erable theoretical and practical interest because such velo
fields may lead to computational difficulty and, on the other ha
are consistent with experimental data that show very large gr
ents of velocity near the friction surfaces.

Pemberton’s Solution. The radial velocity is given by

v52
B

r ~l2cos 2c!
(A1)

wherel.1 andB.0 are constant andc is defined by

du

dc
5

cos 2c1sinf

l2cos 2c
. (A2)

The value ofc at the maximum friction surface,cw , is

cw5
p

4
1

f

2
. (A3)

It follows from this equation that

cos 2cw52sinf. (A4)

Using ~A1! and ~A2! the derivative]v/]u may be found in the
form

]v
]u

52
2B sin 2c

r ~l2cos 2c!~cos 2c1sinf!
. (A5)

The singularity of the velocity field now follows by inspectio
from ~A4! and ~A5!.

To find the asymptotic behavior of the radial velocity in th
vicinity of the maximum friction surface we expand the right
~A2! in the vicinity of c5cw as

du

dc
52

2 cosf

~l1sinf!
~c2cw!1O@~c2cw!2#. (A6)

Using the boundary conditionu5u0 at c5cw Eq. ~A6! may be
integrated to give

c2cw52A~l1sinf!

cosf
~u02u! (A7)

to leading order. Substituting~A7! into ~A5! gives

]v/]u5O~1/Au02u! as u→u0 (A8)

Marshall’s Solution. The component of the velocity vecto
tangent to the friction surface is given by

ux

U
5

x

H
2

2

~cosf12cw sinf!
cos 2c1B (A9)

whereU andB are constant andc is defined by

y

H
5

sin 2c12c sinf

cosf12cw sinf
. (A10)

The value ofc at the maximum friction surface,cw , is given by
~A3!. The derivative]ux /]y may be found from~A9! and~A10! in
the form

]ux

]y
5

U

H

sin 2c

~cos 2c1sinf!
. (A11)
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The singularity of the velocity field now follows by inspectio
from ~A4! and ~A11!. Using expansion of the right-hand side o
Eqs. ~A10! and ~A11! in the vicinity of c5cw it is possible to
show that

]ux /]y5O~1/AH2y! as y→H. (A12)

Equations~A8! and~A12! show that in the considered problem
the velocity tangent to the surface with maximum friction follow
a square root law near such a surface. The same asymp
behavior of the velocity has been found in classical plastic
~Alexandrov and Richmond@13#!.
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Université Denis Diderot (Paris 7),

2, place Jussieu,
75251 Paris, Cedex 05, France

Stabilization of Frictional Sliding
by Normal Load Modulation
This paper presents the stability analysis of a system sliding at low velocities (,100
mm•s21) under a periodically modulated normal load, preserving interfacial conta
Experiments clearly evidence that normal vibrations generally stabilize the system ag
stick-slip oscillations, at least for a modulation frequency much larger than the stick
one. The mechanical model of L. Bureau, T. Baumberger, and C. Caroli validated o
steady-state response of the system, is used to map its stability diagram. The mode
explicitly into account the finite shear stiffness of the load-bearing asperities, in add
to a classical state and rate-dependent friction force. The numerical results are in e
lent quantitative agreement with the experimental data obtained from a multicon
frictional system between glassy polymer materials. Simulations at larger amplitud
modulation (typically 20 percent of the mean normal load) suggest that the nonli
coupling between normal and sliding motion could have a destabilizing effect in restr
regions of the parameter space.@DOI: 10.1115/1.1546241#
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1 Introduction
It is well known that nonlinearities in the constitutive laws

dry friction may lead to the instability of steady frictional slidin
against stick-slip oscillations, even for a single degree-of-freed
system driven at nominal constant velocity through a compli
stage. Sliding instability is an important issue in mechanical
gineering since it is an ultimate limitation to the positioning a
curacy for precision structures and machine tools. When desig
a sliding mechanism, it is therefore of primary importance to ch
acterize accurately the variations of the friction coefficient wi
e.g., sliding velocity, keeping in mind that even slight variatio
may have a destabilizing effect. This requires to go beyo
Amontons-Coulomb’s law which assumes a constant friction
efficient. It might be legitimately feared that a more detailed co
stitutive law would have a restricted scope, e.g., in terms of m
terials and range of sliding velocities. It is thus remarkable tha
the limit of low velocities~typically lower that 100mm•s21!, and
light enough loads so that the interface is made of a sparse s
microcontacts between load-bearing asperities, a relativ
material-independent frictional behavior is found which can
accounted for by a simple set of nonlinear constitutive equatio
Such studies have been initiated in the field of rock mechanic
Dieterich @1# and Rice and Ruina@2#, motivated by the need fo
low velocity friction models to investigate fault dynamics an
earthquake nucleation. They have put on a firm phenomenolog
basis the idea, already suggested by the work of Rabinowicz@3#,
that friction does not depend only on the instantaneous slid
velocity v but also on the whole sliding history. An experiment
signature is the hysteretic frictional response of the interface w
the slider is driven at a nonsteady rate. Rice and Ruina@2# pro-
posed a family of dynamical equations coupling the sliding vel
ity to a set of state variables. Subsequent experimental inves
tions have shown that a single state variablef is sufficient for
most purposes. These experimental studies were performed

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Aug. 2
2001; final revision, Apr. 24, 2002. Associate Editor: K. T. Ramesh. Discussion
the paper should be addressed to the Editor, Prof. Robert M. McMeeking, De
ment of Mechanical and Environmental Engineering University of Californi
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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wide range of materials, such as granite,@1#, paper,@4#, polymer
glasses,@5#, and elastomers,@6#. The friction force in this model is
F5Wm(v,f) with W the normal load andm the friction coeffi-
cient. Moreover, it has been possible,@7,8#, to give a physical
interpretation off as the average ‘‘age’’ of the microcontac
which grow while the material creeps under normal load, un
sliding interrupts the process by renewing the load-bearing con
population. The dynamical model is closed by specifying a diff
ential equation couplingv to f so as to account for the renewal o
the microcontact population after a slip lengthD0 of micrometric
order. This length is of order the mean radius of the microconta
between surfaces of micrometric roughness,@9#. The resulting
state-dependent and rate-dependent friction laws will be here
referred to as SRF. Among several SRF expressions prop
originally, the one that we use in this paper are

m~v,f!5m01A lnS v
V0

D1B lnS 11
Vsatf

D0
D (1)

for the friction coefficient and

df

dt
512

vf

D0
(2)

for the evolution of the state variable, wherem0 , A, B, Vsat, and
V0 are constants.

This SRF model has been extensively validated by tes
against numerous experimental situations involving transient
namical responses of the system. The most stringent test r
upon the nonlinear characteristics of the bifurcation from stea
sliding to stick-slip oscillations,@10#. The model can be under
stood as resulting from two distinct physical mechanisms, the
fect of which can be summarized in the following decompositi
of the friction force, proposed by Bowden and Tabor@11#, in terms
of the real area of contactS r , and an interfacial shear strengt
ss :

F~v,f!5ss~v !S r~f!. (3)

Here, the real area of contact depends on the interfacial
because it grows due to the creep of the load-bearing asper
@7#. The velocity-dependent interfacial shear strength has b
ascribed to the adhesive`, nanometer thick junctions between m

4,
on
art-
–
four
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croasperities. A simple microscopic model has been proposed
the elastoviscoplastic rheology of the junctions, compatible w
the existence of a finite friction threshold,@5#.

Recently, attention has been paid to the effect of a tim
dependent normal load on the response of a single degre
freedom sliding system. This situation is of practical interest wh
the mechanical design allows cross-talking between the nor
~loading! and the tangential~driving! forces,@12#, or when exter-
nal vibrations contribute to the loading of the interface, as it m
be the case for seismic faults,@13–15#, or bolts and threaded
fastners,@16#. The response of the system is not intuitive. Fir
since the friction force is directly proportional to the normal loa
the sliding velocity is dynamically coupled to the normal lo
modulation, hence feeds back the friction force,@17#. Moreover, it
has been shown that more subtle interplays must be taken
account. Linker and Dieterich@13# have interpreted the transien
response to a step in normal load by coupling directly the ti
variations off andW, thus adding a term2constfd ln(W)/dt in
Eq. ~2!. The physical motivation for this extension of the SR
aging equation is the fact that, according to@9#, a change in nor-
mal force creates fresh load-bearing contact area. This certa
influences directly the agef, though probably in a weaker mea
sure than proposed by Linker and Dieterich@13#, as briefly dis-
cussed in@18#. More recently, Bureau et al.@18# have studied the
response of a sliding system to a periodically modulated nor
loadW(t)5W0@11e cos(vt)# with e,1. They found that the fric-
tion force, averaged on a modulation period, is significantly lo
ered with respect to the situation under constant loadW0 . The
oscillating part of the force, primarily harmonic atv in the limit
of vanishing e, becomes quickly anharmonic ase is increased
while still remaining much smaller than 1. They have shown t
the SRF equations can fit accurately all their results provided
the model is modified to account for the finite interfacial she
stiffness k resulting from the elastic deformation of the loa
bearing asperities. This means that the sliding velocity diff
from the velocity of the center of mass of the slider, a statem
which is clearly illustrated in the static state, i.e., for tangen
forces well below the static threshold, where the interface
sponds elastically without sliding,@19,20#. Under constant norma
load and constant driving velocityV, this ‘‘hidden’’ interfacial
degree-of-freedom manifests itself only for nonsteady motion,
plays no significant role at the circular frequencyVc;V/D0 of
the oscillations at the onset of the stick-slip instability.

However, under a modulated load atv@Vc , one must take the
finite interfacial compliancek into account, all the more so sinc
the latter is known to be itself proportional toW, @20#. This results
in a nontrivial and efficient coupling between the normal load a
the sliding velocity.

Of particular interest is the effect of load modulation on t
sliding stability of the system. Dupont and Bapna@12# have com-
puted the critical stiffness of the drive below which stick-s
occurs for a slider-spring system loaded at a constant angle
respect to the sliding plane. This configuration would provide
direct test for the coupling betweenf andW proposed by Linker
and Dieterich@13#, but the experimental study has not been p
formed so far.

The present paper addresses the problem of the stability
slider-spring system under an externally and harmonically mo
lated normal load. The experimental arrangement is describe
Section 2 and it is shown that for a circular frequencyv@Vc the
modulation generally stabilizes the system against stick-slip.

Though the role of vibrations is seemingly part of the empiri
culture in mechanical engineering,@16#, it is, to our knowledge,
the first time that the stabilization effect is investigated expe
mentally. This spectacular effect is accounted for by the S
model with modulated interfacial stiffness, as shown by the
merical study of the bifurcation which is detailed in Section 3
Journal of Applied Mechanics
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2 Experiments

2.1 Apparatus. The apparatus~Fig. 1! consists of a slider
of massM driven along a track through a loading spring of stif
nessK50.21 N•mm21. The loading end of the spring is moved
constant velocityV in the range 1–100mm•s21 by means of a
translation stage driven by a stepping motor. The spring elon
tion is measured by an inductive probe~Electro, sensor 4937
module PBA200!, with a 0.1mm resolution over the 10 kHz band
width. The average normal loadW0 can be set in the range 3–2
N with the help of a vertical spring attached to a remote po
itself translated horizontally at the pulling velocityV through a
second translation stage in order to prevent any tangential
pling. The normal load modulation is achieved by means o
vibration exciter~LDS, model V100! rigidly attached to the slider:
A harmonic voltage input of given amplitude and frequencyf
results in a harmonic vertical motion of the moving element of
exciter on which an accelerometer~Brüel & Kjær, type 4371 V! is
fixed. An acceleration of amplitudeg of this moving element of
massm induces a normal load modulation on the slider of amp
tude mg at frequencyf. We thus obtain a normal loadW(t)
5W0@11e cos(vt)# with v52p f and e5mg/W0 in the range
0.01–0.5. A fixed frequencyf 5120 Hz has been used for th
whole study. Two poly~methylmethacrylate! ~PMMA! samples are
glued, respectively, on the slider and the track. They have no
nally flat surfaces which have been lapped together with 400-
SiC powder and water to obtain a rms roughnessRq51.3mm,
@20#. The interface between the two blocks is made of a sparse
of load-bearing microcontacts,@20#. An air layer of micrometric
thickness is therefore trapped between the surfaces and acts
viscoelastic element, in parallel with the microcontacts, wh
partially bears the normal load. This effect has been studied
details in Bureau et al.@18# who concluded that the remainin
effect of the load modulation on the asperities can be describe
an effective amplitudeeeff5re, with r a constant close to 0.5
taken in the following asr50.43, a value which will be justified
in Section 3.3.

2.2 Localization of the Stick-Slip Bifurcation, Effect of the
Modulation. The bifurcation between steady sliding and stic
slip oscillations under constant load~e50! has been extensively
described~see, e.g.,@4#!. WhenK andV are kept constant, stead
sliding occurs for values of the remaining control parameterW0

,W0
c(V) where theK-dependency has been omitted here sin

the value ofK is fixed in this study. The bifurcation is of the direc
Hopf kind, which means that while the circular frequency of t

Fig. 1 Main elements of the experimental setup: translation
stage „Drv …; loading leaf spring „Lsp …; displacement gauge
„Gg…; vibration exciter „Vb…; weighting spring „Spr …; accelerom-
eter „Acc …. The labeled parameters „K, V, M, g… are defined in
the text.
MARCH 2003, Vol. 70 Õ 221
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slider velocity oscillations tends to a finite valueVc , their ampli-
tude goes continuously to zero2 on approaching the bifurcation
locus from the stick-slip region of the dynamic phase diagr
~Fig. 2!. In addition, the characteristic time of the oscillating tra
sients following an external perturbation diverges on approach
the bifurcation locus from the steady sliding region. A practic
consequence is that in the close vicinity of the bifurcation it b
comes difficult to distinguish between established steady stick-
oscillations of small amplitude and long transient relaxation
wards steady sliding~see Fig. 3!, resulting from the perturbating
effect of friction force fluctuations along the track. This is th
main source of uncertainty in the localization of the bifurcatio

For e50, the ratioK/W0 is the relevant control parameter,
least in the low velocity region where inertia of the slider osc
lating at the circular frequencyVc can be neglected,@4#. Hence-
forth, although the external stiffnessK is kept constant for the

2Note that the term ‘‘stick-slip’’ is therefore a misnomer since the sliding veloc
does not reach zero, i.e., the slider does not ‘‘stick’’ during an oscillation period

Fig. 2 Stability diagram for different values of the modulation
amplitude. For given V and eeff , bifurcation from stick-slip to
stable sliding occurs when the control parameter K ÕW0 over-
comes the plotted critical value: eeffÄ0 „d…; 0.045 „n…; 0.09 „j…;
0.13 „h…; 0.18 „m…. For the sake of clarity, typical standard de-
viations are plotted as error bars only for eeffÄ0. The solid line
curves are the output of the numerical study „see Section 3.3 ….
The larger eeff the lower the curve at VÄ1 mm"sÀ1.

Fig. 3 Time evolution of the loading spring elongation for V
Ä8 mm"sÀ1 and different modulation amplitudes eeff indicated
at the right end of each trace. A vertical offset has been added
to each trace in order to display clearly the bifurcation se-
quence from stick-slip to stable sliding. The inset is a blow up
of the stable sliding trace showing the remaining oscillating
response at the frequency of the load modulation „fÄ120 Hz,
much higher than the stick-slip frequency ….
222 Õ Vol. 70, MARCH 2003
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whole set of experiments reported in this paper, we will keep
representing the stability domain of the system in the param
plane (K/W0 ,V) where it is bounded by the experimental bifu
cation curve~Fig. 2!. The experimental uncertainty on the critic
valueK/W0

c , determined from the standard deviation over at le
ten measurements at a given velocityV, is indicated by the error
bars in Fig. 2. It is typically63 percent, except at the large
velocity, since the results are more sensitive to long wavelen
irregularities along the track for large sliding distances.

When a harmonic modulation atv is superimposed to a valu
of W0 corresponding to steady sliding atV, the velocity of the
slider oscillates aboutV, possibly in a anharmonic way, with
fundamental component atv. The motion of the slider, when av
eraged over a period 2p/v is therefore steady. For givenV andK,
one has now to consider two control parameters, namelyW0 and
eeff .

When the DC loadW0 is increased while keeping constanteeff ,
the motion of the slider, averaged over a period 2p/v, is found to
become of the stick-slip kind above a critical value,W0

c(V,eeff)
.W0

c(V) ~Fig. 2!. A normal load modulation of even very sma
effective amplitude may thereforestabilize the system agains
stick-slip as illustrated directly in Fig. 3 where a modulation wi
eeff54.531022 is enough to suppress well developed, strong
anharmonic, large-amplitude and low-frequency stick-slip osci
tions ~the force signal then only shows the remaining small a
plitude modulation at the forcing frequency!.

The effect ofeeff on the critical value ofK/W0(V) is character-
ized in Fig. 4. The higher the velocity, the stronger the stabiliz
effect of the normal load modulation. The effect is spectacu
when described in terms of the velocity domain corresponding
steady sliding at constantK/W0 . For instance, the critical velocity
at K/W050.026mm21 is decreased by more than a factor of t
by applying a modulation witheeff50.09.

The empirical study indicates that, as a rule of thumb, stea
sliding is promoted by high velocity, high amplitude of norm
load modulation, low average normal load, and large stiffne
This is tested in the following against a numerical study of t
SRF model including normal load modulation.

3 Numerical Study

3.1 The State and Rate-Dependent Friction„SRF… Model
Equations. The SRF laws~Eqs. ~1!, ~2!! are incorporated into
the equation of motion of the slider, according to the simple mo
sketched in Fig. 5. The proportionality constant between the n

ity
.

Fig. 4 Reduced critical load versus eeff for different driving
velocities: V„mm"sÀ1

…Ä1 „n…; 5 „d…; 10 „h…; 30 „j…; 50 „s…. The
curves are the output of the numerical study „see Section 3.3 …

labeled with the corresponding velocities in mm"sÀ1.
Transactions of the ASME
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mal loadW and the interfacial stiffnessk is a lengthl of micro-
metric order:k5W/l, @20#. The equation of motion of the slide
thus reads

Mx95K~Vt2x!2k~x2xpl! (4)

where here and henceforth the prime denotes time derivative.
ing a massless interfacial zone~a reasonable assumption, see a
pendix!, we also have, according to Eq.~1!,

W

l
~x2xpl!5WFm01A lnS v

V0
D1B lnS 11

Vsatf

D0
D G , (5)

wherev5xpl8 is the relative sliding velocity at the interface andf
follows the evolution law~2! rewritten here for the sake o
clarity3:

f8~ t !512
vf~ t !

D0
. (6)

For numerical purposes, we wish to recast those equation
the form of a system of first-order ordinary differential equatio
~ODEs!. Noting z5x8, u5Vt2x, further differentiatingx2xpl
with respect to time in~5! using the explicit expression fo
W(t)5W0@11eeff cos(vt)# and solving forv8, we get the follow-
ing ODE system, which we will use for the numerical bifurcatio
analysis:

u85V2z (7)

z85
K

M
u2

W0~11eeff cos~vt !!

M Fm01A lnS v
V0

D
1B lnS 11

Vsatf

D0
D G (8)

v85
v

lA Fz2v2
lBVsat~12vf/D0!

D0~11Vsatf/D0! G (9)

f8512
vf

D0
. (10)

3.2 Determination of the SRF Parameters. In order to
analyze the data within the SRF framework, we need to determ
a set of values for the relevant parameters of the model. Th
performed under constant normal load, according to a w
established procedure. The values, which will be used in the
merical analysis, some of them as trial ones, are gathered in T
1. The useful formulas are established in the Appendix.

1. First, the steady sliding friction coefficientmd(V) is mea-
sured to be velocity-weakening with an almost constant logar
mic slope over the 1–100mm•s21 range. This indicates thatVsat,
above whichmd(V) increases with increasingV according to Eqs.

3This equation, including the actual sliding velocityv in place ofx8 is consistent
with our physical understanding of the agef. It has been checked that mistakingx8
for v, as in@18#, has no significant effect on their results, at least for the modula
frequencies much larger thanV/D0 used in their study.

Fig. 5 Equivalent mechanical circuit of the slider Õtrack sys-
tem. K is the stiffness of the loading spring, k is the one of the
interface.
Journal of Applied Mechanics
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~1!, ~2!, is certainly larger than 100mm•s21 and allows to extract
a value forB2A and m0 at V051 mm•s21, i.e., far below the
saturation of the aging term.

2. Next, the critical value ofK/W0 , here taken at midrange~10
mm•s21! where inertial terms can be neglected in Eq.~21!, yields
a determination of the memory lengthD0 .

3. From the value of the critical stick-slip period at 10mm•s21

~Eq. ~22!!, we obtain a value forA.
4. A determination ofVsat is finally obtained by a best fit of the

whole bifurcation curve in the plane (K/W0 ,V) for V in the 1–50
mm•s21 range, treating the inertial term in Eq.~21! as a perturba-
tive one. Since the value ofVsat is out of the experimental velocity
window, this determination is not very accurate. Treating seve
data set corresponding to different runs yields an uncertainty
large as625 percent on the value ofVsat.

5. The value of the lengthl, defined by the ratio of the loadW0
and the interfacial shear stiffnessk, has been obtained in@18#
from a best fit of the AC response of the slider position to t
normal load modulation.

It is clear that this procedure, though systematic, generates
mulative errors which are difficult to evaluate~the uncertainties
on A, B, andD0 given in Table 1 are conservative values!. In view
of the high sensitivity of the bifurcation to small variations of th
parameters, we have chosen in the following numerical analys
use the set determined above as a trial one. Namely, the pa
eters which are left free areA, B, D0 , l, Vsat, and the ratior
5eeff /e.

3.3 Bifurcation Analysis. Technically, the transition from
steady sliding to stick-slip, both states being modulated by
forcing ~when eÞ0!, is a Neimark-Saker bifurcation~also called
secondary Hopf!, which corresponds to two complex conjuga
values of the fundamental matrix of the ODE system crossing
unit circle. The fundamental matrixH is defined asdH/dt
5J(x(t))H with H(x,0)5I , with J the Jacobian matrix of the
ODE system and I the identity. The numerical software
CANDYS/QA, @21#, has been used to track this bifurcation. For
given parameter set, a bifurcation curve like in Fig. 2 can
obtained as follows: For a given driving velocity, one starts fro
a low enough normal loadW0 in order to be in the steady sliding
regime. Once such a ‘‘first point’’ is indeed found by the softwa
one variesW0 only ~one-parameter continuation! until a bifurca-
tion is detected (W05W0

c); one then follows this bifurcation
curve by further varying the driving velocity too~two-parameter
continuation!.

The procedure to detect the bifurcation has been automa
Starting from the parameter values determined in Section 3.2,
critical valuesW0

c are determined and compared to the experim
tal onesW0exp

c . A systematic procedure~Powell’s method, as de-

scribed in @22#! is then used that attempts to minimiz
(V,e@W0

c(re)2W0exp

c #2, with r5eeff /e, for a representative set o
ion

Table 1 Values of the SRF parameters

Parameter Trial Value Optimized Value

K (N•mm21) 0.21
M (kg) 2.37
m0(V051 mm•s21) 0.33
A 0.01260.002 0.0126
B 0.02360.002 0.0241
D0 (mm) 0.4060.04 0.402
Vsat(mm•s21) 280670 256
l ~mm! 0.6260.15 0.56
r5eeff /e 0.4860.10 0.43
MARCH 2003, Vol. 70 Õ 223
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experimental data. The set of parameters hence determined, w
corresponds to a local minimum of the cost function, reducin
by a factor of fifteen4, is given in Table 1.

The full bifurcation curves are then determined as descri
above, by a two-parameter continuation. The results are show
Figs. 2 and 4 together with experimental data covering a rang
eeff values wider than the one involved in the adjustme
procedure.

4 Discussion
The curves displayed in Figs. 2 and 4 have been calculated

the optimized set of parameters. However, it is worth noting t
the trial set yields numerical results in good qualitative agreem
with the experimental data as well. Namely, the main effect
normal load modulation, at least for moderate values ofeeff ,
which is to stabilize sliding against stick-slip oscillations, is w
reproduced by the SRF model. Moreover, the enhanced efficie
of the modulation on increasing the sliding velocity is correc
accounted for.

The set of optimized data differs from the trial set essentia
for three parameters, namely the elastic lengthl, the saturation
velocity Vsat, and the ratior5eeff /e accounting for the air-
cushion effect.

The final value forl lies within the error bars estimated in@18#.
As already mentioned in Section 3.2 the large variation ofVsat

during the optimization procedure is attributable to the fact t
the crossover from a velocity-weakening regime to a strength
ing one for steady sliding friction lies well above the upper e
perimental velocity, whence the goodness of the fit is only wea
sensitive toVsat.

The ratior5eeff /e was determined in@18# by comparison of
the experimental shift of the steady friction levelDm0 at 120 Hz
and the value predicted by the SRF model. The value taken in
reference wasr50.48. Taking into account the error bars onDm0
one finds that the relative uncertainty onr is about620 percent.
The optimized value for this parameter lies therefore within t
range.

Thus, the SRF model with its set of parameters as determ
from the dynamical study of the system under constant nor
load is fully predictive as regards the sliding stability of the sy
tem under modulated load, at least for the values ofeeff probed by
the data of Fig. 2. In turn, the sensitivity of this experiment e
abled us to refine the determination of the parameters.

The quantitative overall agreement between the experime
data and the numerical curves in Fig. 4 is excellent for, say,eeff
,0.15. Above this value the calculated curves tend to fold a
correspond to a re-entrent stability diagram; namely, for giveneeff
andV, increasingK/W0 yields successive bifurcations from stick
slip to steady sliding then back to steady-sliding, etc. No exp
mental evidence of such an unexpected behavior has been en
tered so far. It is clearly the result of the nonlinear coupli
between the normal load modulation and the stick-slip osci
tions. As such, it is expected to depend drastically on thedetailsof
the SRF laws. The importance of the terms which ultimately c
off the logarithmic variations in the SRF laws has been stresse
several studies,@10,23#. The existence ofVsat, which accounts for
a short time cut-off in the creep deformation of the load-bear
asperities,@7#, yields one of these terms. It should be kept in mi
that the SRF constitutive law~1! retains only the leading terms i
the expansion of the friction force in powers of ln(v). For in-
stance, Eq.~3! with physically sounded expressions forss(v) and
S r(f) would lead to terms of orderAB ln(v)ln(f) which, though
negligible for most purposes, would probably affect the critic
behavior of the system under a strongly modulated load. For th

4When several critical values forW0 can be detected, the one retained in t
evaluation of the cost function is the closest chosen among the odd ones~first, third,
etc.!, corresponding to a transition from steady sliding to stick-slip when increa
W0 , while even ones correspond to a transition from steading sliding to stick-s
224 Õ Vol. 70, MARCH 2003
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reasons, we think that a full quantitative agreement between
experimental bifurcation at large5 eeff and the SRF model predic
tions would be illusive.

In addition, we have investigated numerically the effect of t
extra term in Eq.~2! proposed by Linker and Dieterich@13# and
already discussed in@18#. No significant effect has been found a
120 Hz, where we conclude that this term, if it exists as such
not relevant to the present relatively high frequency study.

5 Conclusion
The stability of a sliding system with a few degrees-of-freedo

submitted to a periodically modulated normal load, has been s
ied experimentally. The study clearly evidences the role of lo
modulation, even at moderate amplitude, as a stabilizer aga
stick-slip oscillations. The results have been compared to the
merical predictions of a model of the SRF type, relevant to m
ticontact friction at low velocities and low loads, including finit
interfacial shear stiffness as a key parameter. Excellent quan
tive agreement has been found as long as the amplitude of
modulation is restricted to about 10 percent of the dead load.

Although, as discussed above, the main effect of the nor
load modulation is stabilization, the numerical study strongly s
gests thatdestabilizationmay also occur, due to the highly non
linear features of the model which also gives rise to re-entr
stability diagram in Fig. 2. More precisely, it can be seen in t
figure that theeeff50.18 curve crosses theeeff50.13 one around
V57 mm•s21. For a (V,K/W0) point slightly on the right of this
crossing, in between the two curves, increasingeeff would result in
a bifurcation from stable sliding to stick-slip. This effect has n
been observed directly so far, probably because it correspond
small regions of the parameter space, strongly dependent on
value of the parameters. Clearly, this point would deserve furt
experimental study.

Appendix

Linear Stability Analysis for eÄ0. The linear stability
analysis of the SRF equations has been performed previou
@2,4#. However, difference between sliding velocity and the velo
ity of the center of mass of the slider was disregarded in th
works. Since the interfacial stiffness is of paramount importan
when the normal load is modulated at relatively high frequency
is necessary to evaluate its role on the location of the bifurca
under constant load. Moreover, we will derive in this appen
expressions for the critical stiffness and the critical pulsation t
hold for any state and rate-dependent friction force.

Let us consider a general expression:

F5W0m~v,f!. (11)

The time evolution of the age variablef is ruled by

f8512
vf

D0
. (12)

When the slider is driven at constant velocityV, the steady
sliding values of the dynamical variables arev5V and f
5D0 /V. We define

H mv5
]m

] ln v
~V,D0 /V!.0

mf5
]m

] ln f
~V,D0 /V!.0

. (13)

The position of the center of mass of the slider isx(t) so that the
elongation of the loading spring isx2Vt. At frequencies of inter-
est the interfacial zone can be assumed massless and esse
elastic with a frequency independent, real stiffnessk, @19#. The
following relation holds:e

ing
ip.

5It has been shown in@18# that the relevant perturbation parameter is actua
m0eeff /A@eeff which is already larger than 1 foreeff50.1.
Transactions of the ASME
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v5x81
d

dt S Mx92K~Vt2x!

k D . (14)

We will make use in the following of the ratioh of the loading
spring stiffnessK to the equivalent stiffness of the loading sprin
in parallel with the interfaceKik:

h5
K

Kik
5

K1k

k
. (15)

Finally, the dynamical equation for the motion of the slider rea

Mx95K~Vt2x!2W0m~v,f!. (16)

The set of dynamical Eqs.~12!, ~14!, ~16! is closed and can be
linearized about the steady sliding state, setting

H x5Vt2F~V,D0 /V!/K1dx, udxu!F~V,D0 /V!/K

f5D0 /V1df, udfu!D0 /V
.

(17)

The linearized system becomes

5
Mdx952Kdx2W0F (mv /V)S hdx81

M

k
dx-D

1 (mfV/D0)df G
df852hdx8/V2

M

K
dx-/V2dfV/D0

. (18)

The solutions are the real parts of the complexd̃x
5 d̃x0 exp(iVt) andd̃f5 d̃f0 exp(iVt) with V a complex number.
Replacing into Eq.~18! and writing the condition for nontrivial
amplitudesd̃x0 and d̃f0 , one finds the dispersion relationship

C4V41C3V31C2V21C1V1C050 (19)

with

¦

C05
KV

D0

C15 i
W0

D0
FKD0

W0
2h~mf2mv!G

C252S MV

D0
1

hmvW0

V D
C352 iM

W0

kD0
FkD0

W0
1~mv2mf!G

C45Mmv

W0

kV

. (20)

The critical value of the control parameters and the critical pu
tion Vc are obtained by expressing that at the Hopf bifurcation~at
least! one root of Eq.~19! crosses the imaginary axis. Setting th
V is purely imaginary and extracting the real and imaginary co
ponents from Eq.~19! yield the requested values.

Let us first solve for an infinitely stiff interface, i.e., forh51
andk→`. It is then straightforward to find

KD0

W0
c 5~mf2mv!S 11

MV2

W0
cD0mv

D (21)

and

D0Vc

V
5Amf2mv

mv
. (22)

These relations make sense only formf2mv.0, i.e., when the
steady sliding friction coefficientmss(V) is velocity weakening:
]mss/] ln V,0. For the particular expression ofm(v,f) used in
the numerical analysis, this reads
Journal of Applied Mechanics
g

ds

sa-

at
m-

2
]mss

] ln V
5mf2mv5

B

11V/Vsat
2A.0. (23)

Now, let us evaluate the contribution of the finite interfacial sti
nessk to Eq. ~19! by estimating the order of magnitude ofc
5uC4Vc

4/C0u with Vc given by Eq.~22!, i.e., Vc.V/D0 . This
reads

c.mv

MV2

KD0
2 (24)

where we have expressed thatW0 /(kD0)5l/D0.1. One can
estimatec,1023 within the experimental velocity range, henc
the fourth-order term in Eq.~19! can be safely discarded. Next,
finite k introduces perturbative terms inC3 which are of order
mv , mf.1022, still well below the relative uncertainty on th
experimental determination of the critical parameters. Since
correction to the drive stiffness due to the interfacial elastic e
ment is of orderh215K/k.1022, it can be concluded that fo
the purpose of calculating the values of the critical parameters
finite interfacial stiffness has no practical effect, and one can m
use of Eqs.~21! and ~22!.
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Transient Study of Mode III
Fracture in an Elastic Solid
With a Single Plane
of Material Symmetry
Diffraction of a plane SH-wave causes semi-infinite mode III crack extension in an
bounded linear elastic solid. The solid is nonorthotropic, with a single plane of mate
symmetry that is perpendicular to the crack edge. The crack plane itself lies at an
trary angle to the axes of material symmetry, the SH-wave direction is largely arbitr
and extension is not necessarily instantaneous or at a constant speed. An exact tra
study produces the fracture energy release rate, and uses a full-field analytical soluti
derive the dynamic stress intensity factor on any plane radiating from the moving c
edge. A crack path stability analysis of the factor indicates that crack extension in
original plane can occur in directions associated with maximum and minimum value
the shear wave speed. The energy release rate for such extensions shows tha
isotropic solid subjected to the same type of loading has the same specific fracture e
then the nonorthotropic solid may fracture first.@DOI: 10.1115/1.1533807#
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Introduction
The classical theory of anisotropic elasticity,@1#, and its appli-

cation to wave propagation,@2–4#, are well developed. Studies o
rapid~dynamic! fracture in anisotropic elastic solids also exist a
have, in general, focused on crack extension parallel to a princ
axis of material symmetry, and upon orthotropic or transvers
isotropic materials, e.g.,@5,6#. More recently,@7#, rapid Mode III
semi-infinite crack growth in an unbounded solid with only
single plane of material symmetry,@8#, was considered. Crac
extension in any direction with respect to the principal mate
axes in the symmetry plane was allowed, and conditions exam
for which such extension might be likely. The fracture proce
was driven by forces moving on the crack faces, and a dyna
steady-state assumed, i.e., the forces and crack extend at the
constant speed.

In this article, a transient study of a similar situation is ma
Fracture is now triggered by diffraction of a plane horizonta
polarized shear~SH! wave, and is not necessarily instantaneous
at a constant speed. Orientations of the crack plane and prin
material axes are again arbitrary, and crack path stability co
tions are again examined. In addition, comparison with isotro
results,@9–11#, is made on the basis of fracture energy relea
rate. Indeed, the same solution methods are used.

The study begins with introduction of basic equations and
problem statement. The solution process gives first the cra
plane quantities required for calculating the energy release
The full-field solution is then examined for crack path stabil
requirements. Consistent with the steady-state study,@7#, these
suggest that crack extension in the original plane might well oc
when that plane coincides with the directions of extremal sh
wave speeds. Crack path stability in directions of maximum sh
wave speed, however, could be precluded when the degre
nonorthotropy of the solid is increased sufficiently. Results a

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Mar. 17, 200
final revision, July 26, 2002. Associate Editor: K. Ravi-Chandar. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, De
ment of Mechanics and Environmental Engineering, University of California–Sa
Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication in the paper itself in the ASME JOURNAL OFAPPLIEDMECHANICS.
Copyright © 2Journal of Applied Mechanics
f
d

ipal
ely

a

ial
ned
ss
mic
same

e.
ly
or
ipal
di-

pic
se

the
ck-
ate.
ty

cur
ear
ear
e of
lso

suggest that, if the specific fracture energy is the same for
isotropic and a nonorthotropic solid, fracture initiation would o
cur first in the nonorthotropic material.

Basic Equations
A homogeneous linearly elastic solid has only thex1x2-plane as

a plane of material symmetry, where (x1 ,x2 ,x3) are Cartesian
coordinates. Hooke’s law,@12#, is, therefore,

F s11

s22

s33

s32

s13

s21

G53
c11 c12 c13 0 0 c16

c21 c22 c23 0 0 c26

c31 c32 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c54 c55 0

c61 c62 c63 0 0 c66

4 F
«11

«22

«33

2«32

2«13

2«21

G . (1)

Thecik are the elastic constants,cik5cki , and discussions of thei
relation to crystallographic properties is found in@13,14#. The
form of ~1! shows thatxk define the principal material axes. Th
strains« ik and stressess ik satisfy, in the absence of body force
the standard equations

2« ik52«ki5ui ,k1uk,i , s ik,k5rüi , s ik5ski . (2)

Here r is the mass density,ui is the displacement in the
xi-direction, ( ),i5]( )/]xi , and~•! denotes time differentiation
Equations~1! and ~2! support the antiplane state

u15u250, u3,350, s115s225s335s2150 (3)

and reduce to the system

s325c44u3,21c45u3,1, s135c55u3,11c45u3,2 (4a)

s13,11s32,25rü3 (4b)

under the positive definiteness, c.f.@3,4#, requirements

~c44,c55!.0, c44c552c45
2 .0. (5)

No preference is given to eitherc44 or c55, and c4550 in the
orthotropic limit,@12#. It is convenient, therefore, to introduce th
parameters

2;
the
art-
nta
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m̄5
1

2
~c441c55!, v̄5Am̄

r
(6)

and the dimensionless ratios

a5
c55

m̄
, b5

c44

m̄
, g5

c45

m̄
. (7)

Equation~5! does not restrict the sign ofc45, and~6! defines an
average shear modulusm̄ and shear wave speedv̄ in the plane of
material symmetry. In the isotropic limit,~6! then gives the single
modulus and wave speed,@15#. In view of ~5! and ~6!,

a1b52, ~a21!21g25~b21!21g2512G (8)

where the dimensionless quadratic

G5ab2g2 ~0,G,1! (9)

is useful in characterizing material behavior. The quantities~G,g!
control, in effect, the degree of nonorthotropy: the upper boun
~9! arises because~a,b,g! must be real and, indeed, occurs on
wheng50, a5b51, i.e., the isotropic limitc4550, c445c55.

Problem Formulation
An unbounded solid of such a material contains a semi-infin

crack, defined in terms of the Cartesian coordinates (x,y,z) as the
regiony50,x,0. Thexy-plane coincides with thex1x2-plane of
material symmetry, but thex-axis, i.e., crack plane, makes an a
bitrary anglef with thex1-principal axis. In view of this rotation,
the field equations

1

m̄
syz5C

]w

]x
1B

]w

]y
,

1

m̄
sxz5A

]w

]x
1C

]w

]y
(10a)

A
]2w

]x2 12C
]2w

]x]y
1B

]2w

]y2 5
]2w

]s2 , s5 v̄3time (10b)

emerge from~4!–~9!. Heres, with its dimension of length, is the
temporal variable,w(x,y,s) corresponds tou3 , and

A511
1
2 ~a2b!cos 2f1g sin 2f (11a)

B511
1
2 ~b2a!cos 2f2g sin 2f (11b)

C5
1
2 ~b2a!sin 2f1g cos 2f (11c)

define the array (A,B,C) that represents the tensor transformati
of array ~a,b,g! due to the aforementioned rotation, c.f.,@8#. The
formulas

dA

df
52

dB

df
52C,

dC

df
5B21512A (12a)

A1B52, AB2C25G (12b)

are also useful, and it is noted thatG is an invariant of the trans
formation.

This cracked solid is at rest when a plane horizontally polari
shear~SH! wave, characterized by the displacement,

wi5E
0

sc

U~ t !dt, sc5s1kcx cosc1kcy sinc.0 (13)

is for s,0 incident upon the crack with attack anglec ~0,c,90
deg!, as depicted schematically in Fig. 1~a!. The dimensionless
function U[0(t<0) and is bounded above and piecewise co
tinuous for finitet.0. The dimensionless parameters

cc5
1

kc
5A11

1

2
~a2b!cos 2~f1c!1g sin 2~f1c!

(14)
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define the plane wave speedccv̄, and s5sc locates the wave
front for all s. Form ~13! satisfies~10b! and, in light of ~10a!,
gives the traction

syz
i 5m̄AcU~s1kcx cosc!, ccs1x cosc.0 (15a)

ccAc5sinc1
1
2 ~b2a!sin~2f1c!1g cos~2f1c!

(15b)

that is induced on the crack plane (y50). This wave reaches the
crack edge ats50, and is diffracted. Ats5sc.0 the crack begins
to extend in the positivex-direction, so that its edge is located
y50, x5X(s2sc), where

X[0~s,sc!, (16a)

0,X8,c~s>sc! (16b)

and~ !8 signifies differentiation with respect to the argument. T
dimensionless parameters

c5
1

k
5AG

B
(17)

define the shear wave speedcv̄ along the crack plane; thus,~16b!
precludes supersonic crack growth and crack retreat. In addi
the crack edge location functionX is finite and continuous for
finite s.sc . The incident/scattered wave field and crack exte
sion is depicted schematically in Fig. 1~b!. In light of ~10!, the
expanding elliptical region

s>kAS x2
C

B
yD 2

1
G

B2 y2 (18)

is formed by the scattered waves. Its semi-major and semi-m
axes tilt with respect to the crack plane due to thef-dependent
slope parameterC/B. Scattered waves also occur in the wedg
shaped region whose apex moves with the incident wave/c
plane intersection, and whose plane fronts form tangents with
elliptical region. As seen in Fig, 1~b!, the part of this wedge-
shaped region iny.0 represents incident wave reflection fro
the crack; the party,0 creates a shadow zone through incide
wave cancellation.

Linearity of ~10! allows the superposition

w5wi1ws. (19)

Here ws is the displacement field engendered by the scatte
waves. It satisfies in addition to~10! the initial condition ws

[0(s<0) and, in view of~15!, the condition

Fig. 1 „a… Schematic of SH-wave incident upon crack; „b…
schematic of wave diffraction and crack extension
Transactions of the ASME
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syz
s 52m̄AcU~s1kcx cosc! S y50,2

ccs

cosc
,x,XD .

(20)

It should also be finite for finites>0, and continuous everywher
except perhaps the region defined in~20!. Its gradient, however,
may be discontinuous along the wave fronts depicted in Fig. 1~b!,
and singular at the crack edgey50,x5X.

Scattered Field Solution
The scattered wave, in addition to~20!, produces a crack plan

stresst(x,s)(y50,X,x, v̄s) ahead of the crack edge. Ift were
known, and the complete scattered wave traction alongy50 de-
noted asT(x,s), standard Green’s function techniques would gi
the scattered wave displacement field for a given (x0 ,y0 ,s0) as

ws5
61

2pm̄AG
EE

s

T~x,s!dxds

A~s02s!22k2R0
2

,

R05AS x02
C

B
y02xD 2

1
G

B2 y0
2 (21)

for y0.0(1) and y0,0(2). The integration regionS in the
xs-plane is the intersection of a wedge-shaped area2ccs/cosc
,x,vs due toT(x,s) with the cones02s.kR0 of elliptical cross
section. Equation~21! does not have the antisymmetry with r
spect toy050 of the corresponding isotropic case,@9–11#.

The unknown portiont(x,s) of the field T(x,s) follows by
requiring that~21! be continuous in the plane ahead of the cra
edge. That is

@ws#2
15

1

pm̄AG
EE

s

T~x,s!dxds

A~s02s!22k2~x02x!2
50 (22)

for y050, x.X0 , whereX05X(s02sc) and @ #2
1 signifies the

jump as thex-axis is crossed in the positivey-direction. The in-
tersection now passes through the cone axis andS can, as shown
in Fig. 2, be described simply in terms of the characteristic v
ables

j5
s2kx

A2
, h5

s1kx

A2
(23)

as the shaded trapezoid (2xj,h,h0,0,j,j0), where

x5
cc2c cosc

cc1c cosc
~0,x,1!. (24)

In Fig. 2 the crack edge trajectorys.0,x5X can be expressed a
j.0,h5N(j) or h.0,j5K(h), where (N,K) are obtained from
the formulas

N~j!5j1A2kXS j1N~j!

A2
2scD ,

Fig. 2 Schematic of integration region „yÄy 0Ä0…
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K~h!5h2A2kXS h1K~h!

A2
2scD . (25)

These functions are, in view of the requirements onX, also piece-
wise smooth, withN8(j)<1,K8(h)>1. For 0,s,sc , ~25! re-
duce to the explicit forms

N~j!5jS 0,j,
sc

A2
D , K~h!5h,S 0,h,

sc

A2
D . (26)

When (s0.0,x0.X0) we have, as seen in Fig. 2, (j0.0,h0
.N(j0)). Thus, S has regions (j.0,2xj,h,N(j)) and (j
.0,h.N(j)) in which, respectively,T52m̄AcÛ(j,h) and T
5 t̂(j,h), where, in light of~23!,

Û~j,h!5US h1j

A2
1

h2j

kA2
kc cosc D ,

t̂~j,h!5tS h2j

kA2
,
h1j

A2
D . (27)

Equation ~23! also shows that (s02s)22k2(x02x)252(j02j)
3(h02h), so that~22! can be written as

1

pkA2G
E

0

j0 dj

Aj02j
F2AcE

2xj

N~j! Û~j,h!

Ah02h
dh

1
1

m̄ E
N~j!

h0 t̂~j,h!

Ah02h
dhG50. (28)

Setting the term in brackets to zero gives a standard Abel inte
equation,@9–11,16#, whose solution is, c.f.,@9–11#,

t̂~j,h!5
m̄Ac

pAh2N~j!
E

2xj

N~j! Û~j,u!

h2u
AN~j!2udu

~j.0,h.N~j!!. (29)

In light of ~13!, ~19!, ~21!, ~23!, and~29!, the scattered field and
the complete solution has been obtained. Its properties are
examined in view of classical fracture mechanics,@11,17#.

Crack Edge Stress Field, Energy Release Rate
An integration variable change in~29! gives in view of~23! and

~25!–~27!

t~x,s!5
m̄Ac

pAk
E

2uc~x,s!

kX*
US u1s2kx1

ukc

k
cosc D AkX* 2u

kx2u
du

(30)

whereX* 5X(s* 2sc) and

uc~x,s!5
cc~s2kx!

cc1c cosc
, (31a)

s* 2kX* 5s2kx. (31b)

We chooses.sc and a pointx ahead of but very near the crac
edge ats, i.e.,x2X→01, X5X(s2sc). Then fors* →s one can
write in view of ~31b!

s* 's2
]s* ~kX!

]~kx!
k~x2X!, x2X* '2

]s* ~kX!

]~kx!
~x2X!.

(32)

Performing the differentiation and combining with~30! gives
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—a
t~x,s!'
m̄Ac

p

Ac2X8

Ax2X
E

2uc~X,s!

kX

US u1s2kX

1
ukc

k
cosc D du

AkX2u
(33)

for (s.sc ,x→X1), c.f., @9–11#. The corresponding result fo
(0,s,sc ,x→01) follows by setting (X,X8)50.

On the newly formed crack surface we have (x5x1 , y50, s
5s1), where (s1.sc,0,x,X(s12sc)). In light of the discussion
of ~22!, these values correspond to the point (j1 ,h1) in Fig. 2.
Region S is again a trapezoid, but it now has the parts (2xj
,h,h1,0,j,K(h1)) and (2xj,h,h1 ,K(h1),j,j1). In
view of ~28! the contribution from the first part vanishes, so th
~21! gives, c.f.,@9–11#,

@ws#2
152

cAc

pA2G
E

K~h1!

j1 dj

Aj12j
E

2xj

h1 Û~j,h!

Ah12h
dh. (34)

The corresponding particle velocity discontinuity~crack slip
speed! for (s.sc ,x→X2), i.e., just behind the moving crac
edge, follows by differentiation and a similar limiting process:

F]ws

]s G
2

1

'2
2Ac

pAG

cX8

Ac1X8

1

AX2x
E

2uc~X,s!

kX

US u1s2kX

1
kcu

k
cosc D du

AkX2u
. (35)

With ~33! and~35! available, the~fracture! energy release rate~per
unit length of crack edge! can be obtained,@7,9–11#, as the posi-
tive quantity

İ5
2m̄

p
Ac

2
ccv̄

AG
X8Ac2X8

c1X8
I 2,

I 5
Ac

Acc1c cosc
E

0

s1kcX cosc U~u!du

As1kcX cosc2u
(36)

where an integration variable change, c.f.,@9#, is introduced for
simplification.

The coefficient of 1/Ax2X in ~33! is the dynamic stress inten
sity factor. Both it and~36! are derived on the assumption that t
crack extends in its original plane. For some insight into the
lidity of this assumption, the scattered field and the traction tha
develops on planes radiating from the crack edge is consider

Full Scattered Field
Consider~21! for the more general situation (x0 ,y0.0,s0). The

intersection of the region filled byT(x,s) and the elliptical cone
does not include the cone axis, andS is now the region bounded
by the linesh1xj50, C0(j,h)50 and range 0,j,jx depicted
in Fig. 3. There (j01Cz0 ,h02Cz0) correspond to (x0 ,y0
.0,s0) where, c.f.,~23!,

j05
s02kx0

A2
, h05

s01kx0

A2
, z05

ky0

BA2
(37)

and are the intersection of hyperbolic asymptotes. The hyper
branchC0(j,h)50 defines one boundary ofS, where

C0~j,h!5~j01Cz02j!~h02Cz02h!2Gz0
2. (38)

The intersection (jN ,N(jN)) of this curve and the crack edg
trajectory is given by the implicit formulas

~j01Cz02jN!~h02Cz02N~jN!!2Gz0
250 (39a)
230 Õ Vol. 70, MARCH 2003
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N~jN!5jN1A2kXN , XN5X~sN2sc!, sN5
jN1N~jN!

A2
.

(39b)

The intersection (jx ,2xjx) of the curves (C0 ,h1xj)50 is ob-
tained explicitly as

jx5
P2

2x
1Q, 2xQ5AP2

2 14xC0~0,0!5AP1
2 24xGz0

2

(40a)

P65x~j01Cz0!6~h02Cz0!. (40b)

It is noted thatjx>jN , even when (j01Cz0 ,h02Cz0) lies on
the other side of the crack edge trajectory than the one depicte
Fig. 3. Thus,S can be broken into the two regions (0,j,jN ,
2xj,h,L(j)) and (jN,j,jx ,2xj,h,L(j)), where h
5L(j) is the relevant solution of the equationC0(j,h)50. Equa-
tion ~21! gives

ws5
c

2pAG
E

0

jN

djF2AcE
2xj

N~j! Û~j,h!dh

A2C0~j,h!

1
1

m̄ E
N~j!

L~j! t̂~j,h!dh

A2C0~j,h!
G2

cAc

2pAG
E

jN

jx

djE
2xj

L~j! Û~j,h!dh

A2C0~j,h!
.

(41)

In light of ~29!, the bracketed term can be written as

AcE
2xj

N~j!

Û~j,u!duF 21

A2C0~j,u!

1
1

p
AN~j!2uE

N~j!

L~j! dh

A2C0~j,h!Ah2N~j!

1

h2uG . (42)

By use of the Cauchy residue theory, the second integration yi

p

A2C0~j,u!AN~j!2u
(43)

whereupon~42! vanishes. Thus, only the second term in~41!
arises, whose integration involves the shaded area in Fig. 3
result that is consistent with~34!. The step-stress pulseU5t i /m̄
is now examined, and standard tables,@18#, give for ~41!

Fig. 3 Schematic of integration region „yÄy 0Ì0…
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ws5
cAct i

pm̄
A2F z0 cos21S ex~e12eN!

QeN
21D2

P1

2AxG
cos21S 1

1
ex2eN

Q D G2
cAct i

pm̄
A2x

G
AeN2exAe12eN (44a)

ex5
P1

2x
2Q, e15

P1

2x
1Q, eN5j01Cz02jN (44b)

when (y0.0,eN.ex). If, in the limit asz0→0 the point (j0 ,h0)
remains on the positive side of the crack edge trajectory, t
eN→ex as C0(j,h)50 collapses onto the asymptotes (j5j0 ,h
5h0). If the point lies on the other side asz0→0, however, then
eN.ex even as collapse occurs—unlessj0→K(h0) as well. This
behavior is consistent with that in Fig. 2.

Traction on Planes Radiating From Crack Edge
Envision in Fig. 1~b! the polar coordinates (r ,u) affixed to the

moving crack so thatr .0 defines radial planes from the edg
and 0,u,180 deg corresponds to the regiony.0. In light of
~10a! the traction on a given radial plane is

1

m̄
suz5~C cosu2A sinu!

]w

]x
1~B cosu2C sinu!

]w

]y
.

(45)

Because it is likely to be singular at the crack edge, only
scattered wave contribution to~45! need be considered. Fo
(x0 ,y0.0,s0) differentiation of~44a! can be performed in term
of (j0 ,h0 ,z0.0) by using~37!, so that

2p

Act i
suz

s 52Ax

G
AeN2exAe12en

1

eN
]0eN

2
1

4x2Ax

G

1

z0
cos21Fex~e12eN!

QeN
21G]0~P1

2

22xGz0
2!1

1

2xAx
cos21S 11

ex2eN

Q D ]0P1 (46)

for eN.ex , where the gradient operator

]0[~C cosu2A sinu!S ]

]h0
2

]

]j0
D1S cosu2

C

B
sinu D ]

]z0
.

(47)

From ~39! and ~44b! follow the results

A2eN5k~XN2x0!1A2Cz01A@k~XN2x0!1A2Cz0#212Gz0
2

(48a)

]eN

]h0
2

]eN

]j0
5

2A2eN

~12kXN8 !@k~x02XN!2A2Cz0#1A2eN
(48b)

]eN

]z0
5A2

ceN1G~12kXN8 !z0

~12kXN8 !@k~x02XN!2A2Cz0#1A2eN

. (48c)

The other operations with~47! are readily performed, and~46!
becomes
Journal of Applied Mechanics
en

,

he
r

2p

Act i
suz

s 5
2A2xGAeN2exAe12eN

k~x02XN!1
A2eN

12kXN8
2A2Cz0

F z0

eN
S cosu2

C

B
sinu D

1
sinu

B~12kXN8 !G1
Ax

2x2 cos21Fex~e12eN!

QeN
21G

3F ~12x!
P1

z0
sinu12x~B cosu2C sinu!G

1
AG

2x
~12x!sinu cos21S 11

ex2eN

Q D (49)

for eN.ex . Now consider the three points (a,b,c) in Fig. 3:
Point ~a! is the intersection of the curvesC050 andh5N(j); its
coordinates in the (kx,s)-plane are, therefore, (kXN ,sN). Point
~b! is the intersection of the curveC050 and the crack edge
location linekx5kX05kX(s02sc), while point ~c! is the inter-
section of the curveC050 and the linekx5kx0 . Their coordi-
nates are then (kX0 ,sb) and (kx02A2Cz0 ,s02A2z0), respec-
tively. In Fig. 3r0 is the distance between the crack edge locat
(kX0 ,s0) and point ~c!. The polar coordinates for a give
(x0 ,y0 ,s0) are

x02X05r cosu, y05r sinu (50)

and it follows that

z05
k

BA2
r sinu, (51a)

r05krAS cosu2
C

B
sinu D 2

1
G

B2 sin2 u. (51b)

As r→0, therefore, the points (a,b,c) and (kX0 ,s0) collapse onto
each other. Then, one can write in view of Fig. 3 that

kXN5kX02kE
sN

s0

X8ds'kX02kX08~s02sN! (52a)

sb2sN

k~X02XN!
'

]s~kX0!

]~kx!
5

]sb

]~kx!
. (52b)

The functions5s(kx) follows from C050 as, c.f.,~51b!,

s5s02krl, l5AS cosu2
C

B
sinu D 2

1
G

B2 sin2 u. (53)

Its differentiation allows~52! to be solved for (sh ,sN), and~52b!
then yields

XN2X0'2kVX08r , (54a)

V5
l2

l2kX08S cosu2
C

B
sinu D . (54b)

Use of ~50! and ~54! in ~49! then gives forr→0 the asymptotic
result

suz
s '

t iAc

2p
Ax~cs02X0!1cs01X0

K~u!

Ar
(55)

whereK(u) is the dimensionless dynamic stress intensity fac
coefficient

K~u!5Ap1qF12
VkX08~12kX08!

p2qkX08
G (56a)
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p5Aq21
G

B2 sin2 u, q5cosu2
C

B
sinu1VkX08 .

(56b)

Examination of~21! for y0,0 gives the same results. Foru50 it
can be shown that

K~0!5A2~12kX08! (57a)

dK~0!

du
52

C

BA2
A12kX08 (57b)

d2K~0!

du2 5
1

2B2A2
A12kX08FC2~4kX0821!22

1
2GkX08

12kX08
1G~12kX08!2G . (57c)

The results prior to crack extension (0,s,sc) follow by setting
X0850. Absenting a branching study, insight into whether or n
crack extension proceeds in the original plane is possible by fi
ing when~57a! is a local maximum with respect tou, i.e., ~57b!
vanishes and~57c! is negative. Clearly, the former occurs forC
50, whereupon~57c! gives the stability condition

G~12kX08!312GkX0822~12kX08!,0. (58)

In view of ~12! and ~17!, C50 implies that crack growth in the
original plane occurs when the principal material axes form one
the four angles (f6 ,f12180 deg,f21180 deg) with the crack
plane, where forg>0

f65tan21
1

g F1

2
~b2a!6A12GG . (59)

Corresponding to these orientations are the extremal shear w
speedsc6v̄, where

c65A16A12G, c1
2 1c2

2 52. (60)

In view of ~59! and ~60!, the path stability requirement~58! is
satisfied forg>0 when the crack speedX08v̄ at s0.sc is limited
by

f5f2 ,f21180 deg; c5c2 :0,X08,X28 ~0,G,1!
(61a)

f5f1 ,f12180 deg;

c5c1 :0,X08,X18 ,S 8

9
,G,1D , X0850 S 0,G,

8

9D
(61b)

HereX68 are the relevant cubic roots,@19#, of ~58!:

X28 5c22
4

A3
cos

1

3 S p1tan21A 64

27c2
3 21D ~0,G,1!

(62a)

X18 5c12
4

A3
cos

1

3 S p1tan21A 64

27c1
3 21D S 8

9
,G,1D .

(62b)

In the isotropic limit there is no restriction onf, and ~63! give
(X68 50.4608,c651).

These results indicate that, in general, crack extension in
original plane might not occur. It can occur when the crack pla
shear wave speed is a minimum (c2v̄), but only for crack speeds
below a subsonic valueX28 v̄. It might also occur when the crac
plane shear wave speed is a maximum, but the limiting subs
speedX18 v̄ vanishes unless 8/9,G,1. That is, increasing the non
orthotropyugu beyond a certain value precludes path stability fo
maximum crack plane shear wave speed.
232 Õ Vol. 70, MARCH 2003
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In Table 1 values ofc6 for all G and values of (X68 ,X68 /c6) for
~allowable! G are given. The entries forc6 show that the maxi-
mum shear wave speed exceeds the isotropic value (c51), and
increases as the degree of nonorthotropy is increased,c1

→A2,G→0). Those forc2 show that the minimum shear wav
speeds lie below the isotropic value, and vanish in the limit
G→0. For the minimum-speed case, not only does a finite p
stability speed always exist; decreasingG increases the ratio
X28 /c2 . That is, path stability is possible for a larger portion
the subsonic speed range as nonorthotropy is increased. It sh
be noted, finally, that although a steady-state analysis is appr
mate, the conclusions drawn in@7# are essentially the same.

An Isotropic ÕNonorthotropic Comparison
For the step-stress pulse case,~36! gives the energy release ra

İ5
8t i

2v̄

pm̄AB
Ac

2
ccs1X cosc

cc1c cosc
X8Ac2X8

c1X8
~s.sc!. (63)

During fracture, the surface energy~per unit of crack edge length!

Es52E
sc

s

f ~f!X8ds ~s.sc! (64)

is produced, wheref (f) is the specific fracture energy. A class
cal, @9#, theory of fracture maintains that fracture proceeds so lo
as İ5Ės . If the specific fracture energy is a pure material pro
erty, then this condition gives in view of~63! and~64! the differ-
ential equation

Ac1X8

c2X8
2

4t i
2Ac

2

pmY f ~f!

ccs1X cosc

cc1c cosc
50 ~s.sc! (65)

for the crack edge trajectory, c.f.,@9–11#. Equation~65! cannot
support instantaneous fracture (sc50). For smooth crack growth
(X850, s5sc) it gives

sc5
pm̄

4t i
2

f ~f!AB

Ac
2 S 11

c

cc
cosc D . (66)

In the isotropic limit~66! reduces to the result derived in@9#. As
an illustration, we consider~66! under the restrictions for crack
path stability found above, and assume that fracture for gi
(t i ,c) initiates at the same instant in a nonorthotropic and
isotropic material. In view of~10b! and ~66!, the dimensionless
ratio

Table 1 Parameters for maximum Õminimum shear wave
speeds and path stability limit speeds

G c2 X28 X28 /c2
c1 X18 X18 /c1

0 0 0 1.0 1.4142 0 0
0.1 0.2265 0.1726 0.762 1.396 0 0
0.2 0.325 0.2322 0.7145 1.3764 0 0
0.3 0.4041 0.2751 0.6808 1.3552 0 0
0.4 0.4748 0.3101 0.6531 1.3321 0 0
0.5 0.5412 0.3401 0.6284 1.3066 0 0
0.6 0.6062 0.3668 0.6051 1.2777 0 0
0.7 0.6725 0.3912 0.5817 1.2441 0 0
0.8 0.7435 0.414 0.5568 1.203 0 0
0.9 0.8269 0.436 0.5273 1.1473 0.447 0.389
1.0 1.0 0.4608 0.4608 1.0 0.4608 0.4608
Transactions of the ASME
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f ~f6!

f o

5A16A12G cos 2c

3
A16A12G cos 2c1A16A12G cosc

~11cosc!~17A12G!3/2

(67)

emerges, where (mo ,ro , f o) are the corresponding isotropic va
ues of shear modulus, mass density, and specific fracture ener
is noted that nonorthotropy enters the ratio only in the form of
dimensionless invariantG.

A plot of ~67! in Fig. 4 for the less-restrictive minimum shea
wave speed case shows that the ratio is always less than unity
it decreases rapidly as nonorthotropy is increased~G→0!, and that
its deviation from unity for a givenG decreases asc→90 deg.
This behavior suggests that, when nonorthotropic and isotro
materials match in the sense thatm̄r5moro , fracture initiation at
a given instant requires a greater specific fracture energy in
isotropic material. Conversely, if the specific fracture energies
equal, then fracture occurs earlier in the nonorthotropic mate
Matching automatically occurs, of course, when the densities
identical andc441c5552mo .

Figure 4 and Eqs.~65! and ~67! are based on the assumptio
that specific fracture energy is purely a material property, i
independent of location, time, or dependent variables. As note
fracture literature,@11,17#, it might actually also vary with crack
speed. In any event, specific fracture energy must at presen
found by experiment, under clearly defined and parameter
conditions,@20#.

Some Comments
This article examined the mode III fracture of an unbound

solid with a single plane of material symmetry,@8#, due to the
diffraction of a plane SH-wave by a semi-infinite crack. The cra
plane formed an arbitrary angle with the principal material axe
the single plane, and the travel direction of the plane wave
largely arbitrary. Crack extension was not necessarily insta
neous, and acceleration was allowed.

A transient analysis, similar in approach to those used in
tropic studies,@7,9–11#, yielded exact expressions for the tractio
and crack surface slip velocity very near the crack edge, and
energy release rate. A closed-form expression for the full-fi
scattered wave displacement in the case of an incident step-s
pulse was also derived, and used to examine the dynamic s
intensity factor on any plane radiating from the moving cra

Fig. 4 Ratio of specific fracture energies for various incident
wave directions
Journal of Applied Mechanics
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edge. The factor achieved a local maximum on the original cr
plane when that plane coincided with the directions for extrem
values of the shear wave speed in the material symmetry pl
and a related crack path stability speed was not exceeded. H
ever, the maximum and minimum shear wave speed cases
fered: The maximum shear wave speed exceeded the isotr
value, and increased as the degree of nonorthotropy increa
Moreover, the corresponding subsonic stability speed vanis
when the degree exceeded a critical level. The minimum sh
wave speed fell below the isotropic value, and a subsonic stab
speed always existed. These results agree with those obtained
steady-state dynamic analysis,@7#.

The fracture energy release rate for these two cases was e
ined in light of a classical fracture criterion,@9#. For the less-
restrictive minimum shear wave speed case, comparison of
fracture initiation time with the isotropic limit value indicate
that, if the specific fracture energy in the two types of materi
were the same, then the nonorthotropic material might fract
first under the same diffraction process. This particular result w
based on the assumption that the specific fracture energies
pure material constants. As noted, these quantities might also
pend on both independent and dependent variables, e.g., loca
crack speed. In any case, their determination requires carefu
perimentation,@20#.

Moreover, the relative tractability of mode III fracture studie
also limits their applicability. Nevertheless, they are useful
general insight. It is hoped, therefore, that the present results,
their steady-state counterpart,@7#, do demonstrate the sensitivit
of the dynamic fracture process in a nonorthotropic solid to b
its properties and its orientation. In particular, the relative cra
path stability in the direction of minimum shear wave speed mi
provide insight into the design of structures that must withsta
dynamic loading.
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Multiple Surface Cracking
and Its Effect on Interface Cracks
in Functionally Graded Thermal
Barrier Coatings Under Thermal
Shock
The thermal fracture behavior in functionally graded yttria stabilized zirconi–
NiCoCrAlY bond coat alloy thermal barrier coatings was studied using analytical mod
The response of three coating architectures of similar thermal resistance to laser the
shock tests was considered. Mean field micromechanics models were used to pred
effective thermoelastic and time-dependent (viscoplastic) properties of the individua
ers of the graded thermal barrier coatings (TBCs). These effective properties were
utilized in fracture mechanics analyses to study the role of coating architecture on
initiation of surface cracks. The effect of the surface crack morphology and coa
architecture on the propensity for propagation of horizontal delamination cracks was
assessed. The results of the analyses are correlated with previously reported experim
results. Potential implications of the findings on architectural design of these mat
systems for enhanced thermal fracture resistance are discussed.
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1 Introduction
Thermal barrier coatings~TBCs! are increasingly being used i

power generation and propulsion applications such as gas
bines, diesel and jet engines to protect metallic components f
high-temperature environments,@1#. They offer avenues for en
hancing the durability of metallic components, improving fu
economy, efficiency, and reducing cooling requirements,@2#. A
plasma sprayed yttria partially stabilized zirconia~YSZ! layer
with a intermetallic NiCoCrAlY bond coat on a substrate made
nickel-based superalloy is a common superalloy/TBC system

TBCs deposited by electron beam physical vapor deposi
~EBPVD! are relatively thin~;50–100mm thick! and provide a
temperature protection of about 100–300°C@3# due to their lower
thermal resistance. These coatings have excellent strain toler
due to their columnar structure,@4,5#. However, the bond coa
itself, when subjected to a high temperature, causes the Al in
bond coat to oxidize with time and become Al2O3 . This thermally
grown oxide~TGO! has been identified as a critical reason f
failure of these thinner coatings,@3,4,6–10#.

On the other hand, for applications such as diesel engines
combustion chambers, thicker~;500–2000mm! coatings provide
a better thermal insulation. These coatings are usually pla
sprayed and have lower thermal conductivities due to their la
nar structure and porosity,@5#. Being thicker and having lowe
conductivities, these TBCs have higher thermal resistances
these coatings, the bond coat remains at lower temperatures
hence no significant TGO layer forms. Yet, even though theTGO
does not form, thesethick TBCs still experience thermomechan
cal fracture.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Februa
26, 2002; final revision, July 26, 2002. Associate Editor: K. Ravi-Chandar. Disc
sion on the paper should be addressed to the Editor, Prof. Robert M. McMee
Department of Mechanical and Environmental Engineering University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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Thick TBCs are known to crack, delaminate and spall under
application of high temperatures and temperature gradients.
vious studies have shown that the stress relaxation process, o
ring in TBCs at high temperatures, was a significant cause
crack initiation and propagation,@11#. Briefly, when the surface of
the coating is subjected to a heat flux, a temperature grad
exists in the coating. This gradient causes the surface of the c
ing to experience a compressive stress during heating due to
constraint to its thermal expansion offered by the significan
cooler bond coat layer and substrate. At high enough temperat
and stresses, the layers near the surface of the coating exper
a time-dependent deformation, which consists of sintering, c
solidation, and creep-like behavior,@12#. This causes the large
compression to relax with time. Subsequent cooling of the coa
causes the surface to experience a tensile stress leading to su
cracking. This mechanism was shown to occur at relatively l
surface temperatures~800–900°C! over two hours,@12#, at high
surface temperatures~1300–1500°C! in four seconds@13#.

Thus, due to the aforementioned stress-relaxation effects,
TBC experiences tensile stresses at the end of a heating-co
cycle. Further, there is a gradient in tensile stresses through
TBC thickness that causes a bending moment to act on the c
ing, @14#. The action of this moment on the TBC creates sign
cantly high tensile normal stresses along the thermal bar
coating–bond coat~TBC–BC! interface,@11,14#. Further, there is
a mismatch in thermomechanical properties at the thermal ba
coating–bond coat interface that creates shear stresses alon
interface. Thus, the combined effect of the normal and sh
stresses along this interface lead to the development of the
barrier coating–bond coat interface cracks,@15#. Repeated appli-
cation of thermal loads can cause the growth of the surface cra
As will be shown later, the growth of the surface cracks leads
an increased driving force for interface crack propagation. Thi
due to increased tensile stresses along the TBC–BC interface
a reduction in the area resisting the bending moment acting on
coating.

TBCs comprised of monolithic ceramics have been the sub
of many investigations,@12,16,17#. However, owing to the large
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us-
ing,
a–
four
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Fig. 1 Architectural layup of functionally graded yttria stabilized zirconia „YSZ…–bond
coat alloy „BC… thermal barrier coating „TBC… systems. „All lengths in mm, each layer in
nine-layer system is 0.22 mm thick with compositions varying linearly in 10% steps. …
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mismatch between the thermomechanical properties of the
ramic and the bond coat layer, these coatings have been fou
be susceptible to fracture and delamination at the yttria parti
stabilized zirconia–bond coat~YSZ–BC! interface,@11,15#. Using
functionally graded material systems as TBCs offers an exce
alternative to reduce the driving force for delamination. FGM
provide a gradual transition in properties through the coat
thickness,@18,19#. For ease and economy of fabrication, such s
tems are comprised of a finite number of layers each havin
certain ceramic bond coat alloy proportion. The composit
changes through the TBC thickness. The topmost layer is cera
rich and the layer closest to the bond coat has the highest b
coat alloy proportion. The coating architectures for graded TB
used in this study are illustrated in Fig. 1.

In the past ten years, functionally graded materials have ope
new avenues for optimizing material and component structure
achieve high performance and material efficiency. At the sa
time, they post many challenging mechanics problems, includ
the prediction and measurement of their effective properties, t
mal stress distribution and unusual fracture behavior. Many
these issues have been brought to light in biennial symposia
functionally graded materials,@20–21#. Thermomechanical frac
ture in graded materials has drawn significant attention in
recent past in a quest for developing durable functionally gra
TBCs.

A fracture mechanics investigation into the development
multiple surface cracks in functionally graded ceramic-metal co
ings have been studied previously in Bao and Wang@22#. The
metallic substrate and the ceramic-metal FGM were all assu
to be linearly elastic. The FGM was modeled as a sequence
layers ~of ceramic-metal mixtures! with different compositions.
Parallel and equally spaced model I cracks on the surface o
FGM along the direction of compositional gradation were cons
d Mechanics
ce-
d to
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lent
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s-
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ic-
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er-
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ered in this study. The response of a representative unit cell
remotely applied uniform strain perpendicular to the gradat
direction as well as to aconstant temperature~greater than the
stress-free temperature! was considered. For the loading consi
ered, it was found that compared to a pure ceramic coating,
dation of the coating can significantly reduce the crack driv
force under thermo-mechanical loading.

Bao and Cai@23# presented a micromechanics analysis
delamination cracking in functionally graded ceramic metal co
posite coating substrate system. Based onlinear fracture mechan-
ics analyses, the energy release rate of the delamination crack
determined as a function of coating gradation, crack location,
elastic properties of the ceramic and metal phase. It was fo
that functionally grading the coating reduces the force driv
crack growth for both edge-delamination and buckle-driv
delamination.

Erdogan and Wu@24# considered the response of an unco
strainedelastic FGM layerto statically self-equilibrating therma
and mechanical residual stresses. The thermomechanical pr
ties were assumed to be continuous functions through the th
ness of this FGM layer. Thus, properties such as Young’s mo
lus, thermal expansion coefficient, and thermal conductivity w
expressed as exponential functions. Embedded and surface c
perpendicular to the layer boundaries were considered. Resul
the distribution of thermal stresses and stress intensity factors
surface and embedded cracks were presented.

Lee and Erdogan@25# considered the plain-strainthermoelastic
problem of a crack at the interface between a homogeneous
peralloy substrate and a FGM coating. The composition of
FGM coating was taken to vary continuously from 100% zircon
at the surface to 100% superalloy at the coating-substrate in
face. Thermal loading involving exposure of the surface of
coating to a high-temperature environment, forced cooling of
MARCH 2003, Vol. 70 Õ 235
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Ko-
substrate and natural convection at the ends of the specimen
considered. The crack surfaces were assumed to be partially
lated and a heat conductivity index was used to describe this
sulation condition. The thermal stress problem was solved
various composition profiles in the coating, including 100% c
ramic, and for various values of the heat conductivity index. T
normalized strain energy release rates at the interface crack
shown to decrease with increasing metal content in the coatin

The mechanism of multiple crack formation at the surface
graded mullite thermal barrier coatings subjected to transient h
ing and cooling loads was studied in Kokini and Takeuchi@26#.
Here, an experimental setup was used to apply concentrated
sient thermal loads on beam-shaped mullite-CoCrAlY~bond coat
alloy! functionally graded TBCs plasma sprayed on steel s
strates. The formation of multiple surface cracks on these sp
mens was observed. A corresponding analytical model was de
oped to study the fracture process. Since mullite is significa
more resistant to high-temperature creep and time-dependen
formation, @27#, compared to YSZ that is more widely used
TBCs, its response was assumed to beelasticdue to therelatively
lower temperatures~800°C! considered in this study. It wa
shown that the location of the surface cracks may be estim
with reasonable accuracy by calculating the thermal stresses
erated by the temperature gradients in the coating. It was
shown that the formation of multiple surface cracks reduces
propensity for growth of the horizontal delamination crac
thereby delaying final failure of the coating.

The above studies suggest that the present understandin
thermomechanical fracture in graded ceramic-metal system
limited to thermoelastic response under somewhat simplified lo
ing and boundary conditions. However, when such grade
ceramic-metal systems~Fig. 1! are used as TBCs, under the typ
cal service environments,@1,2#, their response is not likely to
remain elastic. Under the influence of high temperatures and
dients, the layers of a graded TBC~comprised of ceramic-bond
coat alloy composites! are expected to experience significanttime-
dependent~viscoplastic! deformations. It becomes important then
to model the effective time-dependent~viscoplastic! response and
high temperature thermomechanical properties of graded T
systems. These models can then be used to analyze the res
of graded TBCs to loading conditions that more closely emu
their service environments. Such studies are vital for design
TBCs with enhanced durability.

The present study is motivated by experimental observat
from laser thermal shock tests on functionally graded yttria p
tially stabilized zirconia–bond coat~YSZ–BC! ~NiCoCrAlY!
TBCs presented in Kokini et al.@28#. In what follows, these ex-
perimental results are briefly reviewed. Analytical models are t
developed to help understand the observed thermal fracture
havior. Micromechanics models for the time-dependent beha
and effective thermoelastic properties of YSZ–BC alloy comp
ites that constitute the layers of a graded TBC are discus
These models are then utilized in fracture mechanics analyse
assess the response of the various TBC architectures used i
experiments to thermal loading and boundary conditions
simulate the laser thermal shock tests. The driving force for
tiation of surface cracks and propagation of TBC-bond coat in
face cracks in graded TBCs is then analyzed. Finally, the ana
cal models are correlated with the experimental findings.

2 Background and Motivation
For thick thermal barrier coating~TBCs! used in diesel engine

applications, thermal fracture correlates with highly localiz
heating caused by the combustion of fuel plumes from the in
tion nozzle. This produces local steep temperature gradi
through the coating thickness,@5,13#. Laser thermal shock experi
ments provide a means to recreate in a precisely controlled m
ner such high heat flux thermal loading conditions resulting
high surface temperatures and large temperature gradients thr
236 Õ Vol. 70, MARCH 2003
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the TBC thickness. The thermal loads used in this study repre
an upper bound of the loading that can be applied on such c
ings. They may also represent situations such as overloads
transients during startup.

The results of thermal shock experiments performed usin
high power laser on functionally graded YSZ–BC alloy TBC
were recently reported,@28#. The three TBC architectures~one,
three, and nine-layer! that were considered in this study are illu
trated in Fig. 1. The coatings were designed to have similar th
mal resistances,@28#, and hence offered comparable thermal pr
tection to their substrates. The thermal shock experiments w
performed by applying a concentrated CO2 laser heat flux at the
center of the top surface of the coating for four seconds, follow
by ambient cooling. Surface cracks on the TBC as well as h
zontal cracks near the TBC-BC interface were observed after
tests. These have been schematically illustrated in Fig. 2. The
observations from the thermal shock tests,@28#, are reviewed:

1. Under similar thermal loads, most of the one-layer specim
showed single surface cracks, while most of the three and n
layer specimen show multiple surface cracks. The average num
of surface cracks per specimen increased with coating grada
as shown in Table 1.

2. For a given maximum surface temperature during therm
shock, the final length of horizontal cracks after the test, w
observed to be shorter with increased coating gradation. Thus
one and nine-layer specimens had the longest and shortest
zontal cracks, respectively, for similar surface temperatures.
measured horizontal crack lengths reported in Kokini et al.@28#
are shown in Fig. 3.

Thus, there is agreater tendency to form multiple surfac
cracks with increased level of coating gradation. A greater res
tance to horizontal crackingis also observed withincreasing
coating gradation. The analytical models presented in this pap
help understand:

1 the effective thermo-elastic and time-dependent behavio
the individual layers.

2 response of the various TBC architectures to the applied t
mal shock loading.

3 increased propensity for surface crack formation with
creased coating gradation.

4 effects of coating architecture and surface crack configu
tion on the driving force for the horizontal crack growth.

3 Micromechanics Models for Effective Properties

3.1 Linear Elastic Properties of Ceramic-Bond Coat Alloy
Mixtures. The thermoelastic properties of the ceramic~YSZ!
and bond coat alloy were measured by the manufacturer of th
coatings~Caterpillar, Inc., Peoria, IL, U.S.A.! over a range of
temperatures between 25°C and 1500°C. Their average valu
three of these temperatures are shown in Table 2 below. Using
properties of YSZ and bond coat alloy, the properties of
YSZ–BC alloy composites that comprise the layers of the gra
TBC systems were computed using mean field micromecha
methods such as the self-consistent, Mori-Tanaka, Voigt~upper-
bound! and Reuss~lower-bound! models,@29,30#.

A comparison between the thermal conductivity at 25°C
YSZ–BC alloy composites predicted by the self-consistent, Mo
Tanaka, Voigt~upper-bound!, and Reuss~lower-bound! models
are shown in Fig. 4 for various ceramic volume fractions. The
are also compared with the measured thermal conductivitie
these composites at 25°C provided by the manufacturer,@28#.
Similarly, the model predictions and experimental data of ela
modulus at 25°C are shown in Fig. 5. A detailed discussion of
correlation between the model predictions and experimental
for the thermoelastic properties is presented in Rangaraj and
kini @31#.
Transactions of the ASME
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Experimental measurements of thermoelastic properties for
YSZ–BC alloy composites at higher temperatures are curre
unavailable. Hence, the high-temperature properties of YSZ
BC alloy ~Table 2! may be utilized to predict those of the com
posite using the micromechanics models. This enables the c
putation of the effective thermoelastic properties of each laye
the graded TBCs~Fig. 1! over the range of temperatures~25–
1300°C! considered here.

3.2 Time-Dependent Response of Ceramic-Bond Coat Al
loy Composites. In graded TBCs, the temperature in layers b
low the relatively thin ceramic-rich top layer may also be sign
cantly high. There are hence, likely to be significant tim
dependent ~viscoplastic! effects in these layers which ar
comprised of YSZ–BC alloycomposites. An estimation of the
echanics
the
tly

and
-
om-
of

e-
fi-
e-

effective viscoplastic properties of these composites is there
essential in order to understand the response of graded TBC
thermal shock loading.

The time-dependent behavior of YSZ and bond coat alloy
be described by the Norton-Hoff creep equation,@32,33#. This
equation, describes the relation between the equivalent strain
and flow stress in YSZ~ceramic! and bond coat alloy~denoted by
subscripts ‘‘c’’ and ‘‘ b’’ respectively! as

ĖC5Ac expS 2DHc

R•T Dsc
nc (2)

Ėb5Ab expS 2
DHb

R•T Dsb
nb. (3)
Table 1 Summary of surface thermal fracture data

Architecture
Samples
Tested

Number of Samples Showing Particular
Number of Surface Cracks~SC!

Average SCs per
Specimen

1 SC 2 SC 3 SC 4 SC

One layer 19 14 5 0 0 1.25
Three layer 17 2 10 2 3 2.35
Nine layer 14 2 4 4 4 2.78
MARCH 2003, Vol. 70 Õ 237



l

e

r

a
a

eci-
g in
by

the
did
uasi-
era-
rob-
ient
ents
in the

med.

d are
m-
was
con-
ere
The
ar-

tance

ned
ond
ture-
s
oat
The constantsAc , DHc , Ab , DHb are the prefactors and cree
activation energies for the ceramic and bond coat alloy, resp
tively, R and T denote the universal gas constant and abso
temperature, respectively. These properties for YSZ,@32#, and BC
alloy, @33#, are shown in Table 3.

Rangaraj and Kokini@31# presented a model for effective time
dependent response of ceramic-bond coat alloy composites u
typical TBC service temperatures. The model was based o
self-consistent micromechanics formulation,@34,35#. Briefly, the
effective flow-stress in each phase was related to its strain
through its nonlinear~strain-rate dependent! creep viscosity.
Strain-rate averaging and self-consistent localization relations
tween the two phases were then used to compute the strain-
dependent creep viscosity of the composite as a function of
creep viscosity and volume fraction of the two phases. This mo
enabled the computation of stress versus strain-rate respons
fective stress exponent~n!, activation energy (DH), and pre-
factor ~A! of the composite for various compositions. Sample
sults of stress exponent and activation energy of the YSZ–
alloy composites for various YSZ volume fractions are shown
Fig. 6. The stress exponents and activation energies shown
have been normalized by the corresponding properties of the N
oCrAlY BC alloy.

Since the effective time-dependent response and thermoel
properties of the individual layers of a graded TBC are now av
able ~Fig. 4–6!, the previously discussed thermal shock expe
ments on the three TBC architectures~Fig. 1! can be simulated.

4 Simulation of the Laser Thermal Shock Test

4.1 Model, Boundary Conditions, and Materials. The fi-
nite element method was used to model the response of the f
tionally graded TBC systems~Fig. 1! to transient thermal loading

Fig. 3 Horizontal crack length „Hc… for the three TBC architec-
tures. „Reproduced from Kokini et al. †28‡.…
238 Õ Vol. 70, MARCH 2003
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that closely emulates the thermal shock tests,@28#. The thermal
shock experiment consisting of subjecting the surface of the sp
men to a laser beam for four seconds and subsequent coolin
air was simulated. The effect of the laser beam was modeled
applying a heat flux with a Gaussian spatial distribution about
center of the top surface of the TBC. Since the deformations
not affect the temperatures, the problem was modeled as a q
steady-state thermomechanical problem. First, the nodal temp
tures were calculated by solving the transient heat transfer p
lem. All of these temperatures were entered into a trans
structural analysis model to compute the resulting displacem
and stresses. Since beam-shaped specimens had been used
experiments, plane-stress finite element analyses were perfor

The structural and thermal boundary conditions,@36#, placed on
the model were chosen to simulate the experimental setup an
illustrated in Fig. 2. Due to symmetry of the loading and geo
etry, a half-symmetric model was considered. The top edge
subjected to a gaussian heat flux distribution and a boundary
dition of ambient convection. The side and bottom edges w
assigned boundary conditions of ambient convection as well.
applied heat flux intensity was varied with changing coating
chitectures to keep the same surface temperature~1300°C! in or-
der to assess the response of coatings of similar thermal resis
to the same surface temperatures.

The different areas in the finite element model were assig
their respective thermomechanical properties. The TBC and b
coat were modeled as elastic-viscoplastic materials. Tempera
dependent~between 25–1300°C! thermomechanical propertie
were used for each layer of the TBC as well as for the bond c
using previously discussed experimental data~for YSZ and BC

Fig. 4 Thermal conductivity of YSZ–BC alloy composites.
„*Experimental data, as received from Caterpillar Inc., Peoria,
IL.…
Table 2 Temperature-dependent thermomechanical properties of yttria partially stabilized zirconia and bond coat alloy

Material T°C

Thermal
Conductivity
K ~W/mK!

Specific
Heat, °C
~J/mol.K!

Density
r

~Kg/m3!

Elastic
Modulus
E ~GPa!

Poisson’s
Ratio

n

Thermal
Expn. Coeff.
a3105 ~/K!

BC 25 3.88 460 6290 64.5 0.30 1.03
alloy 725 7.93 617 6290 53.0 0.30 1.10

1300 9.86 620 6290 43.0 0.30 1.14
YSZ 25 0.67 420 5600 13.6 0.25 0.75

725 0.58 547 5600 10.4 0.25 0.90
1300 0.56 569 5600 8.0 0.25 0.97
Transactions of the ASME
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alloy! and micromechanics models~for YSZ–BC alloy compos-
ites!. The layer of pure YSZ and the BC layer were assigned th
respective viscoplastic~time-dependent! properties as shown in
Table 3. The viscoplastic properties for layers of the TBC co
prised of YSZ–BC alloy composites were computed from the p
viously discussed~Fig. 6! self-consistent model. The steel su
strate was considered to be linear elastic in view of the fact
the temperatures here remain comparatively low. All the com

Fig. 5 Elastic stiffness of YSZ–BC alloy composites.
„*Experimental data, as received from Caterpillar, Inc., Peoria
IL.…

Table 3 Properties for time-dependent behavior of ceramic
and bond coat alloy

Material
Pre-factor

A (NÕm2)(sec2n)
Stress Exponent

n
Activation Energy

DH ~kJ/Kg!

Bond coat alloy 9.05310212 2.7 150
Zirconia ~YSZ! 531027 1.8 217

Fig. 6 Normalized stress exponent „n Õn BC… and activation en-
ergy „DHÕDHBC… for YSZ–BC alloy composites
Journal of Applied Mechanics
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tations were performed with ABAQUS® developed by Hibb
Karlsson & Sorensen, Inc., using eight-noded plane-stress
ments.

4.2 Crack-Tip Finite Elements and Strain Energy Release
Rates. In order the assess the driving force for surface and
terface crack initiation, models with short surface cracks on
TBC and horizontal cracks at the TBC–bond coat interface w
considered. The size and location of these cracks are discu
below in more detail. In order to compute the strain energy rele
rates andJ-integrals accurately from these cracks, refined mes
were employed in the vicinity of the crack tips. A mesh size
around 0.5% of the crack length for the interface cracks a
0.75% of the crack length for the surface cracks, in gene
yielded convergent results. Hence, the size of the elements
the crack tip was rather small in comparison to the TBC and m
significantly the substrate thickness. To contain the size of
finite element model within reasonable limits, highly grad
meshes were employed. A uniform element size~0.5% of crack
length! was used in a small square area around the crack tip.
element size was then gradually increased with increasing
tance from the crack tip. The models typically had 12,000
15,000 nodes and a total of 4000 to 5000 plane-stress eleme

To prevent the interpenetration of the crack surfaces due to
crack closure that results during heating, a contact boundary
dition was used at the crack surfaces. This was facilitated by
use of six-noded interface elements between the edges of
eight-noded elements on either crack face. A smooth~coefficient
of friction, m50) contact between the crack faces was assume
all cases. Following McDonald et al.@37#, the gap conductance
(kG) across the crack faces is directly proportional to the cond
tivity ~k! of the medium between the crack faces~air in the present
study,kair50.025 W/m K) and inversely proportional to the crac
opening displacement~d!, i.e., kG5kair /d, @37#. In the present
analyses, short cracks are being considered. The resulting c
opening displacements~d! are hence small. A relatively high ga
conductance (kG;104 W/m2°K) was hence prescribed across th
crack faces.

As shown later, the surface and interface cracks experiencno
opening and rathersmall sliding displacementsduring heating
when time-dependent deformations and high-temperature s
relaxation effects occur in the TBC layers. The faces of the s
face as well as the interface cracks were in contact only du
heating. After the stress relaxation, during cooling, they exp
ence significant opening displacements. However, this open
results due to the nonreversible viscoplastic deformations
stress-relaxation effects that occurred during heating. Thus, du
cooling the crack faces were not in contact. Hence, only sm
sliding displacements occurred during heating when the cr
faces were in contact.

As discussed later, the strain-energy release rates for the i
face cracks were computed using the crack flank displacem
method developed by Smelser@38# from the relative opening and
sliding displacements between the two crack surfaces obta
from the finite element analyses. The calculated strain energy
lease rates agreed well with theJ-integral computed from
ABAQUS®. The driving force for growth of the surface crack
was assessed from the calculatedJ-integral values.

5 Temperature Distribution in the Thermal Barrier
Coatings „TBCs…

As mentioned earlier, the heat flux applied to the TBC t
surface~Fig. 2! was adjusted so as to yield a maximum surfa
temperature of 1300°C. The temperature history at the cente
the top surface (x50, y50 in Fig. 2! for the three architectures i
shown in Fig. 7. The coating is initially at uniform room temper
ture ~298 K!. The temperature at the center of the top surfa
increases to 1573 K at the end of the heating period (t54 sec.)
and subsequently cools back to nearly room temperature in
MARCH 2003, Vol. 70 Õ 239
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next 11 seconds after the heat flux is removed. The tempera
histories on the surface of the one and three layer architect
were similar since they had similar thermal resistances of 8
7.8 K/W, respectively,@28#. Since the nine-layer system had
slightly higher thermal resistance~10 K/W!, its surface heated an
cooled at a slower rate.

The temperature distribution through the thickness of the c
ing along its center (x50) at the end of the heating period (t
54 sec.) is shown in Fig. 8 for the three architectures stud
Here, the distance from the top surface of the coating~y! has been
normalized with respect to the total TBC thickness~t! for each of
the architectures. Since the coatings have similar thermal re
tances, the bond coat temperatures are similar in all cases
range between 110–180°C. The small differences in the bond
temperatures in the three architectures are consistent with
respective thermal resistances, i.e., the bond coat is cooles
hottest for the nine (R510°K/W) and three-layer (R57.8 K/W)
systems, respectively. It is observed from Fig. 8 that as the con

Fig. 7 Temperature history at the center of the top surface of
the TBC

Fig. 8 Temperature distribution through the TBC thickness at
the end of heating „tÄ4 sec …
240 Õ Vol. 70, MARCH 2003
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of bond coat alloy~which has a much higher thermal diffusivit
than YSZ! in the coating is increased, the temperature at a gi
fraction of distance (y/t) from the TBC surface decreases. Th
the coating architecture has a significant influence on this t
perature distribution.

6 Location of Surface Cracks
The region near the coating surface experiences high temp

tures during heating~Fig. 7!. A steep temperature gradient exis
through the coating thickness~Fig. 8!. The lower layers of the
TBC, the bond coat layer and substrate are significantly coo
This causes compressive stresses to develop near the coatin
face due to its constrained thermal expansion. The combined
fect of these compressive stresses and high temperatures
thermally activated time-dependent deformations in the coat
@12,13#. The compressive stresses then relax with time dur
heating and the subsequent cooling gives rise to tensile stre
These tensile stresses lead to formation of surface cracks~SC! in
the coating.

The coatings used in the present study showed multiple sur
cracks under transient thermal loading,@28#. A methodology de-
veloped in Kokini and Takeuchi@26# was used to analytically
estimate the location of the surface cracks. At first, a trans
thermal stress analysis of the TBC systems without any sur
cracks is carried out. This analysis predicts the maximum ten
stress (sxx), to occur at the center of the top surface. The fi
surface crack would therefore form at this location and is henc
referred to as the center surface crack~Fig. 2!. The transient ther-
mal and structural analyses are again carried out with one s
center surface crack~5% of TBC thickness! to determine the
stress distribution along the TBC top surface. The second sur
crack would then be located at the new peak of this stress pro
A similar procedure can be repeated with additional surface cra
in the model to estimate the locations of the subsequent sur
cracks. The stress profiles along the coating top surface for
right half ~symmetric model! of the nine-layer architecture with
no surface cracks, one surface crack and two surface cracks
shown in Fig. 9. Here, the distancex is normalized with respect to
half the coating width,w ~Fig. 2!. An important observation made
from Fig. 9 is that the magnitude of the maximum stress decrea
as an additional cracks forms on the surface. Multiple surf
crack formation relieves the tensile stresses in the TBC. This i
be expected since the presence of additional surface cracks m
the TBC more compliant.

Fig. 9 Stress distribution along the top surface „yÄ0… of the
nine-layer TBC
Transactions of the ASME
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The locations of up to four surface cracks in the symme
model~that correspond to 7 on the TBC surface! were determined
by the above procedure and the results for the three architec
are shown in Table 4. Here, the location of each surface crackxn)
in the three architectures as a percentage of half the coating w
~w in Fig. 2! is presented. The estimated locations of these sur
cracks were verified with some of the micrographs presente
Kokini et al. @28# and a reasonable agreement was found.
instance, a nine-layer specimen subjected to a thermal shock
with a maximum surface temperature comparable to that in
present analysis~1300°C! exhibited a second surface crack~SC2!
at a distance of 2000mm from the center of the TBC,@28#. The
corresponding analytically estimated distance in Table 4 is 1
mm.

As the gradation of the coating increases, the surface cra
form further away from the center. This is a combined effect
temperature gradients, coating thickness and time-dependen
formations in the lower layers of the graded TBCs. To assess
effect of time-dependent behavior in the lower layers on the lo
tions of the surface cracks, the calculations were performed w
out including the time-dependent behavior of the lower layers
the nine-layer architecture, when time-dependent behavior in
the top layer is considered, the estimated locations of the sec
~SC2!, third ~SC3!, and fourth~SC4! surface cracks reduce to 9
11.6 and 14.3% of the coating width~w!, respectively.

To estimate the role of total TBC thickness on the surface cr
locations, the thickness of the one-layer TBC was varied betw
0.6 mm. ~its original thickness! and 2.2 mm.~thickness of the
nine-layer TBC! and the location of the second surface cra
~SC2! was calculated for each case. The estimated locations~as a
percentage of coating width! of SC2 for one-layer TBC thicknes
of 0.6, 0.85~thickness of three-layer TBC!, 1.6 and 2.2 mm. were
1.06, 3.84, 11, and 11.8%, respectively. Comparing these
mates with those in Table 4 for the location of SC2 in the th
and nine-layer TBCs, it is evident that the formation of the surfa
cracks further away from the center in a more graded TBC
mainly due to its increased thickness.

7 Surface Crack Initiation
As seen from the experimental observations,@28#, there was an

increased tendency for the formation of multiple surface cra
with increasing coating gradation. To understand this, the rela
magnitudes of the forces driving the surface crack initiation in
three architectures must be compared. The response to the p
ously described thermal shock loading of models with pre-exis
surface cracks was therefore considered. The location of the
face cracks for each of the architectures was as previously
cussed~Table 4!. To study the initiation of these cracks, sho
surface cracks~5% of the TBC thickness, crack ratioaSC/t
50.05) were considered. For a particular architecture, all the
face cracks in the model had the same length. The surface cr
were all contained in the top layer of the TBC.

The relative opening (dv) and sliding~du! displacements be
tween the faces of the surface cracks in the one, three and
layer TBCs during the heating-cooling cycle are shown in Fig.
Models with four short (aSC/t50.05) surface cracks have bee
considered in Fig. 10. The displacements are shown for the se

Table 4 Estimated location of surface cracks „SC…

Architecture

Location of nth SC as a fraction of
half coating width (xn Õw)%

SC1 SC2 SC3 SC4

One layer 0 1.06 2.13 3.33
Three layer 0 4.25 12.2 16
Nine layer 0 12.5 15.4 18.2
Journal of Applied Mechanics
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surface crack~SC2!, which is a side surface crack. The openin
~normal! and sliding~tangential! displacements are represented
solid and dashed lines, respectively.

It is clear from Fig. 10 that the surface cracks experienceno
openingand rathersmall sliding displacementsduring heating (t
,4 sec). During heating, the TBC experiences compress
stresses and the time-dependent~viscoplastic! deformations and
stress-relaxation effects occur. Thus,when the viscoplastic defor
mations occur in the coating, the surface cracks experience v
small sliding deformations. During subsequent cooling, the coa
ing experiences tensile stresses,@27#. These tensile stresses resu
due to the stress relaxation that occurred during heating. Howe
during cooling (t.4 sec) no additional viscoplastic strainsde-
velop in the TBC. The surface cracks open during cooling wh
the TBC experiences tensile stresses. During cooling, the ope
~normal! displacements between the surface crack faces incr
and attain their maximum steady-state values by the end of
heating-cooling cycle. Furthermore, as seen from Fig. 10,
crack opening that results during cooling is much larger in ma
nitude than the sliding that occurred during heating. It can also be
noted from Fig. 10 that with an increase in the gradation of
TBC, the crack opening increases and the nine-layer TBC has
highest crack opening.

The J-integral during the heating-cooling cycle for the sam
side surface crack~SC2! from Fig. 10 is shown in Fig. 11 for the
three TBC architectures. For these surface cracks, it is clear f
Fig. 11 that theJ-integral follows the same trend as the relati
displacements between the crack faces, i.e.; theJ-integral remains
negligibly small (;1021 J/m2) during heating when the surfac
cracks experience small sliding displacements. TheJ-integral in-
creases during cooling when the TBC experiences tensile stre
and the surface cracks open. TheJ-integral attains a maximum
steady-state value by the end of the heating-cooling cycle.
cordingly, thismaximum steady-statemagnitude of theJ-integral,
@39#, was used to characterize the driving force for surface cr
initiation. TheJ-integral was computed from ABAQUS® which
uses the domain integral method to evaluateJ-integral,@40#.

For a crack growing in a nonlinear viscous material, t
C* -integral, @41–42#, obtained by replacing the strains and di
placements in theJ-integral @39# by their corresponding rates i
commonly used to assess the crack driving force. However, in
present case, the sliding displacements that occur during hea
~when the viscoplastic deformations occur in the TBC! are rather
small in comparison to the opening displacements that result
ing cooling ~when the TBC experiences no additional tim

Fig. 10 Opening „dv … and sliding „du … displacements for the
side surface crack „SC2… in coatings with four surface cracks,
each 5% of the TBC thickness in length „aSC ÕtÄ0.05…
MARCH 2003, Vol. 70 Õ 241
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dependent deformations!. Hence, theJ-integral,@39#, was used to
characterize the driving force for surface crack extension.

The J-integral values at the end of the thermal loading cyc
~heating and cooling! after the system has cooled back to stead
state (t515 sec.) are shown in Fig. 12. The cases of four surfa
cracks and three surface cracks in the symmetric model were
sidered. In Fig. 12, theJ-integral values for each of the surfac
cracks for the three coating architectures are shown. It can
noted that theJ-integral values increase with coating gradation.
a given surface crack, the nine-layer coating has the high
J-integral value whereas the one-layer coating has the low
Thus, with increasing compositional gradation of the TBC, the
is an increased driving force for surface crack initiation.

This is related to the temperature distribution through the co
ing thickness~Fig. 8! and its effect on the time-dependent defo
mation in the coating layers. The three coating architectures h
similar thermal resistances, but they are of different compositio
gradations. The distributions of thermomechanical and viscop
tic properties through the TBC thickness hence change with T
architecture~Figs. 4–6!. The bond coat alloy has a significantl
higher stress exponent and lower activation energy~Table 3! com-
pared to the ceramic and therefore experiences a higher amou
viscoplasticity. In a graded TBC, the layers below the ceram
rich top layer contain significant volume fractions of bond co
alloy ~Fig. 1!. These layers are also subjected to elevated temp
tures~Fig. 8!. The resulting time-dependent deformations~stress
relaxation! in these layers causes the surface cracks in the fu
tionally graded TBCs to have higherJ-integral values.

Further, the total TBC thickness and, the thickness of the
ceramic-rich layers are different~Fig. 1! in the three architectures
Previous studies on monolithic single layer YSZ coatings,@13#,
have shown that as the thickness of the coating was reduced
density of surface cracks on the coating increased. It is belie
that in the present study, as the gradation of the coating increa
and the top ceramic-rich layer becomes thinner, this top la
starts behaving in a manner similar to the previously studied t
monolithic zirconia TBCs,@13#, and develops multiple surface
cracks.

Fig. 11 J -integral for the side surface crack „SC2… during the
heating-cooling cycle „model with four surface cracks, length
of each surface crack was 5% of the TBC thickness, aSC Õt
Ä0.05…
242 Õ Vol. 70, MARCH 2003
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8 Effect of Top-Layer Thickness on Surface Cracking
To assess the role of the top ceramic-rich layer on surface c

initiation, the thickness of this top layer in the three and nine-la
architectures was varied in the models. The total thickness of
TBC and its thermal resistance were, however, kept constant.
was achieved by mutually adjusting the individual thickness of
lower layers in order to accommodate the changes~in resistance
and thickness! brought about by varying the top-layer thicknes
The boundary conditions and thermal loads were the same.

The steady-stateJ-integral values for each of the side surfa
cracks ~Fig. 2! on the three-layer architecture, containing thr
surface cracks, as a function of its top-layer thickness are sh
in Fig. 13. The top-layer thickness was varied between 0.125
and 0.375 mm. For each value of top-layer thickness, at least
surface crack lengths were considered. The lengths of the sur
cracks varied between 5 and 18% of the total TBC thickne
Again, these surface cracks were all contained within the
layer. It is clear from Fig. 13 that theJ-integral values are signifi-
cantly higher for coatings with thinner top layers. This may
expected considering the fact that with a thinner top layer,
lower layers~comprised of ceramic-bond coat alloy composite!
experience higher temperatures and this would lead to gre
amount thermally activated time-dependent deformation in th
layers. These time-dependent effects influence the deformatio
the top layer as well and hence lead to the observed increase i
J-integrals for the surface cracks.

The effects of the top-layer thickness on theJ-integral for each
of the side surface cracks in the nine-layer architecture are sh
in Fig. 14. Again, a model with three short surface cracks~5% of
the TBC thickness! was considered and theJ-integrals for the two
side surface cracks are shown in Fig. 14. The results are simila
those in Fig. 13. Figures 12–14 suggest that an important fa
responsible for the increased driving force for multiple surfa

Fig. 12 Steady-state J -integrals for the surface cracks in mod-
els with multiple 5% „aSC ÕtÄ0.05… surface cracks „SCs…
Transactions of the ASME
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cracking with increasing coating gradation at constant therma
sistance is thereduced thickness of the ceramic-rich top layer.

9 Effect of Surface Cracks on the Horizontal Cracks
As discussed earlier, the TBC experiences tensile stresses a

end of a heating-cooling cycle. The gradient in tensile stres
through the coating thickness causes a moment to act on the T
This moment creates tensile normal stresses along the TBC
interface leading to initiation of horizontal cracks near this int
face,@14,15#. These cracks grow to cause final delamination a
loss of structural integrity of the coating. As seen in Fig. 3, t
coating architecture~gradation! and applied thermal loading ca
have a significant effect on the length of these horizontal cra
Further, the presence of surface cracks in the coating may hav
influence on the force driving the growth of these horizon
cracks.

To assess the influence of coating gradation as well as the n
ber and size of the surface cracks on the force driving the gro
of the horizontal cracks, models with horizontal cracks in addit

Fig. 13 Effect of top-layer thickness on J -integral for side-
surface cracks in the three-layer TBC

Fig. 14 Effect of top-layer thickness on J -integral for side-
surface cracks in the nine-layer TBC
Journal of Applied Mechanics
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to the previously described surface cracks were considered~Fig.
2!. The horizontal cracks were assumed to be located at the in
face between the TBC and bond coat layers. The surface c
locations for each of the TBC architectures were as shown
Table 4. To assess the force driving interface crack initiation in
three architectures, a short interface crack that was 12% of
thinnest ~one-layer! coating was considered. TheJ-integral and
strain energy release rate were used to characterize the force
ing the growth of this interface crack. The layers near t
TBC–BC interface do not experience elevated temperatures~Fig.
8!. Hence, these layers do not experience any significant ti
dependent effects and their response tends to remain elastic
strain-energy release rates for the interface cracks were calcu
following Smelser@38# from the relative opening and sliding dis
placements near the interface crack tip. The computed strain
ergy release rates agreed very closely with theJ-integral estimated
from ABAQUS®.

Figure 15 shows the strain energy release rate~J-integral! for
the interface crack during the heating cooling cycle. One, thr
and nine-layer TBCs with a single center surface crack that
half the TBC thickness (aSC/t50.5) have been considered her
Similar to the surface cracks~Fig. 10!, the interface cracks expe
rience no opening and rather small sliding displacements du
heating and their energy release rates remain negligibly small
ing heating as seen in Fig. 15. During subsequent cooling,
interface cracks open and their energy release rate increase
attains a steady-state value. This maximum steady-state valu
the energy release rate is used to characterize the driving forc
interface crack extension.

The phase anglec5tan21(KII /K I), whereK I and K II are the
mode I ~opening! and mode II ~shear! stress intensity factors
respectively, may be used to assess the mode mixity for the in
face cracks. For such a bimaterial interface crack, the phase a
~c! can be computed from the ratio of the crack-opening~dv! to
the sliding~du! displacement and the elastic constants of the t
materials across the interface,@43#. Accordingly, the ratios of the
opening to the sliding displacements (dv/du) at steady state (t
515 sec) were used to compute the phase angle~c!. The com-
puted phase angles for the TBC–BC interface cracks in the o
three, and nine-layer TBCs were 14, 23, and 24 deg, respecti
and have been indicated in Fig. 15. Thus, the mode mixity
comparable in all three cases and there is a dominance of mo
~opening!.

The steady-state (t515 sec) strain energy release rates for t

Fig. 15 Strain energy release rate for the TBC–bond coat in-
terface crack during the heating-cooling cycle in coatings with
one 50% „aSC ÕtÄ0.5… center surface crack
MARCH 2003, Vol. 70 Õ 243
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interface cracks in the three architectures are shown in Fig.
Here, the lengths of all the surface cracks were 50% of the t
TBC thickness (aSC/t50.5) in each of the three architecture
The case where no surface cracks are present as well as
where one, two, three, and four surface cracks are present in
symmetric model have been shown in Fig. 16. Figure 16 sh
that, for a given number of surface cracks, with a certain surf
crack ratio (aSC/t), the strain energy release rate for the interfa
crack reduces with increased coating gradation. Thus the f
driving the interface crack growth is highest in the one-layer a
lowest in the nine-layer architecture.

Figure 16 also shows that if no surface cracks were presen
the TBC, the strain energy release rate for the interface crack
negligibly small. Thus, if no surface cracks formed on the TB
the driving force for interface cracking would be negligible. How
ever, owing to the thermally activated time-dependent effects
YSZ based TBCs, the formation of these surface cracks are in
table as evidenced by the previously presented experimenta
sults, @28#, as well as earlier investigations,@11,27#. With one
relatively long (aSC/t50.5) surface crack in the model, the e
ergy release rate for the interface crack is quite high. The rea
for the same are discussed below~Fig. 17!. Given that these sur
face cracks do form, the strain energy release rate for the inter
cracks decrease with an increase in the number of surface cr
Thus, for a given architecture, with surface cracks of a cer
length, as the number of surface cracks in the model is increa
from one to four, a significant reduction in the driving force f
interface crack growth is seen.

The interface cracks tend to open during cooling (t.4 sec)
when the TBC experiences tensile stresses. It was seen from
9 that an increase in the number of surface cracks makes
coating more compliant~strain-tolerant! and relieves some of the
tensile stresses (sxx) in the TBC. The interface cracks tend t
open during cooling under the action of the bending moment
ing on the TBC. This moment arises due to the gradient in ten
stresses through the coating thickness. With an increase in
number of surface cracks, the tensile stresses in the TBC
hence the moment acting on the TBC reduce significantly. Th
fore, the relative opening displacements between the faces o
interface cracks as well as their energy release rates were fou
reduce with an increase in the number of surface cracks on
TBC. Furthermore, the presence of these surface cracks doe
change the temperature at the TBC–bond coat layer interface
hence the insulating effects of the coating are preserved.

Fig. 16 Steady-state strain energy release rates for the inter-
face cracks in coatings with 50% „aSC ÕtÄ0.50… surface cracks
244 Õ Vol. 70, MARCH 2003
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The effect of increasing surface crack lengths on the stra
energy release rates for the interface cracks is shown in Fig.
Here, the cases where one surface crack and two surface c
~of equal length! were present in the symmetric model have be
considered for each of the three architectures. Figure 17 sh
that when there is no surface crack (aSC/t50), the energy release
rate for the interface crack is negligibly small (;1022 J/m2).
Further, for a given number of surface cracks, the energy rele
rate for the interface cracks increase as these surface crack
come longer. Again, the gradient in tensile stresses through
coating thickness after the heating-cooling cycle creates a ben
moment. This moment causes the interface cracks to open du
cooling. As the surface cracks become longer, the area of the T
resisting this moment reduces and hence the effective ben
~flexural! stiffness of the TBC becomes lower. This leads to high
opening displacements for the interface cracks. Hence, for a g
number of surface cracks on the TBC, the strain energy rele
rate for the interface crack increases as these surface crack
come longer.

From the experimental data in Kokini et al.@28#, it was seen
that a one-layer coating would typically develop one surface cr
approximately 75% of its thickness (aSC/t50.75) in a laser ther-
mal shock test where the maximum surface temperature
1300°C. The three-layer coating would develop three surf
cracks, to reach about 70% of its thickness. In a similar test,
nine-layer coating would develop three surface cracks less
30% of its total thickness. With these surface crack configuratio
the strain energy release rate for the interface cracks in the t
architectures can be compared from Fig. 17. It is found that
strain energy release rate for the interface crack in a one-la
TBC is two orders of magnitudegreater than the correspondin
value in the three-layer TBC andthree orders of magnitudeas that
in the nine-layer TBC. This illustrates the combined effect of
increased number of surface cracks and coating architectur
reducing the driving force for interface crack growth with in
creased compositional gradation.

10 Summary and Conclusions
The response of functionally graded YSZ–bond coat al

TBCs to transient thermal loading simulating previously repor

Fig. 17 Effect of surface crack length on the strain energy re-
lease rates for the interface cracks „arrows indicate pertinent
y -axis …
Transactions of the ASME
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laser thermal shock tests was modeled. The effects of ti
dependent~viscoplastic! deformations in the coating layers we
incorporated in the analyses.

The results indicate that the tendency for multiple surfa
cracking with increased coating gradation may be attributed to
time-dependent effects of the lower layers and even more c
cally, to the decrease in thickness of the ceramic rich top la
The thermal shock tests,@28#, showed that the nine-layer spec
mens on an average had the highest number of surface cr
while the one-layer specimens predominantly had single sur
cracks.

A more graded TBC develops more number of surface cra
Multiple surface cracks make the TBC more compliant, relie
the tensile stresses in the TBC and consequently reduce the b
ing moment acting on the coating. This is mainly responsible
the decreased driving force for TBC–BC interface crack grow
with increased compositional gradation. This correlates with
fact that for a given maximum surface temperature in the ther
shock tests, the nine-layer coatings had the shortest inter
cracks while the one-layer coatings had the longest.

For a given number of surface cracks, the driving force
interface crack propagation increases with the length of these
face cracks due to a reduction in the area resisting the mom
acting on the TBC. For surface cracks of a given length, an
crease in their number reduces the driving force for interf
crack growth. These two effects mutually compete and there
having a TBC with a sufficiently high population of short surfa
cracks can enhance its resistance to delamination. A plas
sprayed TBC with a dense population of short surface cracks
develops a strain tolerance similar to an EBPVD TBC while
taining its primary advantage of superior thermal resistance.
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On Global Energy Release Rate of
a Permeable Crack in a
Piezoelectric Ceramic
A permeable crack model is proposed to analyze crack growth in a piezoelectric cer
In this model, a permeable crack is modeled as a vanishing thin, finite dimension,
angular slit with dielectric medium inside. A first-order approximation solution is deriv
in terms of the slit height, h0 . The main contribution of this paper is that the new
proposed permeable crack model reveals that there exists a realistic leaky mod
electrical field, which allows applied electric field passing through the dielectric med
inside a crack. By taking into account the leaky mode effect, a correct estimatio
electrical and mechanical fields in front of a crack tip in a piezoelectric ceramic
obtained. To demonstrate this new finding, a closed-form solution is obtained for a
III permeable crack under both mechanical as well electrical loads. Both local and glo
energy release rates are calculated based on the permeable crack solution obtained
found that the global energy release rate derived for a permeable crack is in a b
agreement with some known experimental observations. It may be served as a fr
criterion for piezoelectric materials. This contribution reconciles the outstanding disc
ancy between experimental observation and theoretical analysis on crack growth pro
in piezoelectric materials.@DOI: 10.1115/1.1544539#
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1 Introduction
Fracture mechanics of piezoelectric solids has been an a

research area since early 1990s due to the widespread use of
materials and smart structures. Many research works have
published in the past decade, e.g., Pak@1,2#, Li et al. @3#, Sosa
@4,5#, Suo et al.@6,7#, Dunn@8#, Dascalu and Maugin@9,10#, Park
and Sun@11,12#, Gao and Barnett@13#, and Gao et al.@14#, Lynch
et al. @15,16#, Zhang and Hack@17#, Fulton and Gao@18#, Ru
@19,20#, Yang and Zhu@21–23#, Zhang et al.@24,25#, McMeeking
@26,27#, Yang @21,22# among others. A recent article by Zhan
et al. @28# provides an excellent review.

A major challenge in fracture mechanics of piezoelectric ma
rials has been how to resolve an outstanding discrepancy betw
experimental observation and theoretic analysis. In a landm
experimental work by Park and Sun@11#, it was found that the
experimental observation contradicts with some basic aspec
fracture mechanics theory of linear piezoelectric materials.
instance, the experimental results obtained by Park and Sun@11#
show that there is a decrease in the critical stress of a cra
piezoelectric body if the electric field is applied along the dire
tion of poling axis, and there is an increase in critical stress if
electric field is applied to the opposite direction, whereas acc
ing to linear fracture mechanics theory, the applied electric fi
does not induce any nonzero stress intensity factor~e.g., Pak@1,2#
and Suo et al.@6#!, and it always predicts a negative definite e
ergy release rate regardless the directions of the applied ele
fields, which implies that the applied electric field always reta
crack growth.

Using micromechanics concepts related to domain switch
Gao and his co-workers@13,14,18# argued that crack growth in a
piezoelectric solid is a multiscale phenomenon, and the local
ergy release rate may be a critical factor in fracture proces

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Mar. 2
2002; final revision, Aug. 26, 2002. Associate Editor: H. Gao. Discussion on
paper should be addressed to the Editor, Prof. Robert M. McMeeking, Departme
Mechanical and Environmental Engineering University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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local energy release rate criterion was subsequently propose
measure the fracture toughness of piezoelectric materials. Th
cal energy release rate criterion is based on the so-ca
saturation-strip model, or equivalently an electric dipole distrib
tion model, which is basically a domain switch strip-zone mod
that is taking into account the nonlinearity induced by the ove
effect of domain switching. The saturation-strip model is the
rect analogous of Dugdale crack in a cohesive elastic medium
classical fracture mechanics.

The local energy release rate criterion was an immediate
cess, because it provides a plausible explanation on Park-S
empirical formula of energy release rate,@11,12#. However, the
dissipative nature of saturation-strip model seems to be a
sance, e.g.,@27#.

In this work, a permeable crack model is carefully crafted
render a tractable solution for mode III crack, while retaining
the main features of a permeable crack. By doing so, it provi
an opportunity to systematically reexamine the permeable cr
solution of a piezoelectric ceramic.

2 Formulation of the Problem
Consider a crack with finite dimension in the middle of a tran

versely isotropic piezoelectric solid under the antiplane mech
cal load and the in-plane electrical load. Letx15X and x25Y.
The relevant field variables are

u15u2[0, u35..w~X,Y!;

E3[0, E52
]f

]X
e12

]f

]Y
e2 .

For the symmetry class of 6 mm piezoelectric crystal, or gene
piezoelectric composite possessing the same symmetry, the
evant constitutive equations are as follows~Auld @29#!:

sXZ5c44
E

]w

]X
1e15

]f

]X
(1)

sYZ5c44
E

]w

]Y
1e15

]f

]Y
(2)
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DX5e15

]w

]X
2e11

s
]f

]X
(3)

DY5e15

]w

]Y
2e11

s
]f

]Y
. (4)

Subsequently, the Euler and Maxwell equations take the form

c44
E ¹2w1e15¹

2f50 (5)

e15¹
2w2e11

s ¹2f50 (6)

where

¹2
ª

]2

]X2 1
]2

]Y2 .

Since the determinant

D iª2Uc44
E e15

e15 2e11
s UÞ0 (7)

one can decouple the system of governing equations

H ¹2w50, ;~X,Y!PR2/Vh , ~8a!

¹2f50, ;~X,Y!PR2/Vh, ~8b!

whereVh is the void space inside the crack.
Note that the coupling between mechanical and electrical v

ables still exists in boundary conditions. For permeable cra
there is a nonzero electrical field in the free space inside the v
and the electrical potential inside the crack,f̃, satisfies the equa
tion

¹2f̃50, xPVh (9)

Fig. 1 Convention for boundary conditions
Journal of Applied Mechanics
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which interacts with both the mechanical field as well as the e
trical field outside the crack along the crack surfaces. To cap
this interaction, one has to employ the exact boundary conditi
of both continuum mechanics and electromagnetics to solve
crack problem.

Instead of imposing various combinations of boundary con
tions to show the coupling between the primary variables and t
conjugate pairs, only standard mixed boundary value problems
considered here~Malvern @30# and Jackson@31#!. The boundary
conditions or interface conditions for two different dielectric m
dia are

• mechanical boundary conditions

n•@ usu#52T̂ on Ss ; u5û on Su ; (10)

• electrical boundary conditions

n•@ uDu#5qs on SD and nÃ@ uEu#50 on SE (11)

whereSs , Su identify appropriate subsets of the domain bounda
and S5SsøSu . Note that the notation@ u f u#ª f 12 f 2, and the
normal vectorn is pointing from medium2to medium1as shown
in Fig. 1. In electrostatics, condition~11! can sometimes be re
placed by the continuity condition of electric potential, i.e
@ ufu#50. It should be noted thatSsùSu50, butSDùSEÞ0.

In this paper, a planar permeable crack is modeled as a van
ing thin, finite dimension, rectangular-shaped slit with height 2h0
and width 2a as shown in Fig. 2.

As h0→0, the permeable crack becomes a conventional m
ematical crack. One may write the crack height as the function
X,

h~X!5H h0 , uXu,a

0, uXu.a.
(12)

The interior region of the crack is denoted as the setVh ,

Vhª$~X,Y!u2a,X,a, and 2h0,Y,h0%. (13)

Adjacent to the slit, there are two semi-infinite strips, which a
denoted asVs ,

Vsª$~X,Y!ua,uXu, and 2h0,Y,h0%. (14)

3 Crack Solution
Consider a mode III permeable crack that is perpendicula

the poling direction~out plane!, and it is subjected to remote
traction and charge distribution at remote boundary~see Fig. 2!.

Let T̂5t`eY andqs52q` .
Fig. 2 A permeable crack with remote traction and charge distribution and surface charge distribution at the corner of the crack
MARCH 2003, Vol. 70 Õ 247
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n•@ usu#52T̂→sYZ5t` , ;Y→` (15)

n•@ uDu#5qs→DY5q` , ;Y→` (16)

whereqs52q` .
The boundary conditions on the crack surfaces

n•@ usu#50, ;Y56h0 and uXu<a (17)

n•@ uDu#5qs , ;Y56h0 and uXu<a (18)

n3@ uEu#50, ;Y56h0 and uXu<a (19)

take the form

sYZ~X,6h0!50, ;uXu<a (20)

DY~X,6h0!2DY
a~X,6h0!50, ;uXu<a (21)

EX~X,6h0!2EX
a~X,6h0!50, ;uXu<a. (22)

The following symmetry conditions will be useful as well,

w~X,0!50, ;uXu.a (23)

f~X,0!50, ;uXu.a (24)

fa~X,0!50, ;0,uXu,a (25)

or

EX~X,0!50, ;uXu.a (26)

EX
a~X,0!50, ;0,uXu,a. (27)

In the dielectric medium inside the crack,Di
a5e0Ei

a and Ei
a

52f ,i
a , i 5X,Y.

Separate the displacement and electric potential fields into
parts: a uniform part due to the remote boundary conditions a
disturbance part due to the presence of the crack.

w5w01w̃ (28)

f5f01f̃ (29)

and choose

w05g`Y, f052E`Y (30)

and

s`5c44
E g`2e15E` (31)

q`5e15g`1e11
s E` (32)

such thatw̃, f̃→0 asY→`.
It is convenient to write the inverse relationship among k

physical variables on the remote boundary,

g`5
1

D i
~e11

S t`1e15q`! (33)

E`5
1

D i
~2e15t`1c44

E q`!, (34)

whereD iªc44
E e11

S 1e15
2 .

Extend the definition domain offa into VhøVs and let

f̃a5H fa2f0
a , ;~X,Y!PVh

0, ;~X,Y!PVs
(35)

where the uniform part of the electric potential is the leaky mo
which is chosen asf0

a
ª2q` /e0Y.

Introduce the Fourier cosine transform
248 Õ Vol. 70, MARCH 2003
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5 F* ~z,Y!5A2

p E
0

`

F~X,Y!cos~zX!dX

F~X,Y!5A2

p E
0

`

F* ~z,Y!cos~zX!dz

(36)

whereF(X,Y)5w̃(X,Y), f̃(X,Y), and f̃a(X,Y), and F* (z,Y)

5w̃* (z,Y), f̃* (z,Y), andf̃a* (z,Y).
The transformed governing equations become

d2

dY2 F* 1z2F* 50. (37)

Within the piezoelectric ceramic,

w̃* ~z,Y!5A~z!exp~2zY!, ;Y.0 (38)

f̃* ~z,Y!5B~z!exp~2zY!, ;Y.0. (39)

Inside the permeable crack,

f̃a* ~z,Y!5C~z!sinh~zY!, ;Y.0 (40)

which satisfies the symmetry conditionf̃a(X,0)50.
Consider the boundary condition

EX~X,6h0!2EX
a~X,6h0!50, uXu,a (41)

and the symmetry condition

EX~X,0!50, uXu.a, (42)

and in the extended domain

ẼX
a~X,0!50, uXu.a. (43)

Combining Eqs.~41!–~43!, one may find that

ẼX~X,6h~X!!2ẼX
a~X,6h~X!!50, ;2`,X,1`

(44)

where functionh(X) is defined in Eq.~12!.
In transformed space (z,Y), the condition~44! reads as

ẼX* ~z,6h* ~z!!2ẼX
a* ~z,6h* ~z!!50, ;0,z,1` (45)

where

h* ~z!5h0

sin~az!

z
. (46)

Considering Eqs.~39! and ~40!, one has

B~z!5C~z!
1

2
~exp~2zh* ~z!!21!

5C~z!S h0 sin~az!1h0
2 sin2~az!1

2

3
h0

3 sin3~az!1 . . . D .

(47)

Let

A~z!5A1~z!1h0A2~z!1h0
2A3~z!1 . . . (48)

B~z!5B1~z!1h0B2~z!1h0
2B3~z!1 . . . . (49)

By virtue of Eq.~47!,

B1~z!5C~z!h0 sin~az! (50)

B2~z!5C~z!h0 sin2~az! (51)

B3~z!5C~z!
2h0

3
sin3~az! (52)

. . . . (53)

After the Fourier transform, the boundary condition~21! be-
comes
Transactions of the ASME
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A2

p E
0

`

z$@e15A~z!2e11
S B~z!#exp~2h0z!

2e0C~z!cosh~zh0!%cos~zX!dz50, ;0,X,a.

(54)

Note the subtlety in terms of crack surface position between
~45! and Eq.~54!. In the physical plane, the upper crack surface
at Y5h0 for uXu,a, whereas in the transformed plane,Y
5h* (z), 0,z,`.

Consider the series expansion

@e15A~z!2e11
S B~z!#5@e15A1~z!2e11

S B1~z!#1h0@e15A2~z!

2e11
S B2~z!#1h0

2@e15A3~z!2e11
S B3~z!#

1 . . . (55)

exp~2h0z!512h0z1
~h0z!2

2!
2

~h0z!3

3!
1 . . . (56)

cosh~h0z!511
~h0z!2

2!
1 . . . . (57)

Assume that the permittivity constant,e0 , is very small and
comparable toh0 . The following asymptotic series integral equ
tions may be derived:

A2

p E
0

`

zH e15A1~z!2S e11
S 1

e0

h0 sin~az! DB1~z!J cos~zX!dz

50, ;0,X,a (58)

A2

p E
0

`

$2z2~@e15A1~z!2e11
S B1~z!#1z@e15A2~z!

2e11
S B2~z!#%cos~zX!dz50, ;0,X,a (59)

. . . . (60)

In the remainder of this paper, only the first-order approxim
tion is considered. Moreover, whenh0→0, sin(az) is always
bounded. To render a tractable solution, we adopt the follow
average approximation:

h0 sin~az!'h0sin~az!→0 (61)

where

sin~az!ªAp

2 E
0

`

sin~az!dz5Ap

2

1

a
. (62)

The identity~62! is in the sense of a generalized function~see
Erdélyi et al. @32# or Lighthill @33#, p. 33!.

Let

rªA2

p

a

h0
. (63)

Equation~54! becomes

A2

p E
0

`

z~e15A1~z!2~e11
S 1e0r !B1~z!!cos~zX!dz50,

;0,X,a. (64)

The first-order approximation of boundary condition~20! pro-
vides the additional integral equation

A2

p E
0

`

z~c44
E A1~z!1e15B1~z!!cos~zX!dz5t` , ;0,X,a.

(65)
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Considering the symmetry conditionsw(X,0)5f(X,0)50,
;uXu.a. Two sets of standard dual integral equations may
derived;

5A
2

p E
0

`

zA1~z!cos~zX!dz5S, uXu,a

E
0

`

A1~z!cos~zX!dz50, uXu.a

(66)

and

5A
2

p E
0

`

zB1~z!cos~zX!dz5T, uXu,a

E
0

`

B1~z!cos~zX!dz50, uXu.a

(67)

where

Sª
~e11

S 1e0r !t`

D
(68)

Tª
e15t`

D
(69)

andD5c44
E (e11

S 1e0r )1e15
2 .

Let

A1~z!5Ap

2

Sa

z
J1~az! (70)

B1~z!5Ap

2

Ta

z
J1~az!. (71)

Consequently, one may find that

w~X,Y!5g`Y1
~e11

S 1e0r !t`

D
aE

0

`

z21J1~az!cos~zX!

3exp~2zY!dz (72)

f~X,Y!52E`Y1
e15t`

D
aE

0

`

z21J1~az!cos~zX!exp~2zY!dz

(73)

and

w~X,0!5
~e11

S 1e0r !t`

D HAa22X2, uXu,a

0, uXu.a
(74)

f~X,0!5
e15t`

D HAa22X2, uXu,a

0, uXu.a
. (75)

4 Intensity Factors
Let Y50. The asymptotic fields of both mechanical and elect

variables in front of the crack tip are found as follows:

eYZ5
~e1e0r !t`

D

X

AX22a2
1S g`2

~e1e0r !t`

D D
1higher order terms (76)

EY52
e15t`

D

X

AX22a2
1S E`1

e15t`

D D1higher order terms

(77)

sYZ5
t`X

AX22a2
1higher order terms (78)
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DZ5
e15e0r t`

D

X

AX22a2
1S q`2

e15e0r t`

D D
1higher order terms. (79)

The relevant field intensity factors can be found as follows:

KIII
g 5 lim

X→a1

A2p~X2a!eYZ~X,0!5
~e11

S 1e0r !t`Apa

D
(80)

KIII
E 5 lim

X→a1

A2p~X2a!EY~X,0!52
e15t`Apa

D
(81)

KIII
t 5 lim

X→a1

A2p~X2a!sYY~X,0!5t`Apa (82)

KI
D5 lim

X→a1

A2p~X2a!DY~X,0!5
e15e0r t`Apa

D
. (83)

Assume that the permittivity inside the crack is very small,e0
!h0 , or e0→0, we may recover all the results obtained by Zha
and Hack@17# for a mode III crack.

KIII
g 5

e

D i
t`Apa (84)

KIII
E 552

e15

D i
t`Apa (85)

KIII
t 5t`Apa (86)

KIII
D 50 (87)

Let h050 and consequentlyr→`. That is, the slit has zero
height. The physical interpretation of this limit is that the upp
and lower crack surfaces are constantly in close contact du
fracture process, there is no dielectric medium inside the cr
The intensity factors become

KIII
g 5

e11
S

c44
E t`Apa (88)

KIII
E 50 (89)

KIII
t 5t`Apa (90)

KIII
D 50. (91)

This recovers the solution obtained by Yang and Kao@34# for a
zero-height crack in piezoelectric medium.

5 Energy Release Rate
It is generally believed that energy release rate, orJ-integral, is

a better criterion for crack growth than stress intensity factors.
J-integral in a piezoelectric medium is given by Cherepanov@35#,

J5E
G
~Hn12s i j niuj ,12niDif,1!dS (92)

whereH is the electric enthalpy density.
On the surface of a permeable crack, both the normal com

nent of electric displacement as well as the electric potential
not zero, consequently, the contribution in the contour integraJ,
along crack surfaces is not zero. Therefore, for permeable cra
two types ofJ-integrals can be defined:local energy release rate
and global energy release rate. The global energy release ra
consists of two parts:~1! local energy release rateand ~2! the
energy release rate due to interaction between dielectric med
inside the crack and piezoelectric matrix along crack surfaces.
local energy release rate is defined as the contour integral,J, along
an infinitesimal circle around the crack tip,G l . The global energy
250 Õ Vol. 70, MARCH 2003
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release rate may be defined as any contour integral,J, starting at
the center of the lower part of the crack surface and ending at
center of upper part of the crack surface~see Fig. 3!. Therefore,
the global energy release rate is the sum of the local energy
lease rate and the contour integral contribution along the cr
surfaces, i.e.,

Jg5Jl1Jcs (93)

whereJcs denote the energy release rate contribution from cra
surfaces, which can be calculated by

Jcs52E
cs

niDif ,xdS. (94)

5.1 Local Energy Release Rate. We first consider the so-
called local energy release rate. Consider the following electro-
mechanical boundary conditions:

sYY5t` , DY5q` , ;Y→`. (95)

The corresponding local energy release rate of the present
meable crack model is

Jl
NEW5

1

2
~KIII

t KIII
g 2KIII

E KIII
D !5

pa

2

t`
2

D2 ~D~e11
S 1e0!1e15

2 e0r !.

(96)

Letting e050 in ~96!, one recovers the result obtained b
Zhang and Hack@17#, i.e.,

Jl
NEW⇒ pa

2

e11
S

D i
t`

2 . (97)

Let h050 or r→` in Eq. ~96!. The result obtained by Yang and
Kao @34# may be recovered,

Jl
NEW⇒ pa

2

t`
2

c44
E . (98)

Equation~98! is the purely elastic energy release rate, since th
is no dielectric medium inside the crack.

5.2 Global Energy Release Rate. When a permeable crack
grows, energy release is not only consumed in supplying the
face energy for newly formed crack surfaces, but also consum
by supplying the electrostatic energy to the dielectric mediu
inside the crack. In fact, if the surface charge is absent on
crack surfaces, the normal component of electric displacemen
piezoelectric medium may be equal to the normal componen
electric displacement in the dielectric medium inside the cra
This suggests that the crack surface contribution to theJ-integral

Fig. 3 J -integral contours for evaluating local and global en-
ergy release rates
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is the part of energy release rate that goes directly into suppl
the electrostatic energy increase in the dielectric medium in
the crack.

If the surface charge is present on crack surfaces, which
either enhance or reverse the direction of the energy-moment
an additional energy release rate may be created that will in
ence crack growth process.

In order the evaluateJg , we first evaluateJcs . Consider the
normal component of the electric displacement on the crack
faces.

DY~X,h0!'Dy~X,0!

5e15

]w

]Y
2e11

S
]f

]Y

5q`2
e15e0r t`

D
aE

0

`

J1~az!cos~zX!dz

5q`2
e15e0r t`

D H 1, uXu,a

12
X

AX22a2
, uXu.a

. (99)

Substituting Eq.~99! and Eq.~75! into Eq. ~94! yields

Jcs5DY~0,01!~f~0,01!2f~0,02!!

5S q`2
e0e15r t`

D D S 2e15t`a

D D . (100)

Hence the global energy release has the form

I: Jcr
g 5S pa

2D D H F ~e11
S 1e0r !1

e15
2 e0r

D S 12
4

p D Gt`
2

1
4

p
e15t`q`J . (101)

Let e050. The global energy release rate becomes

II: Jcr1
g 5S pa

2c44
E D S c44

E e11
S 1

4

p
e15

2

c44
E e11

S 1e15
2 t`

2 1
4

p
e15

2 t`E`
D .

(102)

If h0→0, the global energy release rate becomes

Jcr2
g 5S pa

2 D t`
2

c44
E (103)

which was previously found by Yang and Kao@34#.
Since 4/p51.273238'1.0, the newly derived results~101! and

~102! are very close to the empirical result proposed by Park
Sun @11,12#.

JPS5
pa

2~c44
E e11

S 1e15
2 !

~e11
S t`

2 1e15t`q`! (104)

This result also agrees with the result obtained by Mao et al.@36#
in analyzing a mode I crack by considering toughening un
polarization switching.

6 Closure
The analysis presented in this work reveals that the interac

between a crack and its permeable environment can be cruci
crack growth in a piezoelectric ceramic. This interaction may
quantified through aJ-integral along permeable crack surfaces
global energy release rate that taking into account this effect
serve better as the fracture toughness for piezoelectric ceram

It has been an outstanding problem regarding the energy rel
rate of a piezoelectric crack. The impermeable crack solution
ways gives the negative energy release rate, presenting a
Journal of Applied Mechanics
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impression that the applied electric field will prohibit crac
growth. The fallacy of impermeable approximation is that
shields, and may even reverse the direction of energy-momen
flux on the crack surface. The permeable crack model presente
this paper provides a leaky mode for an electrical field, allow
the applied electric field pass through the dielectric medium ins
the crack. An in-depth analysis for a mode I permeable crac
presented in a recent paper by Li@37#.

Based on the asymptotic analysis, a first-order approxima
solution is obtained for a mode III crack in a permeable enviro
ment. The control parameters of the asymptotic analysis are
crack height,h0 , dielectric permittivity inside the crack,e0 , and
the crack width,a.

It has been found that the global energy release rate derived
a permeable crack is in broad agreement with the known exp
mental observations~e.g., @11,12#!, which is in contrast with the
local energy release rate criterion proposed by Gao et al.@13,14#
according to the saturation-strip model. Nevertheless, for all p
tical purposes, it may be a good estimate that

Jl,J,Jg, or Jg,J,Jl (105)

since the actual contour integral may has a path betweenG l and
Gg ~see Fig. 3!.

The global energy release rate derived here may be served
fracture criterion for piezoelectric materials in general. This co
tribution reconciles the discrepancy between experimental ob
vations and theoretic analyses without invoking any nonlin
theory, and it explains, by rigorous analysis, how an applied e
tric field affects crack growth in a piezoelectric ceramic throu
its interaction with the permeable environment surrounding
crack.
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@32# Erdély, A., Oberhettinger, F., Magnus, W., and Tricomi, F. G., 1954,Tables of
Integral Transforms. Based, in Part, on Notes Left by Harry Bateman, Vols.
1–2, McGraw-Hill, New York.

@33# Lighthill, M. J., 1958,Introduction to Fourier Analysis and Generalized Func
tions, Cambridge University Press, Cambridge, UK.

@34# Yang, F., and Kao, I., 1999, ‘‘Crack Problem in Piezoelectric Materials: G
eral Anti-Plane Mechanical Loading,’’ Mech. Mater.,31, pp. 395–406.

@35# Cherepanov, G. P., 1979,Mechanics of Brittle Fracture, McGraw-Hill, New
York.

@36# Mao, S. X., Li, X., and Han, X., 2000, ‘‘Toughening of Ferroelectric Cerami
Under Polarization Switching,’’ Mater. Sci. Eng.,A292, pp. 66–73.

@37# Li, S., 2002, ‘‘On Permeable Cracks in a Piezoelectric Ceramic. I. Glo
Energy Release Rate,’’ submitted for publication.
Transactions of the ASME



(pipe
ctual
e of
ss is
ction

nd is
V. P. Cherniy
Department of Strength and

Stability of Pipelines,
Scientific Research Institute of Natural Gases

and Gas Technologies,
VNIIGAZ,

Russian Joint Stock Company ‘‘GAZPROM’’,
Moscow 142085, Russia

The Bending of Curved Pipes With
Variable Wall Thickness
A general solution is presented for the in-plane bending of short-radius curved pipes
bends) which have variable wall thickness. Using the elastic thin-shell theory, the a
radius of curvature of the pipe’s longitudinal fibers and displacement of the neutral lin
the cross section under bending are taken into account. The pipe’s wall thickne
assumed to vary smoothly along the contour of the pipe’s cross section, and is a fun
of an angular coordinate. The solution uses the minimization of the total energy, a
compared to our previous solution for curved pipes with constant wall thickness.
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Introduction
The classical theory for bending of curved pipes was develo

by von Kármán @1# and by Clark and Reissner@2#. These works
assumed that the actual curvature of longitudinal fibers o
curved pipe should not be taken into account, instead, this cu
ture was considered to be equal to the center line curvature.
assumption leads to an error in results if applied to pipes wit
small radius of curvature. A solution taking the actual curvature
longitudinal fibers into account was developed by Cheng
Thailer @3,4#.

All investigations of the bending of curved pipes rely on t
assumption of constant wall thickness along the contour of
pipe’s cross section. However, the majority of short-radius cur
pipes are made using a forming process, and, as a result,
variable wall thickness along the contour of the pipe’s cross s
tion. The pipe wall is thinner than nominal on the convex side a
is thicker on the concave one.

The problem of in-plane bending of curved short-radius p
bends is solved in the present paper for pipes with variable w
thickness. The wall thickness is assumed to be a function of
angular coordinate of the pipe’s cross section. The pipe ha
plane of symmetry, and all aspects of the pipe are symmetric w
respect to this plane, including the cross-sectional geometry.
actual curvature of longitudinal fibers of a curved pipe and d
placement of the neutral line of cross section under bending
taken into account. The solution is based on the approach de
oped by the present author for pipes with constant wall thickn
~Cherniy @5#!. Relations familiar from the theory of thin elasti
shells are used for the displacements, strains, and stresses
solution uses the minimization of the total energy in the manne
Rayleigh-Ritz. The analysis applies to pipes which are made o
isotropic material and have a constant mean cross-sectional ra
and a constant curvature of the center line. The obtained re
for displacements, strains, and rigidity of these pipes are c
pared to the corresponding results for the similar pipes with c
stant wall thickness.

The presented solution is very important in terms of its pract
applications. It presents a useful tool for evaluation of strain a
rigidity of short-radius curved pipes with variable wall thickne
as such pipes frequently arise during manufacture. Besides, i
ables the development of new choices of cross sections for cu
pipes allowing for their strength.

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, O
23, 2001; final revision, Sept. 25, 2002. Associate Editor: O. O’Reilly. Discuss
on the paper should be addressed to the Editor, Prof. Robert M. McMeeking,
partment of Mechanical and Environmental Engineering, University of Californ
Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted until
months after final publication of the paper itself in the ASME JOURNAL OFAPPLIED
MECHANICS.
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Formulation of Problem
Figure 1 shows a curved, circular thin-walled pipe with a cen

line radius of curvatureR and a mean cross-sectional radiusr.
Under pure in-plane bending of the pipe by the momentsM, the
central anglec has a changeDc. We assume that the pipe wa
thickness is variable and depends on an angular coordinateb:

t~b!5~12g cosb!t g>0. (1)

In ~1!, g represents the wall thickness variability factor. We a
sume that the maximum value ofg is considerably smaller than 1

16~11g!
t

r
'1. (2)

If Eq. ~2! holds then the pipe obeys the assumptions of the the
of thin shells. Consequently, we consider the range 0<g<0.20.
This range ofg matches the tolerances for wall thickness of pi
bends as determined by existing standards~see@6#!.

If we put g50 in ~1!, we obtain a curved pipe with constan
wall thickness:t5const. This pipe is useful for comparison pu
poses. As for our pipe with variable wall thickness, it is on
points with angular coordinatesb56p/2 ~see~1!! that have wall
thickness equal tot.

It is also worth noticing that this curved pipe with variable wa
thickness has the same parameter of curved pipesh5Rt/r 2 as
does a curved pipe with constant wall thickness~von Kármán @1#!.
It is necessary to say that the curved pipes of both types b
compared have identical cross-sectional areas and iden
moments of inertia relative to the axis going through the geom
rical center of pipe cross section~assuming the wall thicknes
variation ~1!!.

The points on the middle line of the pipe’s cross section
specified by the radiusr and angular coordinateb. The OY ver-
tical axis lies in the plane of the pipe’s axis of curvature and g
through the middle-line cross-sectional curvature centerO. The
vertical coordinate of points on the middle line of the cross s
tion is

y5r cosb. (3)

The deformation of a cross section is accompanied by a ra
displacementsw and tangential displacementsv of points on the
cross section’s middle line~Fig. 1! as well as by vertical displace
ments~parallel to theOY-axis! wy of the same points. The fol-
lowing geometrical formula describes their relationship:

wy5w cosb2v sinb. (4)

Further, we determine the displacements, strains, and rigidity
the curved pipe in question.
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Longitudinal Strains
Here, we write down formulas for longitudinal strains and

gidity factor so that a straight pipe with the same radius of cr
sectionr and with constant wall thicknesst is used for compari-
son. Both pipes~curved and straight! are assumed to have ident
cal lengths.

In @5#, it was shown that the longitudinal strain«1 of any fila-
ment a–a which lies on the median surface of a curved pi
and has an angular coordinateb ~see Fig. 1! may be represented
as a sum:

«15
1

K

sn1y

R1y
~k0r !1

wy

R1y
; (5)

where

k05M /EI, (6)

andEI, k0 are the straight pipe’s rigidity under bending and cu
vature change of the straight pipe, respectively;K is rigidity factor
of the curved pipe, andsn is the displacement of the neutral lin
n–n from the central line of the cross section~see Fig. 1!.

The first part of formula~5! is the so-called ‘‘bar’’ component
of the longitudinal strains. The second part of formula~5! is the

Fig. 1 Bending of a curved circular pipe with variable wall
thickness
254 Õ Vol. 70, MARCH 2003
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strain caused by the flattening of cross-sectional contours of
curved pipe. It is necessary to point out that the neutral line u
here refers to the bar component of the longitudinal strains.

The rigidity factorK of the curved pipe is determined as th
ratio of the angle change (Dc)0 in the straight pipe to the centra
angle change~Dc! in the curved pipe under bending by identic
momentsM:

K5
~Dc!0

Dc
. (7)

The radial componentsw of displacements are assumed to have
power series expansion:

w5~k0r 2!(
n52

`

Xn cosnb, (8)

whereXn are unknown coefficients.
The expression for tangential displacementsv may be obtained

using the thin-shell theory hypothesis of inextensibility of t
middle surface in the meridional direction:

]v
]b

1w'0. (9)

From ~8! and ~9!, it follows that

v52~k0r 2!(
n52

`

n21Xn sinnb. (10)

Using ~4!, ~8!, and~10!, the representation~5! for longitudinal
strains may be rewritten as

«15~11l cosb!21F 1

K
~s1cosb!1

1

2

r

R (
n52

`

Xnwn* G ~k0r !,

(11)

where

l5r /R, s5sn /r , (12)

wn* 5
n11

n
cos~n21!b1

n21

n
cos~n11!b. (13)

A relative displacement of the neutral lines and rigidity factor
K can be found from the static equilibrium conditions:

N5ErtE
0

2p

~12g cosb!«1db50, (14)

M5ErtE
0

2p

~12g cosb!«1ydb. (15)

Using the following formula~see@5#!

E
0

2p cosnb

11l cosb
db5~21!n

2en

a
p, n50,1,2,3, . . . ; l,1,

(16)

where

e5
1

l
~12A12l2!, ~l,1!, (17)

a512le, (18)

and also using~14! and ~15!, we obtain formulas for the relative
displacementss of the neutral line and the rigidity factorK, cor-
respondingly,

s5K1gS 11
1

2
K

r

R (
n52

`

CnXnD , (19)
Transactions of the ASME
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K5S aK2g2
1

2

r

R (
n52

`

DnXnD 21

. (20)

The following designations are used in~19! and ~20!:

Cn5~21!n
1

n
en22@~n11!1~n21!e2#, (21)

Dn5K2g~K3gCn2gI 1n!, (22)

K1g5
2e1g~11e2!

2~11ge!
, (23)

K2g5H ~11e222eK1g!2gF ~11e2!K1g2
1

2
e~31e2!G J 21

,

(24)

K3g5~11e2!~12gK1g!22eK1g , (25)

I 1n52
e

a
Cn2~21!n

1

2an
@~n11!~en111eun23u!

1~n21!~en131en21!#. (26)

Then, we obtain the following formula for the longitudina
strain«1 :

«15~11l cosb!21H aK2g~K1g1cosb!

1
1

2

r

R (
n52

`

@~En2Dn cosb1wn* !Xn#J , (27)

where

En5K1g~Cn2Dn!. (28)

The result~27! is used below in the solution of the problem.
we put g50 for all the coefficients in~27!, we arrive at the ex-
pression for strains which is obtained in paper@5# for curved pipes
with constant wall thickness.

Determination of the Unknown CoefficientsXn

The coefficientsXn of the series~8! are determined through th
minimization of the total energyV

V5U2W, (29)

where U is strain energy, andW is the work done by the end
moments.

The strain energy is

U5E
F
S 1

2
N1«11

1

2
M2k2DdF

5
1

2
r ~Rc!E

0

2p

~11l cosb!

3@E~12g cosb!t«1
21~12g cosb!3Dk2

2#db, (30)

whereN15(12g cosb)tE«1 and M25(12g cosb)3Dk2 are the
longitudinal force and bending moment in a meridional direct
accordingly in a curved pipe as in a shell,D5Et3/12(12n2) is
the flexural rigidity of the shell with the constant wall thicknesst,
F is the area of the median surface of a curved pipe,«1 is the
longitudinal strain,k2 is the curvature change of the middle lin
of pipe cross section, andn is Poisson’s ratio.

To determine the work done by the end moments, we take
account the relationship between the central angle of the cu
pipe and the central angle change~this relationship was obtaine
in @5#!:
Journal of Applied Mechanics
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Dc

c
5

R

r

1

K
~k0r !. (31)

Then, in view of~20!, we obtain

W52M* Dc52k0
2EI~Rc!S aK2g2

1

2

r

R (
n52

`

DnXnD .

(32)

The curvature change of the middle linek2 is determined using
the theory of shells, as in von Ka´rmán’s work, @1#,

k252
1

r 2 S d2

db2 11Dw. (33)

If ~8! is taken into account then

k25k0(
n52

`

~n221!Xn cosnb. (34)

The minimum of the total energy may be obtained in t
Rayleigh-Ritz manner if

]V

]Xn
50. (35)

Substituting~30! and~32! into ~29!, integrating it, and meeting
the requirements~35!, we get an infinite system of linear equa
tions which describes the unknown coefficients:

an,nXn1(
i 52
iÞn

`

an,iXi5bn , n52,3,4, . . . . (36)

We used the formula~16! for while integrating~29!. The coef-
ficients an,n , an,i , and free termsbn in the set of Eq.~36! are
determined by the following expressions:

an,n54K Un,n* 1H 12
3

2
gF ~l2g!1

1

4
lg2G2

9

16
lg3d2nJ

3
~n221!2

3~12n2!
h2L ,

an,i54Un,i* 1
2

3~12n2!
~n221!~ i 221!h2(

k51

4

Algkd i ~n6k! ,

(37)

bn528
R

r
~Ubn* 1Dn!>28

R

r
Dn .

The following designations are used in~37!:

Un,n* 5a21H I 2n22eCnEn22~11e2!CnDn12En
214eEnDn

1~11e2!Dn
22gF I 3n22DnI 1n12~11e2!K1g

21En
2

22eS En
21

31e2

4
Dn

2D G J , (38)

Un,i* 5a21K Ani12~122eK1g
21!EnEi

2~11e2!~K1g
21DnEi2CnDi !

2gH Bni12@~11e2!K1g
212e#EnEi

2
1

2
e~31e2!DnDi2I 1nDi2DnI 1i J L , (39)
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Fig. 2 Radial displacements distribution; „a… gÄ0 „solid line …, „b… gÄ0.1
„dashed line …, „c… gÄ0.2 „dotted line …
n

d-
Ubn* 5K2gH @2K1g1~11e2!K1g
2124e#En

2gS 31e2

2
Dn22eK1gEn1I 1nD J '0, (40)

d2n5H 1 ~n52!

0 ~nÞ2!
d i ~n6k!5H 1 ~ i 5n6k!

0 ~ iÞn6k!
. (41)

In ~38! and ~39!, the designationa is used as it was defined i
~18!.

The coefficientsAlgk(k51,4) are determined by the following
expressions:

Alg15l23gF12
3

4
g~l2g!G ,

Alg252
1

2
g@lg213~l2g!#,

(42)

Alg35
3

4
g2~l2g!,
2003
Alg452
1

8
lg3.

The following designations are used in~38!:

I 2n5~11e2n22!S 112
n21

n11
e2D S n11

n D 2

1~11e2n12!S n21

n D 2

,

(43)

I 3n52
e

2n2 ^@21~11e2!e2n24#~n11!21~11e2!~11e2n22!

3~n221!1@21~11e2!e2n#~n21!2&. (44)

The results forDi , Ei , I 1i are made according to the correspon
ing formulas forDn , En , I 1n wheren is replaced withi.

There are also formulas for other members of~39!:

Ani5
~21!n2 i

ni (
k51

2

~KA!nk~uA!nik , (45)

~KA!nk5n22k13, (46)
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Fig. 3 Longitudinal strain distribution; „a… gÄ0 „solid line …, „b… gÄ0.1 „dashed
line …, „c… gÄ0.2 „dotted line …
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~uA!nik5~ i 11!ben1 i 12~k22!1eun2 i 12~k21!uc
1~ i 21!ben1 i 12~k21!1eun2 i 12~k22!uc, (47)

Bni5
~21!n2 i

2ni (
k51

2

~KB!nk~uB!nik , (48)

~KB!nk522~n21!1~4n21!k2nk2, (49)

~uB!nik5~ i 11!ben1 i 1~2k25!1eun2 i 1~2k23!uc
1~ i 21!ben1 i 1~2k23!1eun2 i 1~2k25!uc. (50)

The infinite system of linear Eq.~36! was solved by the method
of sections. In the infinite series~8!, a finite number of terms was
omitted. Then, the infinite system of linear Eq.~36! was solved as
a finite system using Cramer’s Rule.

Results and Discussion
The results of the solution for curved pipes with variable w

thickness are presented below. The diagrams are drawn fo
basic parameters of curved pipe bending. All diagrams are plo
for curved pipes withh50.3, l50.5. The calculations are mad
for three values of the parameterg:g50 ~curved pipe with con-
hanics
ll
the

tted
e

stant wall thickness!, g50.1, andg50.2. In the infinite series~8!
eight terms withn52,9 have been left. To estimate the precis
ness of the calculations, the change in cross-sectional middle
curvature is used~34!. A ratio of absolute values of the last term i
the series~34! to the first term does not exceed 0.1 percent for
presented calculations.

The radial displacements in cross section of the curved pipe
presented in Fig. 2. Dimensionless parameter of the radial
placement is obtained from~8!:

w* 5
w

k0r 2 5(
n52

`

Xn cosnb. (51)

The general relationship of changes in radial displacements
mains the same for the three values ofg which are given above.
However, the increase of displacements in the thinner cross
tion zone~at b'0!, as well as the decrease of displacements in
thicker zone~at b'p!, is observed wheng increases. The differ-
ences in values of the radial displacements for curved pipes
variousg are small. The maximum difference is observed wh
the value of angular coordinateb5p. In this case, the difference
is equal to 13%.
MARCH 2003, Vol. 70 Õ 257
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Fig. 4 Meridional bending strain distribution; „a… gÄ0 „solid line …, „b… gÄ0.1
„dashed line …, „c… gÄ0.2 „dotted line …
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More substantial differences are observed for the longitud
strains. Figure 3 presents the distributions for the parameter«1* of
longitudinal strains:

«1* 5
«1

k0r
. (52)

The longitudinal strain«1 in ~52! is calculated using~26!.
The graphs in Fig. 3 demonstrate that the convex~thinner! part

of the cross section~under the bending of curved pipe with var
able wall thickness! is deformed more and the concave~thicker!
part of the cross section is deformed less when compared w
curved pipe of constant wall thickness. At the extreme points
the cross section~b50 andb5p!, even a change in sign for th
values of the longitudinal strain is observed. An increase of
neutral line displacement is also observed asg increases.

The meridional bending strains are determined according to
expression for the curvature change of the middle-line of the c
section~34!:

«256
1

2
~12g cosb!h

r

R
k0r(

n52

`

~n221!Xn cosnb. (53)
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The top mark in~53! refers to the outer surface of the pipe, an
the bottom mark refers to the inner surface.

Results for the meridional bending strain«2* 5«2 /k0r ~for the
outer surface of the pipe’s cross section! are presented in Fig. 4. In
the same way, the meridional strains increase in the thinner z
and decrease in the thicker zone~in comparison with the curved
pipe with constant wall thickness!.

Figure 5 demonstrates the change in the relative values of
basic parameters of curved pipe depending on the wall thickn
variability factor ~g!. These parameters describe the stress
strain state of curved pipes. The graphs for radial displacem
and meridional strains show their maximum~in magnitude! val-
ues. The diagrams for longitudinal strains present the maxim
~in magnitude! values of longitudinal strains in the concave part
curved pipes. The corresponding values of these parameters i
curved pipe with constant wall thickness~g50! are used as datum
values~representing 100%!.

The relative displacement of the neutral lines and the rigidity
factor K are determined according to~19! and ~20!. The analysis
of the graphs in Fig. 5 reveals that the parameterg mostly influ-
Transactions of the ASME
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Fig. 5 Diagrams of change in the relative values of basic parameters of a
curved pipe depending on the wall thickness variability factor g; „a… s „solid
line …, „b… z«1zmax „in the concave part of the curved pipe … „dashed line …, „c… z«2zmax
„dotted line …, „d… K „dash-dot line …, „e… zw zmax „dash-dot-dot line …
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ences the neutral line displacements and longitudinal strains.
meridional strains, rigidity factor and radial displacements are
influenced byg.

The wall thickness variability in short-radius curved pipes
determined by the technology of pipe production. In the design
pipeline systems, this circumstance is considered as a cons
tional shortcoming. The analysis of the diagrams in Fig. 5 sho
that under bending, a curved pipe with variable wall thickness
somewhat more rational structure than a curved pipe with cons
wall thickness. The curved pipe with variable wall thickness h
substantially smaller longitudinal strains while its rigidity is in
creasing insignificantly.

It should be pointed out that the results of the presented s
tion for curved pipes withg50 are completely consistent wit
the solution for curved pipe with constant wall thickness giv
in paper@5# where the actual radius of curvature of longitudin
fibers and the displacement of the neutral line are taken
account.

Conclusions
The general solution is presented for in-plane bending of sh

radius curved pipes~pipe bends! with variable wall thickness.
chanics
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Using elastic thin-shell theory, the actual curvature radius of l
gitudinal fibers of the pipe as well as the displacement of
neutral line of cross section under bending are taken into acco

Results are presented for the basic parameters which des
the stress and strain state of curved pipes as functions of
thickness variability factorg. Increasingg considerably influences
the values of longitudinal strains and displacement of the neu
line. While, the displacements of points on the middle line of t
cross section, the meridional strains and rigidity of curved p
under bending are influenced to a lesser extent.
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@1# Von Kármán, Th., 1911, ‘‘Über die Forma¨nderung du¨nnwandiger Rohre, ins-

besondere federnder Ausgleichrohre,’’ Z. Ver. Deut. Ing.,55, pp. 1889–1895.
@2# Clark, R. A., and Reissner, E., 1951, ‘‘Bending of Curved Tubes,’’Advances in

Applied Mechanics, Vol. II, Academic Press, San Diego, pp. 93–122.
@3# Cheng, D. H., and Thailer, H. J., 1968, ‘‘In-Plane Bending of Curved Circu

Tubes,’’ J. Eng. Ind.,90~4!, pp. 666–670.
@4# Cheng, D. H., and Thailer, H. J., 1970, ‘‘On Bending of Curved Circu

Tubes,’’ J. Eng. Ind., Series B,92~1!, pp. 62–66.
@5# Cherniy, V. P., 2001, ‘‘Effect of Curved Bar Properties on Bending of Curv

Pipes,’’ ASME J. Appl. Mech.,68, pp. 650–655.
@6# ASME B16.28. Wrought Steel Butt-Welding Short Radius Elbows a

Returns.
MARCH 2003, Vol. 70 Õ 259



the
ness
rst is
uous
Exact
the

nding
reen

ltants
Z.-Q. Cheng
Research Associate

J. N. Reddy
Distinguished Professor,

Fellow ASME

Department of Mechanical Engineering,
Texas A&M University,

College Station, TX 77843-3123

Green’s Functions for Infinite
and Semi-infinite Anisotropic
Thin Plates
This paper presents fundamental solutions of an anisotropic elastic thin plate within
context of the Kirchhoff theory. The plate material is inhomogeneous in the thick
direction. Two systems of problems with non-self-equilibrated loads are solved. The fi
concerned with in-plane concentrated forces and moments and in-plane discontin
displacements and slopes, and the second with transverse concentrated forces.
closed-form Green’s functions for infinite and semi-infinite plates are obtained using
recently established octet formalism by the authors for coupled stretching and be
deformations of a plate. The Green functions for an infinite plate and the surface G
functions for a semi-infinite plate are presented in a real form. The hoop stress resu
are also presented in a real form for a semi-infinite plate.@DOI: 10.1115/1.1533806#
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Introduction
A plate is one of the most common type of structural eleme

encountered in mechanical, civil, and aerospace engineering s
tures. Among numerous existing two-dimensional theories
modeling deformations of a thin plate element, the Kirchhoff pl
theory is the most classic and celebrated model in which a tr
verse normal before deformation remains normal to the midpl
of the plate during deformation,@1–3#. In many cases stretchin
and bending deformations are coupled, an important example
laminated plate with unsymmetric lay-up,@4#.

Green’s functions are useful, for example, in constructing
general solution and in boundary element and boundary inte
equation methods. Study on Green’s functions has been one o
important topics in structural mechanics. The complex funct
method was used to study the fundamental solutions for an
tropic laminates with coupled bending and stretching under c
centrated loads,@5,6#, and under discontinuous in-plane displac
ments and slopes,@7#, respectively. Their studies considered
infinitely extended plate and the solutions were given in a co
plex form and needed further numerical evaluations.

Based on the work of Eshelby et al.@8#, Stroh@9,10# developed
a sextic formalism for generalized plane-strain deformations o
anisotropic elastic material. The Stroh formalism is mathem
cally elegant and technically power. Ting@11,12# has made an
extensive review of the Stroh sextic formalism and its appli
tions. Recently, a new octet formalism has been proposed
Cheng and Reddy@13# for the Kirchhoff anisotropic plates. This
formalism symbolically preserves extensive elegant properties
identities that have been established in the Stroh sextic formal

As one of powerful applications of the new octet formalism f
an anisotropic thin plate, the problem of Green’s functions is
dressed in this investigation. As was done in@5,6#, the problem is
first classified into three systems according to the types of c
centrated loads and discontinuous displacements and slopes
then define the three systems of problems in terms of stress f
tions. The first two are solved for an infinite plate by using t
new formalism. Although the second system of problem we h
defined is different from the one defined by Becker@5# and Za-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, Jan. 29, 20
final revision, July 23, 2002. Associate Editor: D. A. Kouris. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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kharov and Becker@6#, we are able to show that our fundament
solution also satisfies the system of equations defined therein.
is helpful for clarifying the equivalency of the solutions to tw
systems of problems that are posed differently. The solutions
an infinitely plate are modified to give new exact fundamen
solutions for a semi-infinite plate with a rigidly clamped edge o
free edge. The surface Green’s functions are obtained in a sp
case. Using some elegant properties established in the forma
the Green functions for infinite plates, surface Green functio
and hoop stress resultants for a semi-infinite plate are conve
into a real and closed form without solving for the eigenvalu
and eigenvectors. Unlike the previous work,@5–7#, that were de-
veloped only for an infinite plate made of a nondegenerate m
rial, the present real form results apply to plates made of a deg
erate material as discussed in Ref.@13#, including an isotropic
material as well.

Octet Formulation for Anisotropic Thin Plates
In this section, we first recapitulate the basic Kirchhoff pla

theory and the new formalism for an anisotropic plate. Let
undeformed plate of uniform thicknessh be considered in a Car
tesian coordinate system$xi% ( i 51,2,3) and its midplane is a
x350. The plate is composed of an anisotropic, linearly elas
material that can be inhomogeneous in the thickness direct
Accordingly, it includes the important special cases of lamina
cross-ply and angle-ply plates. A comma followed by a subsc
a denotes the partial derivative with respect toxa . A repeated
index implies, unless otherwise specified, summation over
range of the index with Greek indices ranging from 1 to
lowercase Latin indices from 1 to 3, and uppercase Latin indi
from 1 to 4.

The displacement field in the Kirchhoff plate theory is assum
as

ũa~xi !5ua1x3qa , ũ3~xi !5w, (1)

whereua , w andqa52wa are independent ofx3 . The strain and
stress components are obtained from

eab5
1
2 ~ ũa,b1ũb,a!, sab5C̃abvrevr , (2)

where the reduced elasticity tensor is

C̃abvr5Cabvr2Cab33C33vr /C3333. (3)

The membrane stress resultantsNab , bending momentsMab ,
and transverse shearing forcesRb are defined by

Nab5Qsab , Mab5Qx3sab , Rb5Mab,a , (4)
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nal
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Q~¯ !5E
2h/2

h/2

~¯ !dx3 . (5)

The modified Kirchhoff transverse shearing forces that exc
sively apply to free edges are

V15R11M12,2, V25R21M21,1. (6)

In the absence of external loads on the top and bottom surf
of the plate, the equilibrium equations are given by

Nab,b50, Rb,b50. (7)

If the displacements on the midplane of the plate are assume
the following form

ua5aa f ~z!, w52a3E f ~z!dz, (8)

wheref is an arbitrary function ofz5x11px2 , andp andai are
unknown constants to be determined, the equilibrium equation
~7! can be reduced to,@13#,

F QC Qx3Cp̃

p̃TQx3C p̃TQx3
2Cp̃GF a1

a2

a3

G5F 0
0
0
G , (9)

where

p̃T5@1 p#, C5Q̃1p~R̃1R̃T!1p2T̃, (10)

the components of the 232 matricesQ̃, R̃, andT̃ are

Q̃av5C̃a1v1 , R̃av5C̃a1v2 , T̃av5C̃a2v2 . (11)

Q̃ and T̃ are symmetric and positive definite. For a nontriv
solution of @a1 a2 a3#T, the vanishing determinant of the coeffi
cient matrix of~9! provides four pairs of complex conjugates f
the eigenvaluep.

Let us introduce

a&5Fa1

a2
G , ă5Fa3

a4
G , b&5Fb1

b2
G , b̆5Fb3

b4
G , (12)

such that

F2pb&

b& G5F Q~Q̃1pR̃! Qx3~Q̃1pR̃!

Q~R̃T1pT̃! Qx3~R̃T1pT̃!
G Fa&ăG , (13a)

F 2pb̆1F0cG
b̆2Fc

0G G5F Qx3~Q̃1pR̃! Qx3
2~Q̃1pR̃!

Qx3~R̃T1pT̃! Qx3
2~R̃T1pT̃!

G Fa&ăG ,
(13b)

with

a45pa3 , c[ 1
2 ~b31pb4!5

1
2 p̃Tb̆. (14)

The first and second equilibrium equations in~9! are thus satisfied
in terms of~13a! and the third is satisfied by~13b!. We now have
seven new relations~13a,b! with four additional unknowns
bK (K51,2,3,4) in replacement of the three equilibriu
equations.

Furthermore, four stress functions are defined by

wa5ba f ~z!, ca5ba12f ~z!. (15)

Equations~4! and ~6! can be rewritten as

Na152wa,2 , Na25wa,1 , (16a)

Ma152ca,22
1
2 «a1cv,v , Ma25ca,12

1
2 «a2cv,v ,

(16b)
Journal of Applied Mechanics
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R152
1
2 cv,v2 , R25

1
2 cv,v1 , (16c)

V152c2,22, V25c1,11, (16d)

where«ab is the two-dimensional permutation tensor. Thus all
the stress resultants can be obtained by differentiating the
stress functions with respect toxa .

In terms of~8! and~15!, we can define the generalized displac
ment vector and the stress function vector as

u[F u1

u2

q1

q2

G5af ~z!, f[F w1

w2

c1

c2

G5bf ~z!, (17)

in which a andb are eigenvectors defined by,@13#,

a5F a1

a2

a3

a4

G , b5F b1

b2

b3

b4

G . (18)

Because there are four pairs of complex conjugates forp, the
associated eigenvectors are also four pairs of complex conjug
We denote

pK145 p̄K , ~ Im pK.0!, aK145āK , bK145b̄K ,

~K51,2,3,4!, (19)

where Im refers to the imaginary part and the overbar denotes
complex conjugate. IfpK (K51,2,3,4) are distinct, the genera
solution for the generalized displacements and stress function
obtained by superposing eight solutions of the form~17! as

u5(
K51

4

$aK f K~zK!1āK f K14~ z̄K!%,

f5(
K51

4

$bK f K~zK!1b̄K f K14~ z̄K!%, (20)

wheref K and f K14 are eight arbitrary functions of their argumen
andzK5x11pKx2 . For a given boundary value problem, the u
known functionsf K(zK) and f K14( z̄K) remain to be sought to
satisfy the given boundary conditions.

Equations~13a,b! and ~14! can be reduced to the following
standard eigenrelation

Nj5pj, (21)

where

N5FN1 N2

N3 N1
TG , j5Fa

bG . (22)

N is real and called as thefundamental elastic plate matrixin Ref.
@13#; N2 andN3 are symmetric. By denoting

A5@a1 a2 a3 a4#, B5@b1 b2 b3 b4#, (23)

the orthogonalityrelations of the formalism are

BTA1ATB5I5B̄TĀ1ĀTB̄, (24a)

BTĀ1ATB̄505B̄TA1ĀTB. (24b)

The closurerelations of the formalism are

ABT1ĀB̄T5I5BAT1B̄ĀT, (25a)

AAT1AAT505BBT1B̄B̄T. (25b)

It is clear from~25a! that the real part of 2ABT is I and from
~25b! that bothAAT and BBT are purely imaginary. Hence, th
following three real matricesS, H, andL can be defined as
MARCH 2003, Vol. 70 Õ 261
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S5 i ~2ABT2I !, H52iAAT, L522iBBT. (26)

Their counterparts in Stroh’s sextic formalism for generaliz
plane strain elasticity are called the Barnett-Lothe tensors,@14#.
An indirect proof will be given in Section 6 thatH and L are
positive definite matrices. ThusA andB are nonsingular matrices

Green’s Functions for an Infinite Plate

Assume that the concentrated forcesN̂i and concentrated mo
mentsM̂i are applied at the origin of the Cartesian coordin
system. The force and moment equilibrium conditions of an a
trary plane subregion of the plate enclosing the origin require

N̂a1 R
G
Nabnbds50, (27)

N̂31 R
G
Ranads50, (28)

M̂12 R
G
M2anads1 R

G
Ranax2ds50, (29)

M̂21 R
G
M1anads2 R

G
Ranax1ds50, (30)

M̂31 R
G
~N2ax12N1ax2!nads50, (31)

wheres is the arc-length measured along the contourG, and the
enclosed material lies on the left-hand side while increasings. The
components of the unit outward normal vector to the curve ar

n15
dx2

ds
, n252

dx1

ds
. (32)

Denote (̄ )u]G as a jump in~¯! when moving along the curve
G counterclockwise from one point to the same point. Substitut
~16a,b,c! and ~32! into ~27!–~31! yields

wau]G5N̂a , (33)

1
2 cv,vu]G5N̂3 , (34)

~c22
1
2 x2cv,v!u]G52M̂1 , (35)

~c12
1
2 x1cv,v!u]G5M̂2 , (36)

~xvx ,v2x!u]G5M̂3 , (37)

where x in ~37! is the Airy function defined byw152x ,2 and
w25x ,1 in order to satisfyN215N12, i.e., w1,11w2,250. Note
that if the concentrated loads are not applied at the origin, sa
xa

0, Eqs.~29!–~31! and~35!–~37! must be modified to replacexa

by xa2xa
0.

Assume that there are jumps in in-plane displacements of m
nitudeûa , in deflection of magnitudeŵ, and in slopes of magni-
tudeq̂a , of the midplane of the plate across the negativex1-axis.
The physical meaning ofq̂a represents a plastic hinge,@15#. The
discontinuous in-plane displacements and deflection are analo
to the edge dislocation and screw dislocation in a thr
dimensional solid, whereûa and ŵ are the components of th
corresponding Burgers vector. If (̄)u]G is designated as a jum
across the negativex1-axis, we have

uau]G5ûa , (38)

wu]G5ŵ, (39)

qau]G5q̂a . (40)

The original problem for finding Green’s functions can be se
rated into three systems of problems. We will examine la
262 Õ Vol. 70, MARCH 2003
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whether they are equivalent to the original problem. The first s
tem of problem consists of Eqs.~33!, ~35!, ~36!, ~38!, and ~40!,
i.e.,

u~1!u]G5Û, f~1!u]G5F̂~1!, (41)

while the second system of problem results from Eq.~34!,

u~2!u]G50, f~2!u]G5x1F̂~2!, (42)

where we have used the notations

Û[F û1

û2

q̂1

q̂2

G , F̂~1![F N̂1

N̂2

M̂2

2M̂1

G , F̂~2![F 0
0

N̂3

0
G . (43)

The third system of problem contains~37! and~39!. However, the
two conditions are not sufficient for a complete solution of t
third problem. It is of a higher-order singularity and needs ad
tional knowledge of double forces and double moments to giv
complete solution. We will not study it in this work.

The eight arbitrary functions in~20! are assumed to have th
same function form as

f K~zK!5 f ~zK!qK , f K14~ z̄K!5 f̄ ~ z̄K!q̄K , (44)

whereqK are arbitrary complex constants. Thus~20! can be writ-
ten in a real form as

u52 Re$A^ f ~z* !&q%, f52 Re$B^ f ~z* !&q%, (45)

where^ f (z* )& is the diagonal matrix given by

^ f ~z* !&5diag@ f ~z1! f ~z2! f ~z3! f ~z4!#. (46)

When replacingq by 2 iq, ~45! leads to the alternate form

u52 Im$A^ f ~z* !&q%, f52 Im$B^ f ~z* !&q%. (47)

In the polar coordinate system

x15r cosu, x25r sinu, (48)

the function lnz is a multivalued function which increases i
value by 2p i each timeu increases by 2p in thex1Ox2-plane. In
order for the multivalued function to maintain a unique value,
introduce a branch cut along the negativex1-axis so that the range
of u is limited to 2p<u<p. The function lnz is now continuous
in the x1Ox2 plane except across the negativex1-axis. Because

ln z5 ln r 6 ip, at u56p, (49)

we have

~ ln z!u]G52p i . (50)

The solution for the first system of problem is assumed as

u~1!5
1

p
Im$A^ ln z* &q~1!%, f~1!5

1

p
Im$B^ ln z* &q~1!%.

(51)

Substitution of~51! into ~41! gives

2 Re~Aq~1!!5Û, 2 Re~Bq~1!!5F̂~1!, (52)

or

FA Ā

B B̄
G Fq~1!

q̄~1!G5F Û

F̂~1!G . (53)

Use of the orthogonality relations~24a,b! leads to

Fq~1!

q̄~1!G5FBT AT

B̄T ĀTG F Û

F̂~1!G , (54)

or

q~1!5ATF̂~1!1BTÛ. (55)
Transactions of the ASME
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Therefore, the solution for the first system of problem~41! is
given by substituting~55! into ~51! as

F u~1!

f~1!G5
1

p
ImFA^ ln z* &BT A^ ln z* &AT

B^ ln z* &BT B^ ln z* &ATGF Û

F̂~1!G . (56)

Similarly, we assume the solution for the second system
problem to be of the form

u~2!5
1

p
Im$A^z* ln z* &q~2!%, f~2!5

1

p
Im$B^z* ln z* &q~2!%.

(57)

The conditions~42! are used to give

q~2!5ATF̂~2!, (58)

and thus,

F u~2!

f~2!G5
1

p
ImFA^z* ln z* &AT

B^z* ln z* &ATGF̂~2!. (59)

Because we are not studying the third system of problem,
total solution is obtained by superposing~56! and ~59!, i.e.,

F u
fG5F u~1!

f~1!G1F u~2!

f~2!G . (60)

Now we need to check whether~33!–~40! are satisfied upon set
ting M̂350 andŵ50. In terms of~50!, ~56!, ~59!, and~60!, we
have

F u
fGU

]G

52 ReFABT AAT

BBT BATGF Û

F̂~1!1x1F̂~2!G ,
F u,1

f,1
GU

]G

52 ReFAAT

BATGF̂~2!, (61)

and furthermore, using the closure relations~25a,b!,

F u
fGU

]G

5F Û

F̂~1!1x1F̂~2!G , F u,1

f,1
GU

]G

5F 0

F̂~2!G . (62)

From Eq.~21!, we may obtain

F u,2

f,2
G5NF u,1

f,1
G , (63)

and thus, using~22!1 and ~62!2 ,

F u,2

f,2
GU

]G

5FN2

N1
TGF̂~2!. (64)

As shown in~A8! in the Appendix that

~N2!K350, ~N1
T!K35dK4 , ~K51,2,3,4!, (65)

thus we have

F u,2

f,2
GU

]G

5F 0

i4N̂3
G , (66)

where the following notations are adopted:

i35@0 0 1 0#T, i45@0 0 0 1#T. (67)

It is easily seen, according to~43!, ~62!, and ~66!, that Eqs.
~33!–~40! are satisfied by the solution~60! provided thatM̂3
50 and ŵ50. Moreover, the following conditions are als
satisfied:

ua,bu]G50, w,abu]G50. (68)

They are nothing but the single-valued conditions for three pl
strains and three curvatures on the midplane and for the rota
angle about thex3-axis. Instead of~42!, the seven conditions~68!
as well as~28! have been used in Refs.@5,6# for obtaining the
Journal of Applied Mechanics
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solution for the second system of problem. Although Eqs.~42!
were not explicitly shown to be valid in Refs.@5,6# we have dem-
onstrated herein that the solution~59! for Eqs. ~42! is also a so-
lution for ~68!. This provides a clear explanation of the equiv
lency of the two approaches for finding Green’s function. Beca
a Green function is a particular solution for a differential equatio
the present Green function is not necessarily the same as
given in Refs.@5,6# and the difference would be the homogeneo
solution for the differential equation.

The Green functions given in Refs.@5,6# for concentrated
forces and moments and in Ref.@7# for discontinuous in-plane
displacements and slopes, respectively, appeared to be in an
lytical complex form and required numerical calculations. By co
trast, with the help of the octet formalism,@13#, our fundamental
solutions are given in an exact closed form. Moreover, the pre
Green’s functions can be converted into a real form and there i
need for the calculation of the eigenvalues and eigenvectors.

In terms of~43!3 and ~65!, we have

~x1I1x2N!F 0

F̂~2!G5F 0

~x1i31x2i4!N̂3
G . (69)

According to Eq.~A27! in the Appendix, the fundamental solu
tions ~56! and ~59! can be rewritten as

F u~1!

f~1!G52
1

2p
$~ ln r !I1pÑ~u!%ÑF Û

F̂~1!G , (70)

F u~2!

f~2!G52
1

2p
$~ ln r !I1pÑ~u!%ÑF 0

~x1i31x2i4!N̂3
G , (71)

where Ñ~u! and Ñ are defined by~A22! and ~A26! in the
Appendix.

Green’s Functions for a Semi-Infinite Plate
In the Kirchhoff plate theory, the boundary condition for a ri

idly clamped edge atx250 is given by

u150, u250, w50, q250, (72)

which give

u50, at x250. (73)

The boundary condition for a free edge atx250 is given by

N1250, N2250, V250, M2250, (74)

which reduce to,@13#,

f50, at x250. (75)

Having found the Green functions for an infinite anisotrop
plate, now we are able to modify them to give the Green functio
for a semi-infinite anisotropic plate. The approach is similar
that for finding the Green functions for an anisotropic elastic ha
space,@11,16#.

The semi-infinite anisotropic plate is located atx2.0, and the
concentrated forces, moments and discontinuous displacem
and slopes are located at

~x1 ,x2!5~0,d!, d.0. (76)

In correspondence to the first system of problem for an infin
plate, we assume the solution for the semi-infinite plate as

u~1!5
1

p
Im$A^ ln~z* 2p* d!&q~1!%

1
1

p
Im (

J51

4

$A^ ln~z* 2 p̄Jd!&qJ
~1!%, (77a)
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f~1!5
1

p
Im$B^ ln~z* 2p* d!&q~1!%

1
1

p
Im (

J51

4

$B^ ln~z* 2 p̄Jd!&qJ
~1!%, (77b)

where q(1) is given by ~55! and qJ
(1) (J51,2,3,4) are unknown

vectors to be determined. The second term on the right-hand
of ~77a! or ~77b! represents four image singularities because
singularity points are located on the lower-half plane.

Consider first the rigidly clamped edge atx250. Substituting
~77a! into ~73! leads to

Im$A^ ln~x12p* d!&q~1!%1Im (
J51

4

$A^ ln~x12 p̄Jd!&qJ
~1!%50.

(78)

Using the equalities

Im$A^ ln~x12p* d!&q~1!%52Im$Ā^ ln~x12 p̄* d!&q̄~1!%,
(79a)

^ ln~x12 p̄* d!&5(
J51

4

ln~x12 p̄Jd!I J , (79b)

in which

I15diag@1,0,0,0#, I25diag@0,1,0,0#,
(80)

I35diag@0,0,1,0#, I45diag@0,0,0,1#,

Eq. ~78! reduces to

Im (
J51

4

ln~x12 p̄Jd!$2ĀI Jq̄
~1!1AqJ

~1!%50, (81)

which gives

qJ
~1!5A21ĀI Jq̄

~1!. (82)

If the boundaryx250 is free, i.e.,~75!, following the same
procedure gives

qJ
~1!5B21B̄I Jq̄

~1!. (83)

Similarly, we can construct the solution for the second syst
of problem of a semi-infinite plate as

u~2!5
1

p
Im$A^~z* 2p* d!ln~z* 2p* d!&q~2!%

1
1

p
Im (

J51

4

$A^~z* 2 p̄Jd!ln~z* 2 p̄Jd!&qJ
~2!%, (84a)

f~2!5
1

p
Im$B^~z* 2p* d!ln~z* 2p* d!&q~2!%

1
1

p
Im (

J51

4

$B^~z* 2 p̄Jd!ln~z* 2 p̄Jd!&qJ
~2!%,

(84b)

where, for the rigidly clamped edge atx250,

qJ
~2!5A21ĀI Jq̄

~2!, (85)

and, for the free edge atx250,

qJ
~2!5B21B̄I Jq̄

~2!. (86)

The hoop membrane stress resultants, bending moments
transverse shear forces at the edgex250 are of particular interest
In terms of~16a–d!, we have
264 Õ Vol. 70, MARCH 2003
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F N11

N21

M11

2M21

G52f,21F 0
0
0

c1,1

G52f,21I43f,1 , (87a)

FR1

V1
G52F 1

2
1
2

0 1
G Fc1,12

c2,22
G52F 1

2
1
2

0 1
G F i3

Tf,12

i4
Tf,22

G , (87b)

where I43 is a 434 matrix whose elements are (I43)KL5dK4dL3
and the notations~67! have been used. Furthermore, with the he
of ~22!1 and ~63!,

F N11

N21

M11

2M21

G52N3u,11~ I432N1
T!f,1 , (88a)

FR1

V1
G52F 1

2
1
2

0 1
G F i3

T@N3 N1
T#

i4
T@N3 N1

T#NG F u,11

f,11
G . (88b)

For a semi-infinite plate with a rigidly clamped edge atx250,
~73! is used to give

F N11

N21

M11

2M21

G5~ I432N1
T!f,1~x1,0!, (89a)

FR1

V1
G52F 1

2
1
2

0 1
G F i3

TN1
T

i4
T~N3N21N1

TN1
T!Gf,11~x1,0!. (89b)

For a semi-infinite plate with a free edge atx250, ~75! is used to
give

F N11

N21

M11

2M21

G52N3u,1~x1,0!, (90a)

FR1

V1
G52F 1

2
1
2

0 1
G F i3

TN3

i4
T~N3N11N1

TN3!Gu,11~x1,0!. (90b)

It is seen from~89a,b! and ~90a,b! that the first and second
derivatives off(x1,0) andu(x1,0) with respect tox1 are needed
for calculating the hoop stress resultants. We now derive th
expressions at the boundaryx250. Using the procedure similar to
~79a,b!, the solution~77b! at x250 for a clamped semi-infinite
plate can be reduced to

f~1!~x1,0!5
1

p
Im$~BA212B̄Ā21!A^ ln~x12p* d!&q~1!%.

(91)

The following identities can be derived from~24a,b! and ~26!

2 iBA215H211 iH21S, iAB215L212 iSL21. (92)

With ~92!1 , Eq. ~91! is rewritten as

f~1!~x1,0!5
2

p
H21 Re$A^ ln~x12p* d!&q~1!%, (93)

or, in a real form,

f~1!~x1,0!5H21H 1

p
~ ln r̂ !Û1S~ û !Û1H~ û !F̂~1!J , (94)

where

r̂ cosû5x1 , r̂ sin û52d, (95)

and use have been made of~55! and ~A27! in the Appendix.
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In a same way, we can write the generalized displacement
tor at x250 in a real form for the first system of problem of
semi-infinite plate with a free edge atx250. The result can be
written, together with~94!, in a compact form

F Hf~1!~x1,0!

2Lu ~1!~x1,0!G5
1

p
$~ ln r̂ !I1pÑ~ û !%F Û

F̂~1!G . (96)

The expressions for the second system of problem are simi
given as

F Hf~2!~x1,0!

2Lu ~2!~x1,0!G5
1

p
$~ ln r̂ !I1pÑ~ û !%F 0

~x1i32di4!N̂3
G .

(97)

Using the relation

]

]x1
5cosû

]

] r̂
2

sin û

r̂

]

]û
, (98a)

]2

]x1
2 5cos2 û

]2

] r̂ 2 1sin2 ûS 1

r̂

]

] r̂
1

1

r̂ 2

]2

]û2D
1sin 2ûS 1

r̂ 2

]

]û
2

1

r̂

]2

] r̂ ]û D , (98b)

we can derive the first and second derivatives of~96! with respect
to x1 . The detailed derivation is omitted for brevity, only fin
results are given as follows:

F Hf,1
~1!~x1,0!

2Lu ,1
~1!~x1,0!G5

1

p r̂
$cosûI2sin ûN~ û !%F Û

F̂~1!G . (99)

F Hf,1
~2!~x1,0!

2Lu ,1
~2!~x1,0!G5

1

p r̂
$cosûI2sin ûN~ û !%F 0

~x1i32di4!N̂3
G

1
1

p
$~ ln r̂ !I1pÑ~ û !%F 0

i3N̂3
G . (100)

F Hf,11
~1!~x1,0!

2Lu ,11
~1!~x1,0!G52

1

p r̂ 2 H cos 2ûI2
d

dû
~sin2 ûN~ û !!J F Û

F̂~1!G .
(101)

F Hf,11
~2!~x1,0!

2Lu ,11
~2!~x1,0!G52

1

p r̂ 2 H cos 2ûI2
d

dû
~sin2 ûN~ û !!J

3F 0

~x1i32di4!N̂3
G1

2

p r̂
$cosûI2sin ûN~ û !%

3F 0

i3N̂3
G . (102)

With these expressions, the hoop stress resultants~89a,b! and
~90a,b! are readily obtained in a real form. Once again, one m
keep in mind that the stress function vector and the general
displacement vector given in~96!, ~97!, and~99!–~102! are for a
semi-infinite plate with a rigidly clamped edge and a free ed
respectively.

Surface Green’s Functions for a Semi-Infinite Plate
Let a semi-infinite anisotropic plate is located atx2.0, and the

concentrated forces and moments are applied at the origin o
Cartesian coordinate system. The edgex250 is otherwise
traction-free. The surface Green functions can be reduced f
the solutions for a semi-infinite plate by takingÛ50 and d50.
From ~55! and ~83!,

q~1!5ATF̂~1!, qJ
~1!5B21B̄I Jq̄

~1!. (103)

The solution given in~77a,b! reduces to
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u~1!5
1

p
Im$A^ ln z* &~AT1B21B̄ĀT!%F̂~1!, (104a)

f~1!5
1

p
Im$B^ ln z* &~AT1B21B̄ĀT!%F̂~1!, (104b)

Using the closure relation~25a! and Eq. ~26!3 , the solution
~104a,b! can be rewritten as

u~1!52
2

p
Re$A^ ln z* &BT%L21F̂~1!, (105a)

f~1!52
2

p
Re$B^ ln z* &BT%L21F̂~1!. (105b)

Similarly, from ~58! and ~86!,

q~2!5ATF̂~2!, qJ
~2!5B21B̄I Jq̄

~2!. (106)

The solution given in~84a,b! reduces to

u~2!52
2

p
Re$A^z* ln z* &BT%L21F̂~2!, (107a)

f~2!52
2

p
Re$B^z* ln z* &BT%L21F̂~2!. (107b)

Using Eq. ~A24! in the Appendix, the solutions~105a,b! and
~107a,b! can be converted into a real form as

F u~1!

f~1!G5F2
1

p
~ ln r !I2S~u!

L ~u!
GL21F̂~1!, (108)

F u~2!

f~2!G5~x1I1x2N!F2
1

p
~ ln r !I2S~u!

L ~u!
GL21F̂~2!. (109)

Strain Energy
The strain energy for a classical anisotropic thin plate on

areaL is given by

U5
1
2 E

L
~Nabeab

0 1Mabkab
0 !dL, (110)

where the components of the plane strain and curvature on
midplane are

eab
0 5

1

2
~ua,b1ub,a!, kab

0 52w,ab . (111)

Integrating ~110! by parts and using the equilibrium Eqs.~7!
yields

U5
1

2 R
G
~Nabua1Mabqa1Rbw!nbds, (112)

whereG is the contour of the areaL on thex1Ox2-plane andnb is
its unit outward normal vector. The strain energy can be rewritt
after substitution of~16a–c!, as

U52
1

2 R
G
H uadwa1qadca1

1

2
d~wcv,v!J . (113)

For the annulus region 0,r 1<r<r 2 shown in Fig. 1,G con-
sists of two circles of radiir 1 and r 2 and the lines above and
below the branch cut on the negativex1-axis betweenr 5r 1 and
r 2 . The generalized displacement vector and stress function
tor are continuous insideG. Thus the strain energy can be reduc
to
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U52
1

2 R
G
uTdf, or U5

1

2 R
G
fTdu. (114)

The calculation of the strain energy for an infinite anisotro
plate is based on the solutions given by~70! and~71!. For the case
of vanishing N̂3 , only solution in ~70! for the first system of
problem is needed. This solution is symbolically the same as
counterpart of the generalized plane-strain elasticity,@11,17,18#.
We do not duplicate the detailed calculation but give the fi
result as

U5
1

4p
lnS r 2

r 1
D ~F̂~1!T

HF̂~1!1ÛTLÛ !. (115)

The strain energy caused byÛ is obtained from the integrals o
two lines above and below the branch cut, while the strain ene
caused byF̂(1) is obtained from the integrals on the two circle
Equation~115! shows that there is no interaction of strain ener
betweenÛ andF̂(1). As used by Ref.@18#, Eq.~115! also gives an
indirect proof for the plate case thatH and L must be positive
definite if the strain energy is positive.

If Û is only concerned, then the integrals on the two circ
contribute zero strain energy. This point was not provable in R
@7# analytically but confirmed in their numerical evaluation for
specific example.

For the case of the addition of the transverse forceN̂3 , it seems
there is interaction of strain energy betweenÛ, F̂(1), andN̂3 for
an infinite anisotropic plate.

Conclusions
This work has presented an application of the new formal

for anisotropic thin plates. The exact Green functions for an i
nite plate and surface Green functions for a semi-infinite p
have been given in a real form. The exact fundamental solut
for a semi-infinite plate with a clamped or free edge are a
obtained by modifying the solutions for an infinite plate. The ho
stress resultants are presented in a real form. An indirect proof
H andL are positive definite matrices is provided under cons
eration of the strain energy.
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Appendix

Fundamental Elastic Plate Matrix. The standard eigenrela
tion in the Cartesian coordinate system$xi% is

Nj5pj, (A1)

where,@13#,

N5~Y11Y2!21~X11X2!, j5Fa
bG , (A2)

with

X15F 2Q 0

2RT I G , Y15FR I

T 0G , (A3)

X25FaI44
1
2I43

bI34 2
1
2I33

G , Y25FaI43 2
1
2 I44

bI33
1
2 I34

G , (A4)

Q5F QQ̃ Qx3Q̃

Qx3Q̃ Qx3
2Q̃

G , R5F QR̃ Qx3R̃

Qx3R̃ Qx3
2R̃

G ,

T5F QT̃ Qx3T̃

Qx3T̃ Qx3
2T̃

G , (A5)

and I33, I34, I43, andI44 are 434 matrices whose elements are

~ I33!KL5dK3dL3 , ~ I34!KL5dK3dL4 ,

~ I43!KL5dK4dL3 , ~ I44!KL5dK4dL4 . (A6)

It can be easily shown that bothX11X2 andY11Y2 are revers-
ible whenaÞb.

The following equations are resulted from~A2!1 :

~Y11Y2!KL~N!L75~X11X2!K7 , ~K,L51, . . . ,8!. (A7)

We may view~A7! as a set of linear equations with respect to t
eight unknowns (N)L7 . We do not have to solve the set of equ
tion but can easily confirm that

~N!L75dL8 (A8)

is a solution of~A7! in view of ~A3! and~A4!. BecauseY11Y2 is
nonsingular whenaÞb, the set of Eqs.~A7! have a unique solu-
tion for (N)L7 , which is ~A8!.

Fundamental Elastic Plate Matrix in a Rotated Coordinate
System. Consider a rotated coordinate system$xi* %, obtained by
rotating an angleu aboutx3-axis, i.e.,

xa* 5Vabxb , V5F cosu sinu

2sinu cosu
G . (A9)

Denotingn and m as the unit vectors along the positivex1* and
x2* -axes, we have

nT5@cosu sinu#, mT5@2sinu cosu#. (A10)

The standard eigenrelation in a rotated coordinate system$xi* %
can be derived as

N~u!j5p~u!j, (A11)

where

p~u!5
p cosu2sinu

p sinu1cosu
, (A12)

N~u!5~Y1~u!1Y2~u!!21~X1~u!1X2~u!!, (A13)

with
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X1~u!5F 2Q~u! 0

2RT~u! I G , Y1~u!5FR~u! I

T~u! 0G , (A14)

X2~u!5QTX2Q, Y2~u!5QTY2Q, Q5diag@V,V,V,V#.
(A15)

Q~u!5F QQ̃~u! Qx3Q̃~u!

Qx3Q̃~u! Qx3
2Q̃~u!

G ,

R~u!5F QR̃~u! Qx3R̃~u!

Qx3R̃~u! Qx3
2R̃~u!

G ,

T~u!5F QT̃~u! Qx3T̃~u!

Qx3T̃~u! Qx3
2T̃~u!

G , (A16)

and

F Q̃~u! R̃~u!

R̃T~u! T̃~u!
G5F cosuI sinuI

2sinuI cosuI GF Q̃ R̃

R̃T T̃
G

3FcosuI 2sinuI

sinuI cosuI G , (A17)

or

Q̃av~u!5C̃abvrnbnr , R̃av~u!5C̃abvrnbmr ,

T̃av~u!5C̃abvrmbmr . (A18)

Identities Converting A, B, and f „z… Into Real Matrices.
From ~A1!, we have

~x1I1x2N!j5~x11px2!j5zj, (A19)

and thus,

~x1I1x2N!nj5znj. (A20)

Integrating~A11! with respect tou yields

pÑ~u!j5 ln~cosu1p sinu!j5~ ln z2 ln r !j, (A21)

where

Ñ~u![F S~u! H~u!

2L ~u! ST~u!
G5

1

p E
0

u

N~u!du. (A22)

In terms of~A21!, we have

~~ ln r !I1pÑ~u!!sj5~ ln z!sj. (A23)

Combining~A20! and ~A23! for p5p1 , p2 , p3 , p4 gives

FA^z*
n ~ ln z* !s&BT A^z*

n ~ ln z* !s&AT

B^z*
n ~ ln z* !s&BT B^z*

n ~ ln z* !s&ATG
5

1
2 ~x1I1x2N!n$~ ln r !I1pÑ~u!%s~ I2 i Ñ!,

(A24)
Journal of Applied Mechanics
and use has been made of the following identity:

FABT AAT

BBT BATG5
1

2
~ I2 i Ñ!, (A25)

where

Ñ5F S H

2L STG . (A26)

BecauseN andN~u! share the same eigenvectors, they are co
mutative matrices. So areN, Ñ~u!, and Ñ. Sometimes, it is con-
venient to use an alternative form of~A24! as

FA^z*
n ~ ln z* !s&BT A^z*

n ~ ln z* !s&AT

B^z*
n ~ ln z* !s&BT B^z*

n ~ ln z* !s&ATG
5

1
2 $~ ln r !I1pÑ~u!%s~ I2 i Ñ!~x1I1x2N!n.

(A27)
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Université Bordeaux, 1,

UMR 5469 CNRS,
351, cours de la Libération,

33405 Talence Cedex, France
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Materials
A one-dimensional theoretical model is developed to predict the acoustic waves gen
by rapid thermal expansion caused by electromagnetic microwave absorption in
coelastic rods. The theoretical acceleration at the end of the irradiated rod is predic
The comparison between the experimental and the theoretical accelerations leads
evaluation of viscoelastic characteristics. Parameters related to the electromagneti
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parameters is developed. Since it is considered in the model that the distribution o
temperature rise along the rod is exponential, very absorbing materials can be te
Consequently, the influence of the moisture content on viscoelastic properties of a p
material can be investigated. The method is applied to study the influence of the mo
content on viscoelastic characteristics of medium density fiberboard materials.
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1 Introduction
The mechanical properties of materials made from wood

particularly influenced by their moisture content. For such ma
rials, a good knowledge of their mechanical properties need
evaluate their viscoelastic properties for several moisture conte
This is useful, for instance, in order to perform numeric
simulations.

A lot of experimental methods permit the determination of v
coelastic properties of materials. The most famous method
volves classical creep or relaxation tests which are tim
consuming and leads to the viscoelastic characteristics of
tested material at very low frequency only. Higher frequencies
be reached by dynamic tests. A comprehensive review of the
perimental techniques is out of the scope of this paper. The re
is referred to the reviews of Nolle@1#, McSkimin @2#, Ferry @3#,
and Nowick and Berry@4#. Among these dynamic methods, som
papers have been devoted to the determination of viscoel
characteristics by means of a dynamically loaded slender rod.
rod specimen can be loaded harmonically,@5–11#, by means of a
shaker or impacted,@12–15#. In the latter case, the viscoelast
properties are evaluated by studying the change in shape
stress pulse as it travels back and forth along a viscoelastic ro
both cases, the wave generation requires the contact of a shak
a projectile.

The present paper deals with a new method where the spec
rod is loaded by a rapid electromagnetic microwave irradiati
@16#. Contrary to the above techniques, this method does no
quire a mechanical contact for the wave generation. Conseque
the tests are very reproducible. The acoustic generation is ca
by the electromagnetic absorption of the irradiated material.
deed, the microwave energy is absorbed and converted into
mal energy, which caused the irradiated material to expand
accord with its thermoelastic properties. Thus the acoust
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waves are produced by a sudden heating of the irradiated mate
In a previous paper,@17#, since the electromagnetic absorptio
was low, it was assumed that the profile of the temperature ris
the irradiated rod was uniform or linear. In the present paper,
electromagnetic absorption due to a high moisture content ma
significant. Thus the assumption of a linear profile is not app
priate in this case and an exponential profile must be assume
already applied to composite materials,@18#.

The aim of this paper is to develop an experimental meth
which permits the determination of the viscoelastic properties
means of the acoustic waves generated by electromagnetic ab
tion of pulsed microwaves. Contrary to the method described
previous paper for low absorbing materials,@17#, the presented
method must be available for very absorbing materials whe
linear profile of the temperature rise is not appropriate any mo
A high moisture content may indeed increase the electromagn
absorption significantly. Consequently, it must be considered
the profile of the temperature rise in the irradiated rod is expon
tial. A one-dimensional model will be developed to predict t
acceleration at the end of the specimen. The comparison betw
the experimental and the theoretical accelerations will allow o
to evaluate the viscoelastic properties of the specimen but
other parameters, such as its absorption coefficient or the temp
ture rise reached after the irradiation by a microwave pulse
procedure will be presented to estimate approximate value
these parameters.

The method will be used for the study of the moisture cont
influence on the viscoelastic properties of medium density fib
board~MDF! rods.

2 Experimental Setup
The experimental setup with the instrumented specimen ro

presented in Fig. 1.
The microwaves are produced by a time-gated electromagn

generator at 9.41 GHz. The maximum power of the incident e
tromagnetic wave is 5.5 kW, and the maximum pulse width is
ms. To increase the amplitude of the acoustic waves generate
burst of 10 pulses with a repetition rate of 500 kHz is used. T
wave is delivered by a circular waveguide having a diameter of
mm that permits only the fundamental waveguide mode TE11 to
propagate~no electric field in the propagation direction!. To ob-
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tain the maximum power from the generator, a hybrid tee imp
ance adaptor~tee associated to two sliding short circuits! is in-
serted into the circuit and adjusted to achieve a minimum volt
standing wave ratio~VSWR!, as measured by a wattmeter. The
the specimen can receive the maximum electromagnetic en
and the measured signals are increased.

The viscoelastic rod sample is held vertically inside the wa
guide by means of a piece of foam put at the end of the wa
guide. A piezoelectric miniature accelerometer~Brüel & Kjaer
4374! is attached to the end of the rod by means of a very t
layer of couplant. The accelerometer massm is 0.65 g and its
charge sensitivity is 0.129 pC/m•s22. Its dynamic frequency range
lies between about 1 Hz and 20 kHz. The signal from the acc
erometer is amplified by a charge amplifier~Brüel & Kjaer 2525!,
and recorded on a digital oscilloscope~Lecroy 9310! that is, in
turn, linked to a computerized data acquisition system. The wa
forms are averaged in the scope during ten sweeps in orde
minimize the electronic noise and the environmental vibratio
and transferred to a computer for further processing.

3 Theory
The aim of this section is to find a one-dimensional mod

which can predict the theoretical acceleration at the end of a
coelastic irradiated rod.

Let us consider a viscoelastic rod put in a waveguide~z is the
axial coordinate, see Fig. 1!. The length of the rod isL. Its me-
chanical characteristics, its mass densityr and its cross-sectiona
areaA are uniform. The free surface atz50 is irradiated uni-
formly by an electromagnetic pulsed microwave. Owing to t
electromagnetic absorption, a temperature riseu(z,t) occurs in-
side the body~t is the time!.

The Fourier transforms,s̃(z,v) and ũ(z,v), of the normal
stresss(z,t) and the axial displacementu(z,t), respectively, are
related by

]

]z
s̃~z,v!52rv2ũ~z,v! (1)

where the angular frequencyv is related to the frequencyn by
v52pn. The stress state can be considered uniaxial in the ro

Fig. 1 Experimental setup
Journal of Applied Mechanics
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the lateral dimensions are much smaller than the waveleng
According to the classical theory of thermoviscoelasticity, the n
mal stress and the axial displacement are connected through
convolution relation

s~z,t !5E
2`

t

E~ t2t!
]

]t
@«~z,t!2bu~z,t!#dt

5
]E~ t !

]t
* @«~z,t !2bu~z,t !# (2)

whereE(t) is the tensile relaxation modulus,«(z,t) the longitu-
dinal strain,b the coefficient of linear thermal expansion in th
z-direction, andu(z,t) the temperature rise above the initial tem
perature. This linear viscoelastic constitutive law can be expres
in the frequency domain as

s̃~z,v!5E* «̃~z,v!2E* bũ~z,v! (3)

where E* 5E81 iE9 is the complex Young’s modulus in th
z-direction withE8 the storage modulus andE9 the loss modulus,
«̃(z,v) and ũ(z,v) the Fourier transforms of the longitudina
strain and the temperature rise above the initial temperat
respectively.

Since it will be seen that the temperature rise is very low,
temperature distribution will be assumed to be independent of
mechanical state of the material. From Eqs.~1! and~3!, it can be
demonstrated that the Fourier transforms of the axial displacem
can be calculated if the longitudinal strain and the temperature
are known, i.e.,

ũ~z,v!5
1

~vS* !2 Fb
]ũ~z,v!

]z
2

]«̃~z,v!

]z G (4)

where the complex slownessS* 5S82 iS9 is given by

S* 25
r

E*
. (5)

Equation~3! becomes

s̃~z,v!5
r

S* 2 @ «̃~z,v!2bũ~z,v!#. (6)

The axial particle velocityṽ(z,v) and the axial acceleration
ã(z,v) are given by

ṽ~z,v!5 ivũ~z,v!,ã~z,v!52v2ũ~z,v!. (7)

In the hypothesis of small strains, the longitudinal strain is rela
to the axial displacement by«(z,t)5]u(z,t)/]z. Consequently,
Eq. ~1! becomes

]2«̃~z,v!

]z2 1v2S* 2«̃~z,v!2b
]2ũ~z,v!

]z2 50. (8)

For short microwave pulses, the heat conduction can be negle
Owing to the electromagnetic absorption, it can be assumed
sufficient accuracy that the temperature rise profile in the irra
ated rod is exponential, i.e.,

u~z,t !5@u0e2az#•r ~ t ! with r ~ t !5F 0 for t<0

t/t for 0,t,t

1 for t>t
(9)

where t is the duration of the microwave pulse andu0 is the
temperature rise after one pulse atz50. The temporal evolution of
the temperature rise is explained by the fact that, during the e
tromagnetic pulse (0,t,t), the temperature increases linear
since the heat conduction can be neglected owing to the s
MARCH 2003, Vol. 70 Õ 269
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duration of the microwave pulses. The spatial decreasing ex
nential profile is caused by the electromagnetic absorption w
the wave propagates along the specimen.

With this exponential temperature profile, the general solut
of Eq. ~8! can be written as

«̃~z,v!5 P̃~v!e2 ivS* z1Ñ~v!eivS* z1
bu0a2

a21v2S* 2 r̃ ~v!e2az

(10)

where the functionsP̃(v) andÑ(v) are two functions depending
on the boundary conditions at both ends of the rod.

At this stage, the purpose is to find the relationship between
normal force and the acceleration at cross sectionz50 and these
two quantities at cross sectionz5L. By writing the normal force
F̃(z,v) and the accelerationã(z,v) at z50 andz5L with the
help of Eqs.~4!, ~6!, ~7!, and~10!, P̃(v) andÑ(v) can be elimi-
nated. Then, we obtain

F F̃~L,v!

ã~L,v! G5PF F̃~0,v!

ã~0,v! G1G (11)

where the components of the matrixP and the vectorG are de-
fined by

P5F c
rA

vS*
s

2
vS*

rA
s c

G , (12)

G5
bu0r̃v2

a21v2S* 2 FArS c2
as

vS*
2e2aLD

2vS* s1ae2aL2ac
G (13)

wherec5cos(vS*L) ands5sin(vS*L). It can be noticed that the
matrix P is related to the wave propagation whereas the vectoG
is related to the wave generation due to the thermal expans
Only G depends on the spatial profile of the temperature rise
the irradiated rod.

Then, the determination of the acceleration atz5L ~for in-
stance! involves the knowledge of the boundary conditions. T
end atz50 is free. Consequently, the normal force atz50 must
be zero, i.e.,F̃(0,v)50. The rod is instrumented with an accele
ometer having a massm at the endz5L. Thus, the normal force
at this end is related to the axial velocity by

F̃~L,v!52Zaṽ~L,v! (14)

whereZa is the mechanical impedance of the accelerometer
low frequencies, the accelerometer can be assumed to be a
mass. Then, its mechanical impedance is given byZa5 imv. With
the help of these boundary conditions and Eq.~11!, the accelera-
tion at z5L is

ã~L,v!5
P22G12P12G2

iZa

v
P222P12

. (15)

In the forward problem, the viscoelastic mechanical propert
the mass density, the dimensions of the irradiated rod, the pro
bu0 of the coefficient of thermal expansion by the maximum te
perature reached after one pulse, the electromagnetic absorpta
and the temporal functionr (t) are known. Thus, the acceleratio
measured by the accelerometer can be predicted theoretically
function r (t) is assumed to be given by Eq.~9!. In the inverse
problem, the acceleration is measured at the end of the irrad
rod. By comparing the measured signal to the theoretical on
may be possible to evaluate the real part and the imaginary pa
the complex slowness,S8 andS9, the electromagnetic absorptio
a, and the productbu0 . To solve this inverse problem, we need
implement a numerical procedure using the theoretical Eq.~15!.
270 Õ Vol. 70, MARCH 2003
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4 Determination of the Different Parameters
In order to evaluate experimentally the set of the four para

etersp5(S8,S9,a,bu0), the difference between the moduli of th
Fourier transforms of the experimental and the theoretical ac
erations in the accelerometer frequency range can be minim
by a numerical procedure. The minimization allows one to find t
optimal set of parametersp that fits the experimental and th
theoretical acceleration spectra at best. To simplify the minimi
tion procedure, it must be assumed that the variation of the co
plex slowness with frequency is small in the frequency range
the accelerometer. The function to minimize is given by

J~p!5(
n

i ãexp~n!u2uã~n,p!i (16)

whereuãexp(n)u and uã(n,p)u are the moduli of the Fourier trans
forms of the experimental and the theoretical accelerations,
spectively. The values reached by this procedure may be fals
the initial values used to start the numerical minimization are
far from the real values. Consequently, it is important to develo
method that can provide approximate values close to the real o
The method will be based on the shape of the acceleration s
trum measured at the endz5L. This spectrum has been calculate
theoretically and plotted in Fig. 2 in the case of a PVC rod havi
a lengthL520 cm (S85600ms/m, S9510ms/m). It is character-
ized by the presence of peaks~only the first and the second one
are represented in Fig. 2!. The frequency of thenth peak is called
nn and its amplitude isan . The characteristics of the two firs
peaks at frequenciesn1 and n2 will allow one to evaluate the
approximate values of some parameters.

First, it can be noticed that the frequenciesnn are related to the
real part of the complex slowness by

nn'
n

2LS8
. (17)

This relation is an approximation because the presence of
accelerometer reduces the value of the peak frequency slightly
an example, for a PVC rod of 20 cm, the error made by us
relation~17! with an accelerometer lighter than 2 g would be less
than 3.2%. With an accelerometer having a mass of 0.65 g~accel-
erometer used in the experimental setup!, the error would be less
than 1%. The value of the real part of the complex slowness
found without knowing the spatial profile of the temperature ris
Moreover, the parameterS8 can be obtained independently at ea
frequencynn of the measured acceleration peaks. This fact allo
to verify whether the real part of the slowness depends on
frequency.

Fig. 2 Theoretical acceleration spectrum for a PVC rod
Transactions of the ASME
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Once the parameterS8 is evaluated thanks to Eq.~17!, the
electromagnetic absorption coefficienta can be determined even
the imaginary part of the complex slowness is unknown. To pr
that, the curve corresponding to the ratioa2 /a1 ~wherea1 anda2
are the amplitudes of the two first peaks of the acceleration s
trum, see Fig. 2! is plotted in Fig. 3 for very different values of th
imaginary partS9 of the complex slowness~the other characteris
tics used in the calculation are the characteristics of a PVC
having a length of 20 cm!. From Fig. 3, it can be noticed tha
compared to the amplitude of the first peak, the amplitude of
second peak increases with the absorption coefficient. This c
permits the determination of the absorption coefficienta with a
quite good accuracy by measuring the ratioa2 /a1 of the ampli-
tudes of the two first peaks. It can be plotted automatically i
few seconds whenS8 is known.

The imaginary partS9 of the complex slowness is more difficu
to obtain. As shown in Fig. 4, this parameter is related to
widths of the spectrum peaks. The normalized acceleration spe
have been plotted in Fig. 4 for three different values ofS9. Each
normalized acceleration spectrum corresponds to the ratio
tween the acceleration spectra and the maximum amplitudea1 of
the first peak. The parametersS8 anda evaluated by the method
described above are used for the calculations. The normal
spectra does not depend on the last parameterbu0 .

Consequently, the value ofS9 can be obtained by a numerica
minimization procedure using one parameter. In this case,
function to minimize is given by

Fig. 3 Ratios a2 Õa1 for different imaginary parts of the com-
plex slowness „LÄ20 cm …

Fig. 4 Normalized acceleration spectra for different imaginary
parts of the complex slowness „LÄ20 cm …
Journal of Applied Mechanics
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J~S9!5(
n

Uuãexp~n!u
a1 exp

2
uã~n,S9!u

a1~S9!
U. (18)

A trick to evaluate an approximate value ofS9 is to measure the
amplitude of the normalized spectrum in the central area betw
the two first peaks. Indeed, this value is almost proportional to
value ofS9. This fact has been verified for very different values
the other parametersS8 anda. Then, in the central area betwee
the two frequenciesn1 andn2 , the ratio between the experiment
normalized spectrum and a theoretical normalized spectrum,
culated with an arbitrary reference valueSref9 of S9, gives directly
the ratio between the approximate actual value ofS9 and the cho-
sen reference value:

S9

Sref9
'

uã~n,S9!u/a1~S9!

uã~n,Sref9 !u/a1~Sref9 !
U

n'n11n2/2

. (19)

At this stage, approximate values of the three parametersS8,
S9, and a have been obtained. Only the productbu0 remains
unknown. Since the acceleration spectrum is proportional tobu0 ,
the simplest way to evaluate its approximate value is to use
following equation:

bu05
(nuãexp~n!u

(nuã~n,bu051!u
(20)

where uã(n,bu051)u corresponds to the theoretical accelerati
spectrum calculated with the values ofS8, S9, and a obtained
above andbu051.

Once all the approximate values of the four parameters h
been evaluated by the methods described above, these value
be used as initial values in the numerical minimization proced
of the function given by Eq.~16! in order to increase their
accuracy.

5 Experimental Results for Medium Density Fiber-
board „MFD … Rods

MDF is an engineered wood product composed of fine wo
fibers combined with a synthetic resin or other bonding syst
and joined together under heat and pressure to form large pa
The influence of the moisture content on the viscoelastic prop
ties of this kind of material may be significant. The aim of th
section is to apply the method described above for the stud
different MDF materials. The effect of the moisture content w
be particularly analyzed.

Three different MDF materials with different densities we
tested. They are denoted MDF A, MDF B, and MDF C. T
material A comes from a manufacturer, the materials B and
come from another one. For each material, one rod specimen
cut in the machine direction. The lengths are 19 cm for MDF
and 21 cm for MDF B and C. The cross sections are rectang
with lateral dimensions 10320 mm2.

In order to increase their moisture content, the three specim
were put in a box with saturated air~humidity of 100%! during 72
hours approximately at room temperature. Afterward, the sp
mens were dried progressively at ambient humidity and temp
ture. During this stage, microwave tests, dimensions, and m
measurements were performed regularly for the three specim
When the mass of the rods became stable, they were put i
oven at a temperature of 80°C during about ten hours in orde
dry them completely. The mass of the dry specimen is used for
calculation of the moisture content. Indeed, the moisture con
of a specimen is defined as the difference between its mass an
dry mass divided by its dry mass. The densities calculated fr
these dry masses are 510 kg/m3, 570 kg/m3, and 700 kg/m3 for
MDF A, B, and C, respectively.

The data collected from the previous tests were treated with
method described above in order to determinate the four par
etersS8, S9, a, and bu0 at each moisture content for the thre
MARCH 2003, Vol. 70 Õ 271
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Fig. 5 Experimental acceleration signals and experimental acceleration spec-
tra for three moisture contents „MDF A…

Fig. 6 Experimental and theoretical acceleration spectra for two moisture con-
tents „MDF A…

Fig. 7 Storage modulus and loss angle versus moisture content
2003 Transactions of the ASME
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Fig. 8 Absorption coefficient and product of the maximum temperature rise by
the thermal expansion coefficient versus moisture content
p
e

i

T
t

o

e

e

r
d

o

r
h
o

i

c

ate
. For

up
s a
his
that

re
thod
tent
p to

a-
een
odel

d in
he-

s the
ag-

elec-
ffi-
hed
ob-

tro-

ince
be

ro-
is-
rial.
od is
een
s to
uated,
eir

nce
me-
v-

een
the

heo-
e-
specimens. The moisture contents tested are less than 25%
MDF A and C. They are less than 15% for MDF B. The specim
A was not tested between 0% and 9%. Some examples of ex
mental acceleration signals are given in Fig. 5 for three differ
moisture contents. These waveforms come from the tests
formed for MDF A. The corresponding experimental accelerat
spectra are also plotted in Fig. 5 for the same moisture conte

It is well known that the electromagnetic absorption of micr
waves by water is quite significant. Consequently, since the e
tromagnetic absorption of the irradiated body will increase w
its moisture content, the temperature rise will increase too.
result of the data processing will show that this statement is
although it can be shown in Fig. 5 that the amplitude of the fi
peak in the acceleration spectra decreases when the moisture
tent increases for the plotted spectra.

The method presented in the last section has been used t
terminate the experimental values of the four parameters for e
specimen rod and for each tested moisture content. From th
sults obtained by the minimization procedure, the theoretical
celeration spectra have been calculated and compared to th
perimental acceleration spectra in the case of the material MD
and for two different moisture contents~see Fig. 6!.

The experimental curve and the theoretical curve obtained f
the evaluated set of parameters are very close. This fact ten
demonstrate the validity of the theoretical model. The results
tained for the four parameters are presented in Figs. 7 and 8. F
the evaluated complex slowness, the complex viscoelastic m
lus has been calculated by means of Eq.~5!. The real part, the
storage modulus, and the tangent of the loss angled (tand
5E9/E8) have been plotted in Fig. 7.

Concerning the storage modulus, it can be noticed that the o
of MDF A and B are very close even if the densities of bo
materials are different. The storage modulus of MDF C is high
This fact can be explained by a higher density of this last mate
On the other hand, the loss angles are quite close for the t
materials but the one of MDF A seems to be a little higher. Fr
Fig. 7, it can be shown that the increase of the moisture con
leads to a decrease of the specimen rigidity and an increase o
viscoelastic damping effect. As it has been predicted above,
shown in Fig. 8 that the electromagnetic absorption and thus
temperature rise increase for the three material when the mois
content increases. In order to give an order of magnitude for
temperature rise reached in the irradiated materials, the coeffi
of thermal expansion must be known. If the coefficient of therm
expansion is estimated on the order of 1025/°C ~that is generally
the case for most materials, particularly for wood!, it can be de-
duced that the temperature riseu0 reached after one pulse of 1ms
varies between 0.5•1024°C and 25•1024°C approximately. This
hanics
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temperature rise is extremely low but it is sufficient to gener
acoustic waves which are measurable with the accelerometer
the absorption coefficient as well as for the productbu0 shown in
Fig. 8, it can be noticed the fact that the results are very close
to about 10% or 12% of moisture content. Beyond, there i
discrepancy between MDF A and C. It is out of the scope of t
paper to explain these effects. It can be just concluded here
the absorption coefficient and the maximum temperature rise~or
rather the productbu0) are some better indicators of the moistu
content than the mechanical properties evaluated by the me
since the variations of these parameters with the moisture con
seem to be identical for the three tested materials, at least u
10% or 12% of moisture content.

6 Conclusions
A new method to determine the viscoelastic properties of m

terials in a frequency range between 1 kHz to 20 kHz has b
presented. This method uses a theoretical one-dimensional m
developed in order to predict the acoustic waves generate
viscoelastic rods by electromagnetic microwave pulses. The p
nomenon of acoustic generation is thermoviscoelastic. Beside
viscoelastic characteristics, parameters related to the electrom
netic absorption can be evaluated. These parameters are the
tromagnetic absorption coefficient and the product of the coe
cient of thermal expansion by the maximum temperature reac
after one microwave pulse. Finally, four parameters can be
tained~two mechanical ones and two electromagnetic ones!. Con-
trary to a previous paper where it was considered that the elec
magnetic absorption in the irradiated material was low,@17#, very
absorbing materials can be tested with the present method s
the profile of the temperature rise in the rod is assumed to
exponential, which is more realistic than a linear or uniform p
file. This fact allows one to investigate the influence of the mo
ture content on the viscoelastic properties of a porous mate
The presence of the accelerometer mass at the end of the r
taken into account in the model. Moreover, a procedure has b
proposed to find approximate values of the different parameter
be measured. Once these approximate values have been eval
a numerical minimization procedure allows to increase th
accuracy.

Next, the method has been applied to the study of the influe
of the moisture content on the viscoelastic characteristics of
dium density fiberboard~MFD! materials. Three specimens ha
ing different densities have been tested. The comparisons betw
experimental spectra and theoretical spectra calculated with
evaluated parameters have demonstrated the validity of the t
retical one-dimensional model. The results obtained for the m
MARCH 2003, Vol. 70 Õ 273
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chanical parameters have confirmed that the moisture conten
a significant influence on viscoelastic properties of MDF mate
als. An important observation is that the evaluated absorption
efficient and maximum temperature rise are some good indic
of the moisture content in the tested material. In a future study,
could imagine an extension of this method, directly implemen
in the production line, to control moisture content and viscoela
characteristics during the manufacturing process.
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The Motion of a Rolling Polygon
Galileo was the first to analyze the motion of spheres rolling down an inclined surf
Since then, Coulomb’s law of dry friction has covered the case of sliding particles. H
ever, a particle that is not round can still roll, although in a way that is essentia
different from the motion studied by Galileo. Instead of keeping contact with the sur
such particles will start bouncing after reaching a certain angular velocity. This motio
a combination of flying and colliding. It is shown that the acceleration of a bounc
particle is always bounded by the accelerations for perfect rolling and sliding. In orde
describe the motion of a not perfectly round particle, the polygon is used as a mode
aim of the model is to predict the trajectories of particles that cannot be covered b
models for perfect rolling and sliding.@DOI: 10.1115/1.1481893#
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1 Introduction
Galileo studied the motion of spheres rolling down an inclin

plane, and concluded that ‘‘the distances, then, from the begin
of motion are as the squares of the times’’~see Galileo, translation
by Drabkin and Drake@1# and Drake@2#!. Sliding motion, on the
other hand, can be described by Coulomb’s law of dry frictio
Only one empirical constant, the coefficient of friction, is need
For sliding, the distance traveled is also proportional to the squ
of time.

The descriptions of sliding and perfect rolling do not cover
possible particle motions, however. In practice, a lot of partic
have the ability to roll, but their rolling is dissipative, unlike th
of a sphere. The energy dissipation, in this case, originates f
collisions with the surface, rather than from forces of friction.
some point, such particles may lose contact with the surface
start bouncing.

Shinohara@3# attempted to describe the motion of granular p
ticles by treating particles as ellipsoids, without taking into a
count bouncing due to impact at the moment of landing. Azz
et al. @4# studied rock fall trajectories in order to determine acc
rate risk zoning and construct adequate defense systems.
model uses fitted values for the restitution and roll friction co
ficients. Variation in slope and irregularities of the slope are
important parameters, rather than the irregularities of the shap
the rocks. Hacar Benitez et al.@5# did a similar study on bodies
falling down from various slopes: Again, the irregularities of t
slope are the main parameters. For roughly round particles,
are moving on a smooth slope, the approaches mentioned a
are inadequate.

In particle technology, the effect of shape on particle motion
used for separation.~see Furuuchi and Gotoh@6# for an overview!.
Modeling these separations requires a theory that accounts
irregularly shaped particles. In this paper, a model is prese
which deals with alternative rolling behavior by treating partic
as polygons and including impact effects. The number of edge
the polygon is a measure for the energy loss due to collisio
comparable to the friction coefficient used in the theory of slidin
The coefficient of friction also plays a role in the description o
rolling polygon, in determining which type of collision occurs.

The rolling behavior of irregularly shaped particles can be st
ied on the scale of individual particle collisions as well as mac

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Dece
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California–Santa Barbara, Santa Barbara, CA 93106-5070, and will be accepted
four months after final publication of the paper itself in the ASME JOURNAL OF
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Copyright © 2Journal of Applied Mechanics
ed
ing

n.
d.
are

ll
les
t
om
t

and

r-
c-
ni

u-
heir
f-
he
e of

e
that
ove

is

for
ted

es
s of
ns,
g.
a

d-
ro-

scopically, i.e., by considering the average behavior of a la
number of similar particles, or alternatively, by considering
single particle over time intervals containing many collisions. F
particle separation models, the macroscopic view is the most h
ful, and therefore this view is adopted here. The purpose of th
models is to predict the trajectories of particles on the basis
parameters which can be easily measured or estimated, so
tell how particles of a different nature, in terms of material
shape, segregate into different streams while moving down a~usu-
ally curved! surface.

In order to simplify the calculations, the model that is presen
here is restricted to two dimensions and the supporting surfac
represented by a straight line. The particles on the surface
subject to the accelerationg8 of a constant external force, which i
at some angleu with the normal into the surface. Collisions be
tween the particles and the surface are modeled by the theo
Keller @7# more in particular by the method developed by Wa
and Mason@8# for two dimensions. This theory treats the collisio
of solid bodies as an infinitesimally short process governed by
parameters, the coefficient of dry friction,m, and the coefficient of
restitution e. Apart from the external force and the interactio
with the surface, no other forces, such as, for example, air d
are taken into account.

The choice for a regular polygon as a model for particles
irregular shapes is motivated by the fact that this choice redu
the shape parameter to a single number, i.e., the number of e
n, while at the same time providing flat and round particles
limiting cases.

2 Limits of Rolling and Sliding
The speed of a rolling or bouncing particle, starting from rest

bounded by the motion of sliding and rolling particles with th
same physical properties, but with an appropriate change of sh
In order to show this, consider a two-dimensional particle of
bitrary shape that is subject to a constant accelerationg8, such as
gravity, while constrained by a surface, here the positivex8-axis,
that acts on the particle with a timedependent support forceFn8
and a friction forceF f8 , which are normal and parallel to th
surface, respectively. The gravity force makes an angleu with the
normal into the surface, so as to accelerate the particle toward
right ~see Fig. 1!. During its flight, the particle is described by it
massm8 and moment of inertiaI c8 , its linear velocity (vx8 ,vy8) and
angular velocityV8. ~The primes are used here to distinguish t
original physical quantities from their dimensionless counterpa
introduced later on.!

We now consider two consecutive points in time at which t
particle has a zero velocity component normal to the surface w
it is in contact with the surface. Integrating for the change
momentum in this time-intervalDt8, we get

-
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m8Dvx85m8g8 sinuDt82E
t8

F f8 (1)

m8Dvy85E
t8

Fn82m8g8 cosuDt8. (2)

Sincevy850 both at the start and at the end of the time interva
follows that

Dvx85g8 cosuDt8S tanu2E
t8

F f8Y E
t8

Fn8D . (3)

From Coulomb’s law of dry friction we know that all timesF f8
<mFn8 , and consequently* t8F f8<m* t8Fn8 . This means thatDvx8
is at a minimum for a particle with a shape that implies slidi
motion (F f85mFn8).

By integrating for the change of kinetic energy over the sa
time interval, we get

DS 1

2
I c8V821

1

2
m8vx8

2D5E
t8

m8vx8g8 sinu2L f2Lp2DF

(4)

with L f ,Lp>0 the losses due to friction and inelastic collision
The difference in potential energyDF at the times of contact is
due to small, random variations of the heighty8 of the center of
mass of the particle above the surface~as a consequence of th
irregular shape of the particle! and the difference of the elasti
energy stored in the particle-surface contact. Since the partic
accelerating, it seems fair to assume that the elastic energ
growing with time and soDF>0 as well.

From this point on, two different cases emerge from the ana
sis. One possibility is that the particle structurally slips in co
sions with the surface, because its rotation lags essentially be
the condition of perfect rollingvx81V8y850 and hence the ve
locity at the point of contact is consistently positive. In this ca
we get back to the previous case withF f85mFn8 . The second
possibility is that the condition of perfect rolling~or even vx8
1V8y8,0! is regularly satisfied. In that case, the rotation of t
particle remains close to the condition of perfect rolling and
averagevx85uV8uR8 for some effective particle radiusR8. The
latter case implies

S I c8

R82 1m8DD
vx8

2

2
<m8g8 sinuE

t8
vx8 . (5)

By replacing the integral with the trapezoidal rule

E
t18

t28vx8.~~vx8!11~vx8!2!Dt8/2 (6)

and observing that

Fig. 1 Problem definition
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5~~vx8!11~vx8!2!Dvx8/2 (7)

it then follows that

S I c8

R82 1m8D Dvx8

Dt8
<m8g8 sinu. (8)

Note that the equal sign corresponds to the case of perfect ro
of a particle with radiusR8. Therefore, the particle acceleration
bounded from above by the maximum of sliding and rolling.

3 The Polygon Model
In order to arrive at equations of motion for particles of

irregular shape, we now turn to a polygon withn edges~see Fig.
1!. Whenever a polygon is in continuous contact with the surfa
it will either slide or stick. If it slides, Coulomb’s law of dry
friction can be applied. If it sticks and the particle rolls, the po
of contact changes, every time the next edge of the poly
touches the surface. This change of point of contact is accom
nied by a collision. At a certain angular velocity, the particle w
start to jump from the surface and its motion will become a co
bination of flying and colliding.

The motion of a polygon is essentially defined by a number
dimensionless parameters, such as the angleu between the norma
into the surface and the external acceleration, the number of e
of the polygon,n, the moment of inertia to mass ratioI c8

2/m8R82

and two material properties: the friction coefficientm, and the
restitution coefficient of the collision with the surfacee. In order
to make this more apparent, the equations of motion are m
dimensionless using the magnitude of the external accelera
g8, the particle radiusR8, and the particle massm8. Table 1
shows the factors that are used for the various quantities.

3.1 Modeling Assumptions. In general, a polygon has, nex
to sliding and standing still, two possible modes of interacti
with the surface: rolling and bouncing. In rolling mode, the po
gon is continuously in contact with the surface. In this paper, o
the case when the polygon sticks at the point of contact is con
ered for rolling. This corresponds to the assumption that the f
tion coefficient is sufficiently high. If the particle has a sma
number of edges, it will only take a few collisions before it sta
bouncing. The number of collisions before this point increa
with an increasing number of edges. However, the energy loss
collision decreases with an increasing number of edges. For
reason, it is assumed that collisions play a minor role in rolli
mode and they are therefore ignored during this mode. Rollin
modeled with an average rotation axis, by taking an average v
for the orientationf, instead of a function of time,f(t), in ac-
cordance with the macroscopic character of the model.

Bouncing mode is when the polygon is free from the surfa
except for collisions. It is assumed that the horizontal velocity
the point of contact is always positive before collision. This is
consequence of the horizontal component of the external fo
that accelerates the polygon while traveling through the air. T
external force will result in a linear velocity that exceeds the s

Table 1 Factors that are used to make dimensionless quanti-
ties.

Variable Dimension Dividing Factor

Force kg m/s2 m8g8
Torque kg m2/s2 m8g8R8
Velocity m/s Ag8R8
Angular velocity 1/s Ag8/R8
Time s AR8/g8
Distance m R8
Moment of inertia kg m2 m8R82
Transactions of the ASME
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face velocity of the particle. In accordance with this assumpti
only two possibilities are considered for the horizontal cont
velocity after collision: zero or positive. The collisions themselv
are modeled by Routh’s graphical method, using Poisson’s m
of restitution, and are assumed to be perfectly plastic:e50 ~a
restitution coefficient of 1 corresponds to a perfectly elastic co
sion!. This latter assumption is not obvious and will be suppor
by results from numerical simulations for a number of values oe
~see Section 4!.

3.2 Collision Model. Wang and Mason@8# showed that all
two-dimensional collisions can be described by five imp
modes, each mode representing a different microscopic transf
momentum. The five modes are bounded by relations between
coefficient of friction, the coefficient of restitution, and the conta
velocities before collision. As a result of the assumptione50, two
of the five impact modes cannot occur. The assumption of a p
tive horizontal velocity at the point of contact before the collisi
rules out a third impact mode~see the Appendix!.

For ease of notation, subscript 1 and 2 will refer to the state
the polygon just before and just after the collision, respectiv
~Subscript 0 will be used later and represents the state just
the previous collision.! Following the notation of Wang and Ma
son,S and C refer to thex-component andy-component of the
velocity of the polygon at the point of contact, respectively:

S5vx1V cosf (9)

C5vy1V sinf . (10)

A collision with the surface delivers an impulse (Px ,Py) to the
polygon:

vx25vx11Px (11)

vy25vy11Py (12)

V25V11~Px cosf1Py sinf!/I c . (13)

The two remaining impact modes result into different expressi
for (Px ,Py). The first mode, calledsticking in compression phas
~collision 1! is described by

Px52
Py sinf cosf1S1

11cos2 f
(14)

Py5~11e!
S1 sinf cosf2C1~11cos2 f!

2
. (15)

The second contact mode calledsliding ~collision 2!, is described
by

Px52mPy (16)

Py52~11e!
C1

11sin2 f2m sinf cosf
. (17)

The conditions for all contact modes are given in the Append
In order to arrive at macroscopic values for the impulse de

ered by a collision, a representative value is needed for the o
tation parameterf. To this end, we consider the flight of th
polygon between two subsequent collisions. Immediately afte
collision, the state of the polygon is defined by a set of valu
(vx0 ,vy0 ,V0 ,f0) that define its motion until it hits the surfac
again in a precollision state (vx1 ,vy1 ,V15V0 ,f1). Since the ve-
locity of the point of contact after the first collision is strictl
horizontal, we havevy052V0 sinf0. During its flight between
the collisions, they-coordinates of then vertices of the polygon
are given by

yi5cosf02cosS f01
2ip

n
1V0t D2V0 sinf0t2

t2 cosu

2
;

i 51,.,n. (18)
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f1 is found as the solution forf01 (2ip/n) 1V0t at the first
zero of mini yi. The formula shows thatf1 depends only onn,
V0 /Acosu andf0 . Figure 2 shows diagrams off1 againstf0 for
n56 and two different values ofV/Acosu. The diagrams show
that the relationship is such that any negative values off0 result
in positive values off1 , whereas most initially positive values o
f are randomly thrown into the interval@0,p/n# for increasing
values ofV. This behavior suggestsf̄5 p/2n as an appropriate
value for the macroscopic model.

3.3 Equations of Motion. The time-averaged dimension
less equations of motion for a polygon contain both terms due
the external force and friction as well as terms resulting fro
collisions with the surface. The latter are averaged in time
dividing their effect byDt, the dimensionless time between tw
collisions:

Fxc5
vx22vx1

Dt
(19)

Fyc5
vy22vy1

Dt
(20)

Tc5I c

V22V1

Dt
. (21)

3.3.1 Motion Without Rotation.A polygon will not move
when the torque and the sum of forces are zero, which is the c
when

tanu,m,tan
p

n
. (22)

A polygon will only slide ~and not roll! when the torque is zero
and the sum of forces is positive, which is the case when

Fig. 2 Relation between values of f in subsequent collisions
for nÄ6 and VÕAcos uÄ2 „top … and VÕAcos uÄ4 „bottom …
MARCH 2003, Vol. 70 Õ 277
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p

n D . (23)

In this case, the acceleration of the polygon is given by

v̇x5cosu~ tanu2m!. (24)

In all other cases, the polygon will start rolling.

3.3.2 Rolling. If the polygon rolls, its corners remain in con
tact with the surface at all times. In particular, if the orientation
the polygon isf, the acceleration of its center of gravity toward
the surface isV2 cosf. Since this acceleration cannot exceed th
of the external acceleration for any value off, rolling motion
implies

V2<cosu. (25)

Otherwise, the polygon will start bouncing. To come to mac
scopic equations of motion, it is further assumed thatf can be
approximated by the average valuef̄5 p/2n. Ignoring losses
from collisions and sliding, we get

V̇52
cosf̄ sinu

I c1cos2 f̄
(26)

vx52V cosf̄. (27)

The solution forV(t) is a simple linear function oft.

3.3.3 Bouncing. The particle starts bouncing when the su
port force needs to be negative in order to keep the polygo
contact with the surface. All energy losses during bouncing re
from collisions.

During bouncing the following general relations apply betwe
the velocitiesvx ,V of two consecutive after-collision states:

vx25vx01sinuDt1Px (28)

V25V01~Px cosf̄1Py sinf̄ !/I c (29)

with Dt the time between collisions. Note that the results for b
impact modes expressPx in terms ofPy andPy in terms ofS1 and
C1 . Regardless of the type of collision,

C15vy01V0 sinf̄2cosuDt (30)

52cosuDt. (31)

For sticking in compression phase~collision 1!, there is the addi-
tional relation

S15vx01V0 cosf̄1sinuDt (32)

5sinuDt (33)

since this type of collision ends with sticking. Inserting the e
pressions forPx andPy and using the relations above, we find f
collision 1.

v̇x5~vx22vx0!/Dt (34)

5
cos2 f̄ sinu2sinf̄ cosf̄ cosu

2
(35)

V̇5~V22V0!/Dt (36)

5
sinf̄ cosu2cosf̄ sinu

2I c
(37)

and for collision 2

v̇x5sinu2
m cosu

11sin2 f̄2m sinf̄ cosf̄
(38)
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V̇5
~sinf̄2m cosf̄ !cosu

I c~11sin2 f̄2m sinf̄ cosf̄ !
. (39)

Collision 1 occurs as long as the condition below is satisfied~see
the Appendix!.

m.
sinu1sinf̄ cosf̄ cosu1sinu sin2 f̄

cosu1cosu cos2 f̄1sinf̄ cosf̄ sinu
(40)

Otherwise, collision 2 occurs.

4 Numerical Calculations

The moment of inertiaI c8 of a polygon can be approximated b
the average of the moments of inertia of the inscribed and o
scribed cylinder.

I c8'

1

2
m8S R821R82 cos2S p

n D D
2

(41)

and the dimensionless moment of inertia is then approximated

I c5
I c8

m8R82 '0.5. (42)

This value is used in both the model calculations and the num
cal calculations presented here.

Numerical calculations were performed to verify the assum
tions used in the macroscopic model, in particular the assump
e50. The ODE-solver DASSL~see Petzold@9# and Brenan et al.
@10#! was used to integrate the detailed microscopic equation
motion between collisions:

ḟ5V (43)

v̇x5sinu2F f (44)

v̇y5cosu1Fn (45)

I cV̇5Fn sinf2F f cosf. (46)

For rolling mode,Fn andF f are computed from the constraints o
the point of contact with the surface and for bouncing mode,Fn
5F f50. The transition from rolling to bouncing is triggered b
the change of sign ofFn .

Whenf reaches2 (p/n), corresponding to another rotation o
2 (2p/n) , f is reset top/n. In rolling mode, a collision occurs
at this point, which is calculated using the full method by Wa
and Mason~see the Appendix!. In bouncing mode, a collision is
carried out when the nearest edge of the polygon touches
surface.

4.1 The Assumption eÄ0. An important contribution of
the numerical results from the detailed microscopic model is
show the effect of variations of the coefficient of restitutione,
which is assumed to be zero in the macroscopic model. Tab
shows the tangential velocityvx at time t5100 for various com-
binations ofe andm. The coefficient of restitutione is varied from
0.0 to 1.0, covering the entire possible range. The frictionm is
varied from 0.0 to 1.0, which is a typical range of values occ
ring in practice.

For low values of the friction, the particle will slide. In thi
case, the friction force is not sufficiently large to make the parti
rotate. For higher values ofm, the particle will rotate. At the given
combination ofn and u, a further increase of the coefficient o
friction will make the particle keep still. In general, the values
the friction at the transitions from sliding to rolling and from
rolling to keeping still depend on the number of edges as wel
on the angle of the slope.

For low coefficients of restitution we observe that the coe
cient of friction, rather than the coefficient of restitution dete
mines the tangential velocity. This is fortunate because high
Transactions of the ASME



c

i

a

en a
eets
ed

ce
nce
tua-
ol-
lcu-

ct
em-

on-
ur-
the
The
ues of restitution are rare and the exact value ofe may depend on
the orientation of the colliding object with respect to the surfa
@11#. These results support the assumptione50 for a macroscopic
model for computing the tangential velocity. For higher values
e, changes of the coefficient of restitution do affect the result
tangential velocity, the effect being of the same order of mag
tude as resulting from variations of the coefficient of friction.

4.2 Comparison of Numerical and Model Calculations.
As a further check on the modeling assumptions involved in
macroscopic model, the results of the model are compared to
merical calculations for various values of the friction, slope, a
the number of edges of the polygon around the central casu
540 deg,m50.5, n520.

Figure 3 shows that the motion of the polygon is bounded
the cases of perfect rolling~top dark line! and sliding ~bottom
dark line!, as the number of surfacesn is varied from 10 to 100.
Continuous lines show the results of numerical calculations

Fig. 3 uÄ40 deg, mÄ0.5, nÄ100 „top …, nÄ20 „middle …, n
Ä10 „bottom … with the dotted line the macroscopic model and
the continuous line the numerical calculations. The top and
bottom line represent, respectively, perfectly rolling and per-
fectly sliding

Table 2 Horizontal velocity for various combinations of e and
m, for nÄ10 and uÄ40 deg at dimensionless time tÄ100

m,e 0.0 0.2 0.4 0.6 0.8 1.0

0.0 64 64 64 64 64 64
0.2 49 49 49 49 49 49
0.4 32 33 35 36 33 31
0.6 26 26 27 31 27 32
0.8 0 0 0 0 0 0
1.0 0 0 0 0 0 0
Journal of Applied Mechanics
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dotted lines represent the macroscopic model. Notice that ev
perfect sphere or cylinder will start to bounce as soon as it m
an irregularity of the surface. It can therefore be question
whether the limit of perfect rolling could be observed in practi
for such an extent of time. Figure 3 shows a good resembla
between the model and numerical calculations, apart from fluc
tions in the numerical velocity that are caused by individual c
lisions. Figures 4 and 5 compare the model and numerical ca
lations for various values ofm and different slopes. Atm50.1 the
polygon slides without collisions. Table 3 shows the impa
modes for all the presented results. All cases show good res
blance between the model and numerical calculations.

5 Conclusions
The motion of a polygon can be used as a model for the n

perfect rolling of bodies of irregular shape. The number of s
faces n of the polygon is a measure for the roundness of
particle and the energy loss due to collisions with the surface.

Fig. 4 Effect of the friction coefficient. uÄ40 deg, nÄ20. From
top to bottom: mÄ0.1, mÄ0.4, and mÄ0.7, with the dotted line
the macroscopic model and the continuous line the numerical
calculations.

Fig. 5 Effect of the slope. mÄ0.5, nÄ20. From top to bottom
uÄ80 deg, uÄ50 deg, and uÄ20 deg, with the dotted line the
macroscopic model and the continuous line the numerical cal-
culations.

Table 3 Impact modes of the macroscopic model for the con-
ditions of Figs. 3, 4, and 5. Sticking means sticking in compres-
sion phase; none means the particle slided without collisions.

n m u ~degrees! Impact Mode

10 0.5 40 sticking
20 0.5 40 sticking
100 0.5 40 sticking
20 0.5 20 sticking
20 0.5 50 sliding
20 0.5 80 sliding
20 0.1 40 none
20 0.4 40 sticking
20 0.7 40 sliding
MARCH 2003, Vol. 70 Õ 279
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larger the number of edges of the polygon, the lower the ene
loss due to collisions, and the faster it will roll. For practic
applications, a macroscopic model based on time-averaged e
tions of motion is developed. This model shows very good res
blance to detailed numerical calculations and is a powerful
fast tool to describe the motion of polygons, without having
perform numerical calculations. It gives a good insight in the w
particle shape relates to energy losses during rolling.
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Appendix

Impact Modes: Boundary Conditions. The collisions are
computed by the two-dimensional model described by Wang
Mason@8#. Their model is based on Routh’s graphical method
describe an impact process and to determine the frictional
pulse. They distinguish two directions for impulses due to impa
i.e., normalPy and tangentialPx . For an oblique impact, five
impact modes can be identified, and the impulses due to colli
depend on the impact mode. The impact modes have to do
the order in which sticking and maximal compression take pl
during the collision and whether the point of contact sticks
starts reversed sliding.

The conditions that define the impact modes of the collision
the following definitions:

ms5
2sinf cosf

11cos2f
(47)

Pd5~11sin2f2m sinf cosf!S1 (48)

Pq5~m~11cos2f!2sinf cosf!~2C1!. (49)

For a polygon colliding with a surface of infinite mass, th
impact modes and impulses after collision are described by~with
s5sgn(S0), B1511cos2 f, B2511sin2 f, B352sinf cosf!:

1 Sliding

Pd.~11e!Pq

Px52smPy

Py52~11e!
C0

B21smB3

2 Sticking in compression phase~C-sticking!

Pd,Pq and m.umsu

Px5
B3Py2S0

B1

Py52~11e!
B1C01B3S0

B1B22B3
2
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3 Sticking in restitution phase~R-sticking!

Pq,Pd,~11e!Pq and m.umsu

Px5
B3Py2S0

B1

Py52~11e!
C0

B21smB3

4 Reversed sliding in compression phase~C-reversed sliding!

Pd,Pq and m,umsu

Px5smFPy2
2S0

B31smB1
G

Py52
11e

B22smB3
FC01

2smB3S0

B31smB1
G

5 Reversed sliding in restitution phase~R-reversed sliding!

Pq,Pd,~11e!Pq and m,umsu

Px5smFPy2
2S0

B31smB1
G

Py52~11e!
C0

B21smB3

The third and the fifth mode do not occur in the macrosco
model, due to the choice ofe50. If m,umsu, it follows that
Pq,2cC1 andPd.(2(11cos2f)) S1, with c a negative constant
As C1 is always negative before collision, andS1 is always posi-
tive, it follows that if m,umsu, thenPd.Pq , and thus the fourth
impact mode never occurs in the polygon model either.
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Forced Vibration of Cylindrical
Helical Rods Subjected to
Impulsive Loads
In this study, the forced vibration of cylindrical helical rods subjected to impulsive lo
is theoretically investigated in the Laplace domain. The free vibration is then taken
account as a special case of forced vibration. The governing equations for natu
twisted and curved space rods obtained using Timoshenko beam theory are rewritt
cylindrical helical rods. The material of the rod is assumed to be homogeneous, l
elastic, and isotropic. The axial and shear deformations are also taken into account i
formulation. Ordinary differential equations in scalar form obtained in the Laplace
main are solved numerically using the complementary functions method to calcula
actly the dynamic stiffness matrix of the problem. The desired accuracy is obtaine
taking only a few elements. The solutions obtained are transformed to the real space
the Durbin’s numerical inverse Laplace transform method. The free and forced vibra
of cylindrical helical rods are analyzed through various example. The results obtaine
this study are found to be in a good agreement with those available in the literature
@DOI: 10.1115/1.1554413#
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1 Introduction
As is known, a closed-form solution of a curved, initial

twisted space rod problem using the three-dimensional elast
theory is not available. An approximation in the formulation of t
problem is adopted by introducing Bernoulli-Euler and Timos
enko beam theories. Thus, mathematically tractable equat
without introducing a significant error in practical engineeri
problems are obtained. Moreover, the finite element, finite dif
ence, and energy methods are employed. It is quite difficul
obtain the element stiffness matrix with these methods, and
results are inevitably approximate.

Massoud@1# has used D’Alambert’s principle to derive th
equation of motion in vectorial form for slender spatial bar taki
into account both axial and shear deformations and has given
expressions of the scalar equations for the free vibrations of
cylindrical helice.

Wittrick @2#, using the Timoshenko beam theory, has obtain
the differential equations for a large step of unit angle of helix a
has studied the wave propagation in semi-infinite springs and
tained approximate solutions by neglecting the axial and sh
deformations.

Kiral and Ertepinar@3,4# obtained governing equations of th
free and forced vibration of curved space rod in the canon
form using the Timoshenko beam theory. They solved the fr
vibration problem by the transfer matrix method and conclud
that a more efficient method is needed for general forced-vibra
analysis.

Mottershead@5#, using the equations given by Wittrick@2# for
the static case, computed the natural frequencies by the finit
ement method and compared his results with the values meas
at his own experiments.

Pearson@6# extended the dynamic equations given by Wittri

1To whom correspondence should be addressed.
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF

MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, March
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Barbara, Santa Barbara, CA 93106-5070, and will be accepted until four months
final publication of the paper itself in the ASME JOURNAL OF APPLIED MECHAN-
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@2# to the analysis of behavior of compressed circular cro
sectioned cylindrical helical springs and has studied the prob
of free vibrations by the transfer matrix method.

Pearson and Wittrick@7# have determined the dynamic stiffnes
matrix based on the Bernoulli-Euler hypothesis, where the ef
of shear deformation is not considered, for the free vibrations o
helical spring.

Nagaya, Takeda, and Nakata@8# have determined the natura
frequencies of noncircular helical springs with circular cross s
tions both experimentally and by the method of equivalence tra
fer matrix method. They used the static element transfer ma
that was deduced in closed form taking into account only the a
deformations.

Lin and Pisano@9,10# derived the general dynamic equations
helical springs with circular cross section, variable pitch ang
and variable helix radius.

Tabarrok et al.@11# have studied free vibrations of spatiall
curved and twisted rods with the aid of a finite element model a
have obtained displacement modes of a problem.

Haktanir@12# examined only static behavior of a helical sprin
under arbitrary distributed loads and has computed the elem
stiffness matrix using complementary functions.

Yildirim @13# has studied free vibrations of helical springs wi
the help of the transfer matrix method. In a separate work, Yi
rim @14# studied the free-vibration problem of cylindrical helic
springs, where the actual helical element stiffness matrix and
concentrated element mass matrix are used in the formulatio
the problem.

Lee and Thompson@15# have recently studied the dynam
stiffness formulation for free vibration and wave motion of helic
springs. They have used Wittrick-Williams algorithm to determi
the free-vibration frequencies with the dynamic stiffness ma
and have compared the results of the dynamic stiffness ma
with those of the transfer matrix and the finite element metho

As Lee and Thompson@15# pointed out, Jiang et al.@16# ob-
tained nonlinear equations of motion and from them lineariz
equations for the vibration of a spring. They studied the coupl
between axial and torsional motion in more detail then Wittric
deriving the complex form of the oscillations of the spring in t
time domain due to the interaction and superposition of the co
ponent waves. Sinha and Costello@17# used a finite difference
technique and the method of nonlinear characteristics to s

3,
on
art-

nta
after
003 by ASME MARCH 2003, Vol. 70 Õ 281
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Fig. 1 The rod geometry
n
o

-

l

a

x

e
n

f

u

o
b

The
d

e
n

the

is,

tial

c-
numerically the nonlinear partial differential equations in the tim
domain. This study too is limited to axial and torsional motion
the spring.

Berdichevsky and Sutyrin@18# have studied the problem of a
equivalent rod in nonlinear theory of springs. In a separate w
Berdichevsky and Starosel’skii@19# studied the theory of curvilin-
ear Timoshenko-type rods. Cesnik et al.@20# have studied an ad
vanced beam theories include the effects of initial twist and c
vature. Borri et al.@21# have studied linear analysis of natural
curved and twisted anisotropic beams Yu et al.@22# examined
Timoshenko-like modeling of initially curved and twisted com
posite beams with oblique cross sections.

Although there are numerous studies on the free vibration
helical spatial rods, research pertaining to the analysis of for
vibration under dynamic loads of helical spatial rods is scarce

In this study, an efficient method is introduced for the analy
of the forced vibration of cylindrical helical rods and springs u
der arbitrary time-dependent and impulsive loads in the Lapl
domain. In this method, the governing equations for natura
twisted and curved spatial rods obtained using the Timoshe
beam theory are rewritten for cylindrical helical rods. The curv
ture of the rod axis, effect of rotary inertia, and shear and a
deformations are considered in the formulation. The element
namic stiffness matrix is calculated in the Laplace transform sp
by applying the complementary functions method to the differ
tial equations in canonical form. This provides great convenie
in the solution of the problems having general boundary con
tions as the desired accuracy is obtained by taking only a
elements as opposed to high number of elements~in the order of
100! needed in finite element analysis. Ordinary differential eq
tions with variable coefficients can also be solved exactly
Laplace domain by using the complementary functions meth
The complementary functions method given for only static loa
in Haktanir @12# is used in the Laplace domain with the additio
of dynamic loads. The solutions obtained in the Laplace transf
space are then transformed to the time space using the Dur
inverse Laplace transform method,@23–25#.
, MARCH 2003
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2 The Rod Geometry
Consider a naturally curved and twisted spatial slender rod.

trajectory of geometric centerG of the rod is defined as the ro
axis and its position vector att50 is given byr05r0(s,0) where
s is measured from an arbitrary reference points50 on the axis
~Fig. 1~a!!. Let, at any timet, a reference frame defined by th
unit vectorst, n, b with the origin of the axis of the rod, be chose
such that

t5
]r0~s,t !

]s
(1)

which indicates thatt is in the direction of increasings. n is
normal to the axis and in the osculating plane, directed toward
center of curvature. The binormal vectorb is given byb5t3n.
The following differential relations among the unit vectorst, n, b
can be obtained with the aid of the Frenet formulas,@26#:

]t/]s5xn, ]n/]s5tb2xt, ]b/]s52tn (2)

wherex andt are the curvature and the natural twist of the ax
respectively. It is noted thatx is always positive and thatt is
positive, in the right-hand sense, aboutt when advanced in the
increasings-direction. They are expressed in terms of the spa
derivatives of the position vectorr0(s,t):

x5U]2r0

]s2 U, t52

]r0

]s
•

]2r0

]s2 3
]3r0

]s3

x2 . (3)

For planar rodst50, and for straight rodsx5t50.
In order to take into account the initial twist of the cross se

tion, a second rectangular Cartesian frame (x1 ,x2 ,x3) is defined
such that thex1-axis is in the direction oft, andx2 , x3 are the
principal axes of the cross section~Fig. 1~b!!. Let i1 , i2 , andi3 be
the unit vectors alongx1 , x2 , andx3 . From Fig. 1~b! Eq. ~4! can
be written:

t5 i1 , n5 i2 cosu2 i3 sinu, b5 i2 sinu1 i3 cosu. (4)
Transactions of the ASME
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3 The Governing Equations
Let us denote the displacement of any point on the rod axis

U0(s,t), the rotation of the cross section about an axis pass
through the geometric centerG by V0(s,t), and the relative ex-
tension and the relative rotation of the unit length on the axis
g0(s,t) and v0(s,t), respectively. Assuming the displacemen
and the deformations are infinitesimal, the equations of geome
compatibility and the equations of motion are, respectively, giv
by, @4,13#,

g05
]U0

]s
1t3V0, v05

]V0

]s
(5)

and

]T0

]s
1p~ex!5p~ in !,

]M0

]s
1t3T01m~ex!5m~ in ! (6)

where the inertia force vector isT0, the inertia moment vector is
M0 and p(ex) and m(ex) are the external distributed load and e
ternal distributed moment vectors per unit length of axis, resp
tively. The mass densityr, the inertia forcep( in) and the inertia
momentm( in), per unit length of the rod axis are given by,@4#,

pi
~ in !52rA

]2Ui
0

]t2 , mi
~ in !52rI i

]2V i
0

]t2 ~ i 5t,n,b!. (7)

Assuming that the centroid and the shear center of cross se
coincide; the normal and binormal axes are the principal axes
effect of warping is ignored; the material of the rod is homog
neous, linear elastic, and isotropic, the constitutive equations
given by,@13#,

Ti
05Ai j g j

0, Mi
05Di j v j

0 ~ i , j 5t,n,b! (8)

whereAi j andDi j are defined as

@A#5F EA 0 0

0 GA/an 0

0 0 GA/ab

G (9)

Fig. 2 Geometry of a cylindrical helix
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@D#5FGIt 0 0

0 EIn 0

0 0 EIb

G (10)

whereA is area of cross section,E andG are elastic constants,an
andab are shear coefficients,I t is torsional, andI n , I b are bend-
ing moments of inertia.

4 Governing Equations in Canonical Form for Free
and Forced Vibrations

The free-vibration problem could be studied as a special cas
forced vibrations. Therefore, the forced vibration analysis will
presented here.

4.1 Forced Vibrations. For the case of forced vibrations,
column matrixY(s,t) is introduced as

Y~s,t !5$Ut
0, Un

0, Ub
0, V t

0, Vn
0, Vb

0, Tt
0, Tn

0, Tb
0, Mt

0,

Mn
0, Mb

0% t. (11)

Laplace transform of Eq.~11! with respect to timeL@Y(s,t)#
5Ȳ(s,z), for t.0 is defined as

Ȳ~s,z!5E
0

`

Y~s,t !e2ztdt (12)

where Laplace transform parameterz is a complex number. With
the aid of these definitions, Eqs.~5! and~6! are reduced to a set o
12 first-order nonhomogeneous ordinary differential equations

dȲ~s,z!

ds
5F̄~s,z!Ȳ~s,z!1B̄~s,z!. (13)

Some of the elements ofF̄(s,z) are obtained by applying Laplac
transform of the following second derivatives:

Fig. 3 „a… Cylindrical helical spring; „b … a triangular impulsive
load
MARCH 2003, Vol. 70 Õ 283



0

.9

.8

.8

.3

.4

.3
Fig. 4 „a… Vertical displacement versus time at the arc-length midpoint, „b … rotation versus time at the arc-length midpoint, „c …
vertical shear force versus time at the fixed end, „d … moment versus time at the fixed end

Table 1 Natural frequencies in Hertz „FEM: the finite element method, TMM: the transfer matrix method, CFM: the complementary
functions method, N ÕA: not available …

1 2 3 4 5 6 7 8 9 10

Mottershead@5#Experimental 391.0 391.0 459.0 528.0 878.0 878.0 906.0 N/A 1282.0 1386.
Mottershead@5#FEM 396.0 397.0 469.0 532.0 887.0 900.0 N/A N/A N/A N/A
Pearson@6#TMM 394.9 397.6 456.4 518.3 859.7 874.7 902.2 1023.7 1293.4 1351
Yildirim @13#TMM 393.5 395.9 462.8 525.5 864.0 876.8 914.3 1037.0 1310.5 1363
Yildirim @14# 393.4 396.0 462.7 525.6 863.7 876.6 N/A N/A N/A N/A
ANSYS @28#(80 elements) FEM 400.2 402.9 481.5 545.2 886.3 898.1 949.3 1075.2 1360.7 1408
ANSYS @28#(200 elements) FEM 394.5 397.1 465.7 528.7 867.3 880.2 919.1 1043.2 1318.4 1371
ANSYS @28#(500 elements) FEM 393.6 396.2 463.2 526.1 864.2 877.3 914.4 1038.2 1311.4 1365
Present StudyCFM 393.4 395.9 462.7 525.6 863.6 876.8 913.5 1037.2 1310.4 1364
284 Õ Vol. 70, MARCH 2003 Transactions of the ASME
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LFrA
]2Uk

0

]t2 G5rAFz2Ūk
02zUk

0~s,0!2
]Uk

0~s,0!

]t G
LFrI k

]2Vk
0

]t2 G5rI kFz2V̄k
02zVk

0~s,0!2
]Vk

0~s,0!

]t G ~k5t,n,b!.

(14)

The second and third terms on the right-hand side of the Eq.~14!
are the initial conditions given att50. The elements of the col
umn matrixB̄(s,z) are

B̄i~s,z!50 ~ i 51,2, . . . ,6!

B̄61 j~s,z!52~ p̄k
~ex!!2rAFzUk

0~s,0!1
]Uk

0~s,0!

]t G ~ j 51,2,3!

(15)

B̄91 j~s,z!52~m̄k
~ex!!2rI kFzVk

0~s,0!1
]Vk

0~s,0!

]t G ~k5t,n,b!.
Journal of Applied Mechanics
Note that the initial conditions shown in Eqs.~14! are now
included in the load vectorB̄(s,z).

4.2 Free Vibrations. For the vibration analysis, we se
pi

(ex)50 andmi
(ex)50 with (i 5t,n,b). Assuming harmonic mo-

tion, U0, V0, T0, andM0 take the form

U0~s,t !5U* ~s!eivt

V0~s,t !5V* ~s!eivt

T0~s,t !5T* ~s!eivt (16)

M0~s,t !5M* ~s!eivt

and substituting~16! into ~6!, a set of 12 first-order linear, homo
geneous ordinary differential equations is obtained. If the gen
alized displacementsUt* , Un* , Ub* , V t* , Vn* , Vb* and corre-
sponding generalized resultant forcesTt

0, Tn
0, Tb

0, Mt
0, Mn

0, Mb
0

MARCH 2003, Vol. 70 Õ 285
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Fig. 5 „a… A cantilever helical rod; „b … type of the dynamic loads
h

r
x

t
-
q

a

i

r of

s

a-
are considered as the components, in the indicated order,
column matrixY* (s), these 12 equations can be rewritten in t
matrix form as

dY* ~s!

ds
5F~s,v!Y* ~s!. (17)

The values ofv which make the determinant of the system d
namic stiffness matrix zero are the natural frequencies of the p
lem. For the case of free vibrations the dynamic stiffness matri
obtained by applying the complementary functions method
scribed in Section 6.

5 Special Cases
The spatially curved system is examined as a free-vibra

problem in Yildirim @13#. Forced vibration problem with time
dependent loading will be considered here. The parametric e
tion of a helix is~Fig. 2!

x5a cosf, y5a sinf, z5hf (18)

where f is the horizontal angle of the helix. The infinitesim
length element of the helix is defined as

c5Aa21h2, ds5cdf, cosa5a/c, sina5h/c (19)

wherea anda are pitch angle and centreline radius of the hel
respectively. The curvatures of a cylindrical helical spring are

x5a/c25constant, t5h/c25constant. (20)

The relationship between the moving axis~t, n, b! and the fixed
reference frame~i, j , k! is

$V% tnb
t 5@B#$V% i jk

t

H Vi

Vn

Vb

J 5F 2~a/c!sinf ~a/c!cosf ~h/c!

2cosf 2sinf 0

~h/c!sinf 2~h/c!cosf ~a/c!
G H Vi

Vj

Vk

J .

(21)
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The scalar equations governing the forced vibration behavio
helical bars are obtained by using Eqs.~6!, ~19!, and ~20!. Non-
dimensional parameters in the Laplace domain are defined a

Ū i5
1

c
Ui

0, V̄ i5V i
0, T̄i5

c2

EIn
Ti

0,

M̄ i5
c

EIn
Mi

0 ~ i 5t,n,b!. (22)

Finally, the nondimensional forced vibration equations in c
nonical form are as follows:

dŪt

df
5

a

c
Ūn1

I n

Ac2 T̄t (23a)

dŪn

df
52

a

c
Ūt1

h

c
Ūb1V̄b1

anEIn

GAc2 T̄n (23b)

dŪb

df
52

h

c
Ūn2V̄n1

abEIn

GAc2 T̄b (23c)

dV̄ t

df
5

a

c
V̄n1

EIn

GIt
M̄ t (23d)

dV̄n

df
52

a

c
V̄ t1

h

c
V̄b1M̄n (23e)

dV̄b

df
52

h

c
V̄n1

I n

I b
M̄ b (23f)

dT̄t

df
5

rAc4z2

EIn
Ūt1

a

c
T̄n1B̄7 (23g)

dT̄n

df
5

rAc4z2

EIn
Ūn2

a

c
T̄t1

h

c
T̄b1B̄8 (23h)
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df
5

rAc4z2

EIn
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T̄n1B̄9 (23i)

dM̄t

df
5

rI tc
2z2

EIn
V̄ t1

a

c
M̄n1B̄10 (23j)

dM̄n

df
5

rc2z2

E
V̄n1T̄b2

a

c
M̄ t1

h

c
M̄b1B̄11 (23k)

dM̄b

df
5

rI bc2z2

EIn
V̄b2T̄n2

h

c
M̄n1B̄12. (23l)

6 Solutions of the Differential Equations With the
Complementary Functions Method

Equations~23a–l! make up a set of 12 simultaneous different
equations with constant coefficients. Each one of these equa
involves first-order derivatives with respect to position. The re
tionships given for only the static case in Haktanir@12# were used
in the Laplace domain with the addition of dynamic loads.

matrix notation, Eqs.~23a–l! can be expressed as
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dȲ~f,z!

df
5F̄~f,z!Ȳ~f,z!1B̄~f,z!. (24)

For the case of spatial bar, the elements of state vector are de
as

Ȳ~f,z!5$Ū~f,z!, V̄~f,z!, T̄~f,z!, M̄ ~f,z!% t. (25)

The complementary functions method is based on the princ
of solving Eq.~25! with the aid of initial conditions. This method
of the complementary functions method is basically the reduc
of two-point boundary value problems to the numerical solut
of initial-value problems which are much more suitable for pr
gramming. The general solution of the governing differential E
~25!, is given by

Ȳ~f,z!5 (
m51

12

Cm~Ū~m!~f,z!!1V̄~f,z! (26)

whereŪ(m)(f,z) is the complementary solution such that itsmth

component is equal to 1, whereas all the others are zero.V̄(f,z)
Fig. 6 „a… Vertical displacement versus time at the free end for the step load, „b … bending
moment versus time at the fixed end for the step load
MARCH 2003, Vol. 70 Õ 287
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Fig. 7 „a… Vertical displacement versus time at the free end for the rectangular impulsive
load, „b … bending moment versus time at the fixed end for the rectangular impulsive load
y

h

n

d

e
t dy-

the
is the inhomogeneous solution with all zero initial conditions, t
integration constantsCm will be determined from the boundar
conditions at both ends.

7 Determination of the Dynamic Stiffness Matrix
The element equation is given in the Laplace domain by

$ p̄%5@ k̄#$d̄%1$ f̄ %. (27)

There are six degrees-of-freedom at each node, three of t
six are translations and others are rotations. Lettingi stand for the
beginning andj for the end of an element, the end displaceme
and the end forces are given in Eqs.~28! and ~29!.

$d̄% t5$Ū~f i ,z!, V̄~f i ,z!, Ū~f j ,z!, V̄~f j ,z!% (28)

$ p̄% t5$T̄~f i ,z!, M̄ ~f i ,z!, T̄~f j ,z!, M̄ ~f j ,z!% (29)

In order to determine the element stiffness matrix, the end
placements of the element as defined in~28! are equated to unity
for any one of the 12 directions while keeping the others ze
This is done 12 times using each equation. From the homo
ARCH 2003
he

ese

ts

is-

ro.
ge-

neous solution of the system~23!, the element end forces ar
obtained, and these forces are incorporated into the elemen
namic stiffness matrix appropriately.

The fixed-end forces are computed from~23! by taking all the
end displacements to be equal to zero.

$ f̄ % t5$2T̄~f i ,z!, 2M̄ ~f i ,z!, T̄~f j ,z!, M̄ ~f j ,z!% (30)

For the transformation to the common reference system,
following equations are used:

b k̄c i jk5@T#Tb k̄c tnb@T# (31)

$ f̄ % i jk5@T# t$ f̄ % tnb (32)

where the transformation matrix@T# is given by
Transactions of the ASME



Journal of Applie
Fig. 8 „a… Vertical displacement versus time at the free end for the triangular impulsive
load, „b … bending moment versus time at the fixed end for the triangular impulsive load
l
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ee-
ds
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hics.
@T#5F @B~f i !# @0# @0# @0#

@0# @B~f i !# @0# @0#

@0# @0# @B~f j !# @0#

@0# @0# @0# @B~f j !#

G
12312

(33)

and @B# is defined in Eq.~21!.
In this study, both the element dynamic stiffness matrixb k̄c and

the fixed-end forces$ f̄ %, are determined by solving Eq.~23! by
the method of the complementary functions method in the Lap
domain. The system equation of motion can then be assem
from the element dynamic stiffness matrices and end forces a

@K ~z!#$D%5$P~z!% (34)

where@K (z)# and$P(z)% are the system dynamic stiffness matr
and load vector.$D% is the vector of unknown displacements of th
system.

For the free-vibration case, the system load vector is equa
zero and the Laplace parameter ‘‘z’’ is replaced with ‘‘iv. ’’ The
eigenvalues in this case give the natural frequencies.
d Mechanics
ace
bled
s

ix
e

l to

8 Numerical Examples

In this study, a general-purpose computer program is code
FORTRAN77 for time-dependent loading to analyze forced vib
tion of cylindrical helical rods. As a special case, free-vibrati
analysis can also be done by simply removing the applied lo
and replacing the Laplace parameter ‘‘z’’ with ‘‘ iv. ’’ Butcher’s
fifth-order Runge-Kutta algorithm,@27#, is used for the solution of
the initial value problem based on the complementary functi
method. Forty steps of integration are used in the analysis.
Durbin’s inverse Laplace transform,@23,24#, is applied for the
transformation from the Laplace domain to the time domain.

In this section, two sample problems are presented. First
order to validate the developed computer program, the fr
vibration frequencies of a helical spring that is fixed at two en
are compared with the results available in the literature. In ad
tion, this system is also analyzed under an impulsive load. S
ond, a cantilever helical rod is considered. Various dynamic lo
are applied on the free end of the rod, then the analysis is don
using the present computer program and ANSYS@28#. Displace-
ment values and the element forces are compared in the grap
MARCH 2003, Vol. 70 Õ 289
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Example 1. The helical spring fixed at the both ends show
in Fig. 3 is considered. The spring is made of steel and ha
circular cross section with the diameterd51 mm. The pitch
angle, radius of the helix circle and the number of active turns
chosen asa58.5744°, a55 mm, andn57.6, respectively. The
material properties areE52.0631011 N/m2, r57900 kg/m3, and
n50.3. Free-vibration frequencies calculated by using the pre
computer program are given in Table 1 with the theoretical a
experimental data given in the literature for a comparison. It
be seen from Table 1 that the result of the present model dem
strates a good agreement with the previous results. Table 1 sh
the results obtained from ANSYS are also in accord with
results of the present study. It should be noted that, in the pre
method, only two elements were used to achieve the desired
curacy as opposed to 500 straight-beam elements needed in
SYS.

After having tested the validity of the present model on t
free-vibration problem, the forced vibration analysis is presen
A triangular impulsive load~Fig. 3~b!! with the amplitudeP0
50.25 N is applied vertically at the arc-length midpoint of th
spring. A time incrementDt of 25 ms is used in the calculations
Six and 2994 active degrees-of-freedom were present in this s
and the ANSYS model, respectively. Vertical displacement a
rotation at the arc-length midpoint of the spring and vertical sh
force and moment at the fixed end of the spring are compared
the results of the ANSYS~in Fig. 4~a–d!!. Results obtained in this
study with two elements agree well with ANSYS using the 50
element mesh. The computation time for the solutions obtaine
using the program coded in this study is approximately one te
of that of ANSYS.

Example 2. A cantilever helical rod is now considered. Ma
terial and geometrical properties ared512 cm, a525.522834°,
a5200 cm, E52.0631011 N/m2, r57850 kg/m3, and n50.3
~see Fig. 5~a!!. Various dynamic loads as shown in Fig. 5~b! with
the amplitudeP05106 N are applied vertically at the free end o
the rod. A time incrementDt of 20 ms is used in the calculations
Identical cross-sectional stiffness constants are used for both
present model and the ANSYS. Six and 486 active degrees
freedom were present in this study and the ANSYS model, res
tively. Using the present computer program and ANSYS car
out a transient analysis.

Vertical displacement at the free end and bending momen
the fixed end are compared with the results of ANSYS~see Figs.
6–8!. Results obtained by the present formulation with only o
element agree quite well with those obtained from ANSYS us
81 straight-beam elements. The computation time is reduced
proximately five times with the present model.

9 Discussions and Conclusions
The formulation to analyze the forced vibration of cylindric

helical rods and springs subjected to time-dependent loads is
sented in this study. A general-purpose computer program is co
in FORTRAN77 to perform the analysis in the Laplace doma
As a special case, it is shown that free vibration analysis can
be done by simply removing the applied loads and replacing
Laplace parameter ‘‘z’’ with ‘‘ iv. ’’ Butcher’s fifth-order RK
method is used for the solution of the initial value problem ba
on the complementary functions method.

In the present work, the dynamic stiffness matrix has been
culated in the Laplace domain by applying the complement
functions method to the differential equations in canonical for
This provides great convenience in the solution of the phys
problems having general boundary conditions. Another advan
of using the complementary functions method-based solutio
that the helical rods with variable cross section and geome
which yield ordinary differential equations having variable co
ficients, can also be considered. The differential equations ca
solved by using the complementary functions method as accu
290 Õ Vol. 70, MARCH 2003
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as required with an appropriate integration step-size. In
present method, only one or two elements were used to ach
the desired accuracy as opposed to high number of element~in
the order of 100! needed in ANSYS.

Free-vibration frequencies calculated to validate the develo
computer program are compared with the theoretical and exp
mental data given in the literature. It is seen that the results of
present model demonstrate a good agreement with the resul
other independent methods and ANSYS.

After having tested the validity of the present model on t
free-vibration problem, the results of forced vibration analysis
compared with those of ANSYS in graphic form, and close agr
ment has been observed. The computation time is also sig
cantly reduced with the present model.
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Vibration of Thick Circular Disks
and Shells of Revolution
A fully numerical and consistent method using the three-dimensional theory of elastic
presented in this paper to study the free vibrations of an axially symmetric solid. The
is defined in the cylindrical coordinates (r,u,z) by a quadrilateral cross section in the r-
plane bounded by four straight and/or curved edges. The cross section is then m
using the natural coordinates (j,h) to simplify the mathematics of the problem. T
displacement fields are expressed in terms of the product of two simple algebraic po
mials in j and h, respectively. Boundary conditions are enforced in the later part of
solution by simply controlling coefficients of the polynomials. The procedure setup in
paper is such that it was possible to investigate the free axisymmetric and asymm
vibrations of a wide range of problems, namely; circular disks, cylinders, cones,
spheres with considerable success. The numerical cases include circular disks of un
as well as varying thickness, conical/cylindrical shells and finally a spherical she
uniform thickness. Convergence study is also done to examine the accuracy of the
rendered by the present method. The results are compared with the finite element m
using the eight-node isoparametric element for the solids of revolution and published
by other researchers.@DOI: 10.1115/1.1544542#
o

i
b
a

r

i

p

l

o
l

e

o
e

i

T

s

le
of

arly
l as
hed

-
ults
ity
n the

free
in
tric
d in

d/or
tural
.
of
hm
pre-

by

m
d has
e
e
heri-
es.
o be
well
ose
nd
et-
for

this
rn

ular
pe,

exist
ick

9

n

fi

Introduction
Vibrations of circular annular plates and shells of revoluti

have been the focus of study for a very large number of resea
ers for nearly a century. The problem of vibrating solid cylinde
was considered by many researchers from the three-dimens
theory of elasticity. Different solution types were introduced
incorporating in the analysis some simplifying assumptions
cases of slender rods and relatively thick circular disks were
amined as special cases. McMahon@1# deduced equations fo
some special cases of the free vibration analysis of circular cy
ders. He continued to verify his analytical results by perform
some experiments on the free vibrations of solid cylinders. Mirs
@2# deduced an approximate theory of vibrations of orthotro
thick cylindrical shells in which the effect of transverse norm
stress was retained. Hutchinson@3–5# published a series of paper
on axisymmetric and asymmetric vibrations of solids of revo
tion. For example, he studied axisymmetric vibrations of a stre
free rod,@3#, using Bessel functions in the solution. The vibrati
of solid cylinders using three-dimensional equations of linear e
ticity was also investigated in his paper of 1980,@4#. This work
was further extended to consider the vibration of thick circu
plates~Hutchinson,@5#!. A detailed survey paper dealing with th
dynamic analysis of cylinders and open cylindrical panels mad
an arbitrary number of anistropic linearly elastic layers perfec
bonded together, was published by Soldatos@6#. Leissa and So@7#
compared the natural frequencies for rods and beams from
dimensional and three-dimensional theories using the Rayl
Ritz method. After establishing the advantage of thre
dimensional analysis, they continued with the free vibrat
analysis of circular cylinders~Leissa and So,@8#! and presented
results for free-free and clamped-free boundary conditions.
Rayleigh-Ritz method was used by Young and Dickinson@9,10# to
study a class of homogeneous solids including several solid
revolution. Using the same method, Singh and Saxena@11# stud-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the Applied Mechanics Division, June 24, 19
final revision, Aug. 29, 2002. Associate Editor: V. K. Kinra. Discussion on the pa
should be addressed to the Editor, Prof. Robert M. McMeeking, Chair, Departme
Mechanics and Environmental Engineering, University of California–Santa Barb
Santa Barbara, CA 93106-5070, and will be accepted until four months after
publication in the paper itself in the ASME JOURNAL OF APPLIED MECHANICS.
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ied the axisymmetric vibrations of a circular plate with doub
linear variable thickness. In their paper, the thickness of each
the core and the outer annular region was considered to be line
varying. Numerical results were given for the clamped as wel
the simply supported cases and compared with other publis
sources. Recently, So and Leissa@12# investigated the free vibra
tion of thick circular and annular plates and compared their res
with those obtained by others using Mindlin plate theory. Major
of the researchers mentioned above focussed their attention o
analysis of circular plates and cylinders.

This paper presents a consistent numerical method for the
vibration analysis of solids of revolution. The method is unified
a way that a varied class of problems with respect to axisymme
and asymmetric vibrations, can be studied. The solid is define
the cylindrical coordinates (r ,u,z) by revolving around thez-axis
a quadrilateral cross section bounded by four straight an
curved edges. The cross section is then mapped using the na
coordinates~j,h! to simplify the mathematics of the problem
Such a mapping is routinely carried out for the formulation
isoparametric quadrilateral finite elements. The solution algorit
is developed on the basis of the Ritz method, which requires
defined admissible displacement fields, which are constructed
multiplying two simple algebraic polynomials in thej andh di-
rections, respectively. The present formulation is different fro
those by other researchers, because it is entirely numerical an
a significantly wider range of applicability. It is very similar to th
formulation of Leissa and So@7,8#, but more general in the sens
that it can accommodate various other geometries, such as sp
cal and conical shells having uniform or variable thickness
Through the convergence study, numerical scheme is found t
robust and stable. The results are obtained first for uniform as
as variable thickness circular disks and then compared with th
obtained from the classical method using Mindlin plate theory a
finite element method using eight-node isoparametric axisymm
ric ring elements. Although the mode shapes were generated
these cases, due to lack of space, they are not included in
paper. Still, it is worthwhile to mention that an interesting patte
was observed from the mode shapes of the vibrating thick circ
disks. Some modes were found to be predominantly flexural ty
whereas the others were the in-plane stretching type. They co
independently. Numerical examples for solid cylinder and th
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conical and spherical shells are also presented and discuss
this study. Frequencies of the circular disks and thick shells
revolution are plotted versus the thickness.

Formulation
To begin with a general formulation, it is assumed that the so

is made of a linearly elastic isotropic material. Figure 1 shows
sectional view in ther -z plane and the solid is formed by revolv
ing the shown area about thez-axis. The area is bounded by fou
curved edges. The coordinates (r ,z) of the four corner points 1
through 4 and also of the additional middle points 5 through 8
the four edges are prescribed. The natural coordinate system~j-h!
is used to map this area into a square. The relationship betw
the (r -z) and ~j-h! systems is well known, as this type of ma
ping is routinely used in the formulation of an eight-node isopa
metric finite element. Consider a point inside the area shown
Fig. 1. The coordinates of this point can be represented by

r ~j,h!5(
i 51

`

Ni~j,h!r i

(1)

z~j,h!5(
i 51

`

Ni~j,h!zi .

Here, Ni(j,h) and (r i ,zi); for i 51,2,3, . . . ,8 are, respectively,
the shape functions and the coordinates of the eight points d
ing the geometry. According to this notation, the infinitesimal v
umedV can be written as

dV5rdudrdz5r ~j,h!uJ~j,h!udjdhdu. (2)

The cross-sectional area is not divided into smaller regions, a
done to generate the mesh in the finite element method. In
following, the basic equations from the theory of elasticity f
axisymmetric solids are presented briefly in the (r ,u,z) coordinate
system. These equations include strain displacement relat
stress strain relations, and energy expressions.

Elasticity Equations
Assume that the translations along ther, z, andu directions are

denoted byu, v, andw, respectively. The strain-displacement r
lationships in this system are given by

« r5
]u

]r

«z5
]v
]z

Fig. 1 Cross section of a solid of revolution
Journal of Applied Mechanics
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g rz5
]u

]z
1
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gzu5
1

r

]v
]u

1
]w
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]u
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r
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The matrix form of Eq.~3! is

$«%5@d#$u% (4)

where $«%T5$« r «z «u g rzgzug ru%, $u%T5$uvw% and @d# is
called for convenience the matrix of differential operator. It
given by

@d#5

l

]

]r
0 0

0
]

]z
0

1

r
0

1

r

]

]u

]

]z

]

]r
0

0
1

r

]

]u

]

]z

1

r

]

]u
0

]

]r
2

1

r

m
. (5)

The next important equation to consider here is the stre
strain relationship. By denoting the transpose of the stress
tor as $s%T5$s rszsut rztzut ru%, one can write the following
relationship:

$s%5@E#$«%. (6)

If the material is isotropic withr, z, and u as the principal di-
rections, the stress-strain operator matrix@E# can be written as
follows:

@E#5
E

~11n!e2 3
e1 n n 0 0 0

n e1 n 0 0 0

n n e1 0 0 0

0 0 0 e3 0 0

0 0 0 0 e3 0

0 0 0 0 0 e3

4 (7)

where,e1512n, e25122n, e35e45e55e2/2 andE5modulus
of elasticity of the material. Orthotropic material can also
treated with some minor alteration in Eq.~7!. The strain energy is
given by

U5
1

2Evolume
$s%T$«%dV5

1

2Evolume
$«%T@E#$«%dV. (8)

Similarly, the kinetic energy for the continuum is given by

K5
1

2Evolume
r$]u/]t%T$]u/]t%dV. (9)

Here,$]u/]t%T5$]u/]t ]v/]t ]w/]t% andr5mass density of the
material. The strain and kinetic energy expressions given by E
MARCH 2003, Vol. 70 Õ 293
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~8! and~9! are left in the above form and will be revisited, whe
the solution procedure is discussed in the subsequent section

Method of Solution
As said earlier, the solution procedure developed herein

based on the Ritz method. The original Rayleigh-Ritz method
quires predefined displacement fields with fully satisfied essen
boundary conditions. To define the displacement fields, the
lowing form of the simple algebraic polynomial is chosen:

f ~j!5a0~12j!n1a1~12j!n21~11j!1a2~12j!n22~11j!2

1 . . . 1an21~12j!~11j!n211an~11j!n. (10)

The advantages of considering such a polynomial in the solu
procedure are as follows. First, if the polynomial is complete~i.e.,
none of the intermediate terms has been removed!, there is no
mathematical constraint imposed to the solution. Second, the
forcement of the geometric boundary conditions is very sim
and straightforward. For example, by examining the above p
nomial in Eq. ~10!, it is observed thatf (j)50 at j521 and
j511, if a0 and an are set to zero. Similarly, the derivativ
] f (j)/]j is zero at the two extreme values ofj, when the condi-
tion of a05a15an215an50 is applied. The boundary cond
tions are applied prior to the eigenvalue calculation.

The admissible displacement fields are generated by multi
ing the polynomialf (j) by its counterpartf (h). The coefficients
resulting from the product of the polynomials are denoted by a
of two-dimensional arrays:ajk , bjk and cjk for u, v, andw, re-
spectively. Therefore, the displacement components are re
sented using the following double summation series in whicn
represents the Fourier harmonic mode of vibration:

u5(
k51

p

(
j 51

q

ajk f j~j! f k~h!cosnu

v5(
k51

p

(
j 51

q

bjk f j~j! f k~h!cosnu (11)

w5(
k51

p

(
j 51

q

cjk f j~j! f k~h!sinnu.

In a matrix form, the above series equations can be written a

$u%5@F#$q% (12)

where@F# is a (333pq) matrix and constructed as follows. Fo
the row one, the first (p3q) terms are made off j (j) f k(h) and
the remaining terms are zero. Similarly, the second row is form
with the first and the last (p3q) terms being zero and the middl
(p3q) terms constructed from the products of the two polyn
mial functions. The values ofj andk are assigned to be 1,2,3 . . .q
and 1,2,3, . . . p, where (q21) and (p21) represent the orders o
the polynomials f j (j)5(12j)q2 j (11j) j 21 and f k(h)5(1
2h)p2k(11h)k21, respectively. When Eq.~12! is substituted
into Eq. ~4!, the strain vector is obtained and written as

$«%5@d#@F#$q%5@B#$d%. (13)

In this equation, the size of matrix@B# is (633pq) and its terms
are made of functionsf j (j) and f k(h), their derivatives with
respect toj andh and also the function as such multiplied by
factor of (1/r ). The relationship between the two sets of coor
nate parameters is well understood in the field of finite elem
methods and the terms of the inverse of the Jacobian ma
@J(j,h# are to be used for this purpose. The vector$d%, the size of
which is 3pq, contains all the unknown coefficients of the doub
summation series given by Eq.~11!. The values of these coeffi
cients are determined during the eigensolution of the equat
Also, the infinitesimal volume for an areadrdz located at point
(r ,z) is written asdV5r (j,h)uJ(j,h)udjdhdu.
294 Õ Vol. 70, MARCH 2003
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Now, Eqs. ~12! and ~13! are substituted into the energy ex
pressions given by Eqs.~8! and ~9!, respectively, to obtain the
following:

U5
1
2$d%TS pE

21

11E
21

11

@B#T@E#@B#r ~j,h!uJ~j,h!udjdh D $d%

K5
1
2$ḋ%TS prE

21

11E
21

11

@F#T@F#r ~j,h!uJ~j,h!udjdh D $ḋ%.

Finally,

U5
1
2$d%T@k#$d% and K5

1
2$ḋ%T@m#$ḋ%. (14)

In the above,@k# and@m# are the stiffness and mass matrices of t
system and an overdot denotes the time derivative. From th
energy equations, one can use standard procedure to obtai
following equation of motion for the free symmetric and asym
metric vibrations of the solid of revolution:

@m#$d̈%1@k#$d%50. (15)

Also, for simple harmonic motion, one can write$d%
5$D%cos(vt1f). Further,E and r can be taken out of the stiff-
ness and mass matrices and then the final eigenequation is

~@k#2V2@m# !$D%50. (16)

Here, V25(r/E)v2a2. The symbolV5the dimensionless fre-
quency parameter of the system,r5mass density of the materia
v5natural frequency in radian/second, anda5a length parameter
which is typically a prominent dimension depending upon t
type of the problem. The computational algorithm is written su
that numerical results are obtained in nondimensional form. I
noted here that the displacement componentsu, v, and w and
coordinates are normalized with respect to the length paramea
of the solid of revolution.

Numerical Results
Although the analysis is valid for more general solids of rev

lution, numerical investigations in this paper are carried out o
for solids of revolution formed by revolving areas bounded
four straight or curved edges around thez-axis. The orientation of
this quadrangular shaped region determines the type of the p
lem we need to solve. By changing the parameters, it is possib
analyze problems having a wide range of shapes and sizes
illustrate the versatility of the present formulation, three types
axisymmetric solids are investigated in this study. They are: th
circular disks of variable thickness, conical shells, and spher
shells. In addition, cylindrical configuration is considered as
special case of the conical one. Numerical values obtained for
frequency parameterV are also compared with results availab
through other sources in the literature. The value of the Poiss
ratio n is taken to be 0.3 in the computation of all the results th
follow. ~See Fig. 2.!

In the calculations using the Ritz method, the accuracy of
results depends upon the number of terms used in the polynom
f j (j) and f k(h) which are complete functions in the sense th

Fig. 2 Area to be revolved around z-axis to form a variable
thickness circular disk
Transactions of the ASME
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there are no terms that are missing between the first and the
terms. If a sufficiently large number~theoretically it is`! of terms
is used in the calculation, the method will yield exact solutio
However, by increasing the number of terms in the polynomi
one is bound to encounter numerical complications. If the co
puter is not powerful enough, the computer code will not ren
successful runs. To ensure the degree of accuracy of the resu
well as the validity of the polynomial form used in this study, it
appropriate to conduct a convergence study.

Convergence Study. For this, a conical shell with cone
angle530 deg and clamped at the lower end shown by point 2-
in Fig. 3 is analyzed. The number of terms inf k(h) is kept at 4
which is reasonable as it represents solution part associated
the thickness of the shell.~See Fig. 4.! The number of terms in
f j (j), which represents variation along the axis generating
conical surface, is varied from 4 to 9. Figure 5 shows the first fi
natural frequencies corresponding to the asymmetric modes
n51. Two cases with thicknessh/a50.05 and 0.10, respectively
are analyzed and the results are plotted using symbols ‘‘o’’
‘‘x,’’ respectively. Clearly, the convergence is seen to be mon
tonic for the first four modes. For the fifth mode of vibratio
some peculiarity is observed for both cases. Especially, with
mode corresponding toh/a50.10, for which two curves appear t
be intersecting atj 55. This can be explained by considering th
fact that this type of formulation includes all kinds of behavio
namely flexural, thickness-shear and purely extensional, of
shell structure. For extensional modes, the frequency does
vary with the thickness~Kalnins @13#!. It is also seen here that th
values of the frequency are the same for bothh/a50.05 and 0.10.
By considering eight or more terms inf j (j), it is reasonable to
say that the values of the natural frequencies are expected t
within 3 to 5 percent of the correct value. One should realize t
the exact solution based on the three-dimensional theory of e
ticity may not be simple~if not impossible! for the shell types
considered in this study. For additional numerical investigati
generally thick circular disks and shells of revolution are taken
example problems. The computation is carried out with ei
terms ~i.e., q58) in f j (j) and four term~i.e., p54) in f k(h).

Fig. 3 Representation of a thick conical shell

Fig. 4 Representation of a thick spherical shell
Journal of Applied Mechanics
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With these polynomials the order of each of the stiffness and m
matrices is 96. The stiffness and the mass matrices are comp
numerically by Gaussian quadrature, with eight and four integ
tion points inj andh directions, respectively.

Case 1. Analysis of Circular Disks. A thick circular disk of
varying thickness as shown in Fig. 2, is considered. It is sy
metrical about thez-axis and the detailed dimension of this disk
described as follows:

h15z42z1 , h25z32z2 , a5r 25r 35r 6

and b5r 15r 45r 8 . (17)

Here, (r i ,zi) for i 51 through 8 represent the coordinates of t
eight nodes. The inside edge contains nodes 1, 8, and 4 an
outside edge is defined by nodes 2, 6, and 3.

For further validation of the numerical method presented in t
paper, a circular disk of uniform thickness, clamped at the ins
edge and free at the outside, is analyzed so that the results
tained can be compared with those from the work by Irie et
@14#. By using the Mindlin plate theory for solving the differentia
equation of motion in terms of the Bessel functions, they pu
lished an extensive set of data pertaining to the natural frequen
of thick annular plate of uniform thickness. The comparison
seen in Table 1 is generally very good for relatively thin annu
plates. But for thick disks, the discrepancy between the numer
results from the two sources is expected as the work by Irie e
@14# is based on the first-order shear deformation theory of pla
It is further noticed is that there are some blank cells in column
of Table 1. The present formulation is capable of providing t
results of both the bending and in-plane stretching mod
whereas the results based on the Mindlin plate theory yields
quencies for the flexural vibration only. Irie et al. did not publi
results with a thickness ratio (h/a) of 0.4 and higher for the
annular plate withb/a50.3. Because of this, the last column o
the second half of Table 1 is blank.

Table 2 is included in this study to illustrate how the Ri
method fairs with the standard finite element method. Again a d
of variable thickness clamped at the inside edge and free at
outside is considered. The variables for which the frequency
culation corresponding to the first five axisymmetric (n50)
modes of vibration was carried out, are given as follows:

b/a50.3,0.4 and 0.5;

h2 /a51.0, 0.50 and 0.05; andh1 /a51.0. (18)

Fig. 5 Convergence study for a conical shell clamped at the
lower open end
MARCH 2003, Vol. 70 Õ 295
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Table 1 Natural frequency parameter V for a thick annular plate clamped at the inner edge
and free at the outer. SÄWave number in the radial direction. A–present analysis and B–Irie
et al. †14‡.

b/a50.2

n S

h/a50.1 h/a50.2 h/a50.3 h/a50.4

A B A B A B A B

1 0.1547 0.1537 0.2941 0.2911 0.4095 0.4031 0.5003 0.49
0 2 0.8961 0.8867 1.4628 1.4380 1.7676 1.7267 1.9376 1.88

3 2.3904 ¯ 2.3156 ¯ 2.3146 ¯ 2.3115 ¯

1 0.1408 0.1395 0.2574 0.2536 0.3478 0.3414 0.4186 0.40
1 2 0.9530 0.9440 0.9655 ¯ 0.9660 ¯ 0.9665 ¯

3 0.9650 ¯ 1.5680 1.5445 1.9256 1.8883 2.1372 2.0880
1 0.1873 0.1861 0.3498 0.3480 0.4911 0.4884 0.6134 0.61

2 2 1.1507 1.1427 1.6179 ¯ 1.6184 ¯ 1.6189 ¯

3 1.6174 ¯ 1.9172 1.8956 2.3850 2.3468 2.6614 2.6085

b/a50.3

n S

h/a50.1 h/a50.2 h/a50.3 h/a50.4

A B A B A B A B

1 0.1987 0.1973 0.3756 0.3716 0.5200 0.5120 0.6321 ¯

0 2 1.1591 1.1466 1.8348 1.8012 2.1657 2.1125 2.3327 ¯

3 2.5278 ¯ 2.5297 ¯ 2.5298 ¯ 2.5275 ¯

1 0.1927 0.1910 0.3553 0.3504 0.4815 0.4730 0.5778 ¯

1 2 1.2090 1.1965 1.1399 ¯ 1.1402 ¯ 1.1405 ¯

3 1.2330 ¯ 1.9212 1.8883 2.2882 2.2360 2.4806 ¯

1 0.2300 0.2285 0.4208 0.4170 0.5765 0.5701 0.7064 ¯

2 2 1.3686 1.3566 1.8093 ¯ 1.8102 ¯ 1.1811 ¯

3 1.8084 ¯ 2.1916 2.1595 2.6436 2.5919 2.8710 ¯
n
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he
The boundary condition at the inside edge is given byu5v50.
The Ritz solution used 8 terms in the series in each ofj and h
directions. This order of the polynomial translates into worki
with 1283128 matrices. An eight-node quadrilateral solid of rev
lution element is used in the finite element analysis. The fin
element mesh consists of 10 elements in ther-direction and 8 in
thez-direction. The 80-element model consists of 277 nodes, e
node having two degrees-of-freedom. Hence, there is a tota
554 known~through the given boundary conditions! and unknown
degrees-of-freedom. The results from the two methods are fo
to be in very good agreement. The Ritz method consistently yie
lower values for the natural frequency than the finite elem
method and hence is more accurate.

A solid circular disk of variable thickness is further analyz
here. The dimensionless parameters taken for this case areb/a

Table 2 Comparison of the frequencies obtained from the Ritz
and finite element method „FEM… for the axisymmetric circular
disk of varying thickness, clamped at the inside edge

Mode

h2 /a51.0 h2 /a50.5 h2 /a50.05

Present FEM Present FEM Present FEM

b/a50.3
1 0.9115 0.9126 0.8733 0.8759 1.0708 1.172
2 2.4273 2.4282 2.3143 2.3422 2.1581 2.403
3 2.5337 2.5338 2.7258 2.7288 3.2760 3.281
4 3.1673 3.1679 4.1896 4.1914 4.5165 4.644
5 3.7296 3.7298 4.5865 4.5954 5.5833 5.595

b/a50.4
1 1.1452 1.1465 1.0808 1.0843 1.2971 1.425
2 2.7059 2.7071 2.7412 2.7418 2.5757 2.827
3 2.9242 2.9243 3.0531 3.0569 3.6438 3.651
4 3.3640 3.3645 4.2172 4.2189 3.3591 5.480
5 3.9186 3.9190 5.0815 5.0935 5.9965 6.008

b/a50.5
1 1.4705 1.4720 1.3744 1.3791 1.5970 1.760
2 3.0510 3.0523 3.2454 3.2454 3.1046 3.361
3 3.4566 3.4571 3.4805 3.4850 4.1521 4.160
4 3.7373 3.7375 4.3262 4.3285 6.4578 6.466
5 4.2491 4.2495 5.7099 5.7171 6.5154 6.529
MARCH 2003
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50.0,h1 /a50.5 andh2 /a is varied from 0.05 to 0.50. The varia
tion of the frequency parameterV versus the thickness ratioh2 /a
is presented in Fig. 6 for the tapered disk clamped at the ins
and free at the outside. The value ofh2 /a50.05 represents a disk
almost shaped like a wedge, i.e., thick at the inside edge whe
is clamped and nearly a sharp point atr 5a. The first five modes
for each of the axisymmetric~line with ‘‘o’’ for n50) and asym-
metric ~line with ‘‘x’’ for n51) cases are presented in this figur
Frequency distribution shows no distinct pattern. Both t
flexural/thickness-shear and in-plane stretching modes are pre
here.

Case 2. Analysis of ConicalÕCylindrical Shells. The second
solid of revolution investigated herein is described by Fig. 3,
which a frustum of a cone of variable thickness is shown. T

3
1
5
8
3

6
5
7
6
2

8
7
0
2
5

Fig. 6 Frequency V versus thickness ratio h 2 Õa for a clamped-
free tapered disk. Parameters used are b ÕaÄ0.0, h 1 ÕaÄ0.50
and nÄ0.30.
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generator of the middle surface of the shell is shown by a ch
line joining nodes 6 and 8. The cylindrical shell can also be
scribed by this geometry, if the chain line is made parallel to
z-axis. To calculate the natural frequencies we define the foll
ing geometric parameters.

a5r 6 , b5r 8 , L5z82z6 , h15 length of side2-6-3,

and h25 length of side1-8-4. (19)

From the given numerical values ofa, b, L, h1 , h2 , cone angle
~a!, etc., the coordinates of the eight-nodal point defining
shell geometry can be easily obtained and used in the comp
program.

Leissa and So@7,8# published accurate data for the first 2
frequencies of completely free-elastic cylinders. Also included
their study is a table containing the frequencies of a clamped-
solid circular cylinder having the following parameters:

b/a51.0; h1 /a5h2 /a51.0; L/a52.0 and a50.
(20)

The numerical results for the shell with parameters given in
~20! is pertinent to the present investigation. To compare the
sults, therefore, a cylindrical solid clamped at the bottom~i.e.,
along the edge 2-6-3! is analyzed using the present method
taking 8 terms alongj and 4 alongh directions. Table 3 shows a
very good comparison of the results from the two sources. It i
be noted here that the excellent agreement here is not due
mere chance. The analysis by Leissa and So is also based o
Ritz method similar to the present work.

Fig. 7 Frequency V versus thickness ratio h Õa for a conical
shell free at the top opening and clamped at the bottom. Param-
eters used are cone angle aÄ30 deg, L ÕaÄ1.0 and nÄ0.30.

Table 3 Comparison of the frequencies obtained from the
present analysis and Leissa and So †8‡. Cylindrical solid
clamped at the bottom. A–present analysis, B–Leissa and
So †8‡.

Mode

L/a52.0

n50 n51 n52 n53

A B A B A B A B

1 0.7980 0.7975 0.3140 0.3138 1.3410 1.3408 2.0234 2.
2 1.8365 1.8357 0.8958 0.8955 1.5628 1.5616 2.2961 2.
3 1.9660 1.9653 1.6069 1.6050 2.1424 2.1400 2.6657 2.
4 2.5951 2.5936 1.7702 1.7700 2.3352 2.3320 2.8923 2.
5 2.6719 2.6650 2.0770 2.0751 2.7103 2.6960 3.3396 3.
Journal of Applied Mechanics
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The variation of the frequency parameterV versus the thick-
ness parameterh/a is examined for a uniform conical shell fre
~at the inner edge 1-8-4! and clamped at the other edge 2-6-
Parameters used for this case are given by cone anglea530 deg,
L/a51.0, and 0.05<h/a<0.50. This range of thickness ratio cov
ers both thin and thick shells. Figure 7 shows the plot of
frequencies, both axisymmetric (n50) and asymmetric (n51),
versush/a. As can be expected, the frequencyV generally in-
creases with the thickness.

Case 3. Analysis of Spherical Shells. An attempt is also
made in this present work to analyze a thick spherical shell
which very limited amount of result is available in the literatur
First, a case is run to compare results with those from an ea
publication by Singh and Mirza@15# which is based on the
Reissner-Naghdi theory of thin shells. The shell parameter ta
for this purpose aref150 deg, f2560 deg, h/a50.05, and
n50.3. The shell is clamped at the open edge 2-6-3. This bou
ary condition is simulated by substitutingu5v5w50. Numerical
results for the dimensionless frequency parameterV
5vaA(r/E) is presented in Table 4 for asymmetric modes
vibration corresponding ton51 through 4. Frequencies in th
first two rows compare reasonably well. But the agreement is
very good as the mode number and/or circumferencial wave n
ber n increase. The main reason for the difference can be att
uted to the two different theories that are used to obtain the
sults. The Reissner-Naghdi theory of shell is valid only for thin
moderately thick shells. Using the present formulation, some
ditional results are calculated withn50 ~axisymmetric mode of
vibration! and n51 ~asymmetric mode of vibration! and pre-

Fig. 8 Frequency V versus thickness ratio h Õa for a spherical
shell clamped at the open end. Parameters used are f1
Ä0 deg, f2Ä60 deg, and nÄ0.30.

205
934
600
844
180

Table 4 Comparison of the frequencies obtained from the
present analysis and Singh and Mirza †15‡. Thick spherical
shell clamped at the open edge fÄ60 deg. A–present analysis,
B–Singh and Mirza †15‡.

Mode

h/R50.05

n51 n52 n53 n54

A B A B A B A B

1 0.9007 0.8990 1.0916 1.0790 1.2264 1.2140 1.3998 1.3
2 1.2071 1.2092 1.4750 1.4756 1.7741 1.7657 2.2122 2.1
3 1.7884 1.7596 2.2329 2.1842 2.7676 2.6141 3.3418 3.0
4 2.2592 2.2397 3.2212 3.0864 4.1377 3.6792 5.0005 4.2
5 3.0291 2.7194 3.8304 3.3194 4.5975 4.1620 5.5276 5.0
MARCH 2003, Vol. 70 Õ 297
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en-
sented in Fig. 8 showing the variation ofV against the thickness
to radius ratioh/a. A uniform thickness spherical shell clamped
f2560 deg is considered for the results. Generally, the freque
parameter increases with the thickness for all cases shown in
figure.

Concluding Remarks
In this paper a numerical method to examine the free axi

symmetric and antisymmetric vibrations of solids of revolution
presented. The numerical method is based on the Ritz method
utilizes a mapping technique from the formulation of quadrilate
finite elements. By using the natural coordinates, it is possibl
define the cross section of the solid of revolution in terms of fo
curved boundaries. The energy expressions are derived by se
ing displacement fields made of simple algebraic polynomialsj
and h. It is well known that individually the Ritz and finite ele
ment methods are well established in this area. However, the c
bination of the two in the present context does bring in consid
able novelty. The unified approach presented herein is capab
solving various types of free vibration problems involving soli
of revolution. Cases dealing with a thick circular disk of unifor
as well as varying thickness, thick conical, cylindrical, and sph
cal solids of revolution are investigated as numerical examp
Very good comparison of results from the present method
other published sources is also established. Using the case o
ally symmetric thick circular disks of variable thickness, it
shown that the present method and the finite element method
basically the same results. However, the order of the matrix so
for the frequencies and mode shapes is 128 and 554, respect
The Ritz method, generally, gives lower and more accurate va
of the natural frequencies than those obtained by the finite elem
method.

When the values of the natural frequencies are plotted aga
the thickness parameter of the disk, no distinct pattern is fou
This, possibly, can be attributed to two very distinct types
298 Õ Vol. 70, MARCH 2003
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modal behaviors, namely bending and stretching. The low
quency vibrational modes are predominantly the bending ty
However, there are some in between modes of vibration wh
are completely of the stretching~or breathing! type. The formula-
tion presented in this paper is very general, consistent, and t
numerical.
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This note presents how bearing asymmetry affects natural
quencies and mode shapes of a rotating disk/spindle sys
through a perturbation analysis. The analysis will focus on roc
ing motion of the disk/spindle system that consists of rigid-b
rocking of the spindle, one-nodal-diameter modes of each d
and deformation of spindle bearings.@DOI: 10.1115/1.1544537#

Consider a rotating disk/spindle system consisting ofN identi-
cal elastic circular disks, a rigid spindle hub, a rigid housing~or
stator!, and a pair of ball bearings. The rotational speed isv3 .
According to @1#, the motion of the rotating disk pack can b
described by

qr5~ux ,uy ,Rx ,Ry ,q01
~1! ,q0,21

~1! ,q01
~2! ,q0,21

~2! , . . . ,q01
~N! ,q0,21

~N! !T

(1)

whereRx(t) andRy(t) are translation of the disk pack centroid
the disk plane,ux(t) anduy(t) are the rocking of the disk pack
q01

( i )(t) and q0,21
( i ) (t) are generalized coordinates associated w

the one-nodal-diameter cosine and sine modes of theith disk.
With these generalized coordinates, equation of motion of
spindle system will take the form of

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb.
2001; final revision, Sept. 27, 2002. Associate Editor: A. A. Ferri.
Copyright © 2Journal of Applied Mechanics
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M r q̈r1Gr q̇r1@K r
~0!1eK r

~1!#qr50 (2)

whereK r
(0) is the stiffness matrix of the unperturbed system~i.e.,

axisymmetric bearings! andeK r
(1) is the stiffness matrix resulting

from bearing asymmetry. The physics of the rocking motion go
erned by~2! depends on the spin speed. At low spin speed,
gyroscopic effect and bearing asymmetry are equally import
At high spin speed, the gyroscopic effect becomes dominant.
perturbation analysis, these two cases need to be consid
separately.

For the low-speed perturbation approach, the unperturbed
tem is thestationary disk/spindle system with symmetric bea
ings. The perturbation is the bearing asymmetry. Also note that
unperturbed system has repeated natural frequencies for roc
motion. To formulate the eigenvalue problem, assume thatqr(t)
5vej mt, where m and v are the natural frequencies and mo
shapes of the perturbed system. Then~2! becomes

@K r
~0!2m2M r #v52@ j mGr1eK r

~1!#v. (3)

Note that@ j mGr1eK r
(1)# is a Hermitian matrix; therefore,m will

be real butv could be complex. The solution of~3! is

v52H~m!@ j mGr1eK r
~1!#v (4)

whereH~m! is the frequency response function of the unperturb
system. Moreover,

H~m!5 (
k51

2N14
ukūk

T

vk
22m2 (5)

wherevk anduk are natural frequencies and mode shapes of
unperturbed system. Also in~5!, the overbar denotes the comple
conjugation, and the mode shapes satisfy the orthonormality c
ditions

ūi
TM ruj5d i j , ūi

TK r
~0!uj5d i j v i

2 (6)

whered i j is the Kronecker delta. To facilitate a perturbation s
lution through contraction mapping, substitution of~5! into ~4!
results in

v5 (
k51

2N14 H ūk
T@ j mGr1eK r

~1!#v

m22vk
2 J uk . (7)

Note thatGr andeK r
(1) are both small quantities in~7!. Therefore,

~7! takes the standard form of contraction mappings. Consecu
iterations of~7! result in a perturbation solution.

Let u1 andu2 be two orthonormal rocking modes of the unpe
turbed system. In addition, they have repeated natural freque

1,
003 by ASME MARCH 2003, Vol. 70 Õ 299



a

e

sys-
s.
the

c-

idal

.

m.

e a

nd

l
ime
d

nd
rre-
v15v2 , because the unperturbed system is axisymmetric
stationary. To obtainm1 andv1 , one can normalize~7! so that the
coefficient ofu1 is one, i.e.,

m1
25v1

21ū1
T@ j m1Gr1eK r

~1!#v1 . (8)

Then ~7! becomes

v15u11 (
k52

2N14 H ūk
T@ j m1Gr1eK r

~1!#v1

m1
22vk

2 J uk . (9)

To perform the contraction mapping, replacingm1 and v1 of the
right side of~8! by v1 andu1 results in

m1
2'v1

21ū1
T@ j v1Gr1eK r

~1!#u1 . (10)

In replacingm1 and v1 of the right side of~9! by v1 and u1 to
obtain the mode shapev1 , one finds that the denominator ofu2 in
~9! is vanishing becausev15v2 . To maintain the contraction
mapping,u1 and u2 cannot be chosen arbitrarily. Instead, th
have to satisfy

ū2
T@ j v1Gr1eK r

~1!#u150. (11)

In this case, the perturbed mode shape is

v1'u11 (
k53

2N14 H ūk
T@ j v1Gr1eK r

~1!#u1

v1
22vk

2 J uk . (12)

Similarly, m2 andv2 can be derived as

m2
2'v2

21ū2
T@ j v2Gr1eK r

~1!#u2 (13)

v2'u21 (
k53

2N14 H ūk
T@ j v2Gr1eK r

~1!#u2

v2
22vk

2 J uk (14)

with u1 andu2 satisfy

ū1
T@ j v2Gr1eK r

~1!#u250. (15)

To determineu1 andu2 satisfying~11! and ~15!, let’s consider
two simplest repeated rocking mode shapes

w15A1~ux
~1!,0,0,Ry

~1!,0,1,0,1, . . . ,0,1!T (16)

and

w25A2~0,uy
~2! ,Rx

~2!,0,1,0,1,0, . . . ,1,0!T (17)

whereux
(1)52uy

(2) , Ry
(1)5Rx

(2) , andA1 andA2 are normalization
constants satisfying~6!. Note that, however,

w̄2
T@ j v1Gr1eK r

~1!#w1Þ0. (18)

Therefore, the mode shapesu1 and u2 in ~10! and ~13! must be
linear combinations ofw1 andw2 , i.e.,

@u1 ,u2#5@w1 ,w2#T (19)

whereT is an orthogonal matrix satisfying

TTT5I (20)

becauseu1 andu2 are orthonormal with respect toM r . To deter-
mine T, consider the following matrix:

Ar[@ ū1 ,ū2#T@ j v1Gr1eK r
~1!#@u1 ,u2#. (21)

According to~10!, ~11!, ~13!, and~15!, the matrixAr in ~21! must
be a diagonal matrix. In addition, the diagonal elements ofAr are
the perturbation tov1

2 andv2
2. Substitute~19! into ~21! and recall

~20! to obtain

Ar5T21BrT (22)

where

Br[@w̄1 ,w̄2#T@ j v1Gr1eK r
~1!#@w1 ,w2#. (23)
300 Õ Vol. 70, MARCH 2003
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SinceAr is diagonal,T is the modal matrix ofBr and the per-
turbed terms in~10! and ~13! are the eigenvalues ofBr .

For the high-speed perturbation approach, the unperturbed
tem is therotating disk/spindle system with symmetric bearing
To reduce the size of equations of motion, one can define
following complex representations:u[ux1 j uy , R[Rx1 jRy ,
and Q01

( i )[q0,21
( i ) 2 jq01

( i ) . Under this complex formulation, the
equation of motion becomes

Mq̈1Gq̇1Kq1eK1q̄50 (24)

where the overbar denotes complex conjugation, andq
5(u,R,Q01

(1) ,Q01
(2) , . . . ,Q01

(N))T. Moreover, letp be an eigenvec-
tor associated with~24!. Since the eigenvalue problem of~24! is
not self-adjoint, the adjoint system will have a different eigenve
tor h. Explicit expression ofp andh can be found in@2#.

Now consider the unperturbed system subjected to sinuso
excitations governed by

Mq̈ ~ t !1Gq̇~ t !1Kq ~ t !5fej Vt (25)

wheref is the excitation vector andV is the excitation frequency
The complex responseq(t) is

q~ t !5H~ j V!fej Vt (26)

whereH( j V) is the transfer function of the unperturbed syste
When the excitation frequencyV coincides with a natural fre-
quency of the rocking modes, the system may or may not hav
finite response depending onf. According to Fredholm alternative
theorem, the solvability condition ishTf50. Moreover, the solv-
ability condition implies that secular terms are eliminated a
periodic solutions are maintained in perturbation analysis.

Now we can apply Lindsted-Poncare´ approach to find natura
frequency of the perturbed system. First, let’s define a new t
scalet5vt, wherev is the natural frequency of the perturbe
system. Therefore,

v5v~e!5v01ev11e2v21 . . . (27)

wherev0 is the natural frequency of the unperturbed system, a
v1 andv2 are the first and second-order perturbation. The co
sponding perturbed response is

q~t!5q0~t!1eq1~t!1e2q2~t!1 . . . . (28)

Substitution of~27! and ~28! into ~24! results in

S v0
2M

d2

dt2 1v0G
d

dt
1K Dq0~t!50 (29)

for e0 terms,

S v0
2M

d2

dt2 1v0G
d

dt
1K Dq1~t!

52S 2v0v1M
d2

dt2 1v1G
d

dt Dq0~t!2K1q̄0~t!

(30)

for e1 terms, and

S v0
2M

d2

dt2 1v0G
d

dt
1K Dq2~t!

52F ~v1
212v0v2!M

d2

dt2 1v2G
d

dtGq0~t!

2S 2v0v1M
d2

dt2 1v1G
d

dt Dq1~t!2K1q̄1~t!

(31)

for e2 terms.
Transactions of the ASME
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The nontrivial solution from~29! is q0(t)5pej t. Therefore,
~30! results in

S v0
2M

d2

dt2 1v0G
d

dt
1K Dq1~t!

5v1~2v0M2 j G!pe j t2K1p̄e2 j t. (32)

Note that the term withej t in ~32! is the secular term. To elimi-
nate the secular term,v150. According to~26!, the solution of
~32! is q1(t)52u1e2 j t, whereu1[H(2 j v0)K1p̄. Finally, ~31!
becomes

S v0
2M

d2

dt2 1v0G
d

dt
1K Dq2~t!

5@v2~2v0M2 j G!p1K1ū1#ej t. (33)

Note that the terms withej t in ~33! are secular terms. To eliminat
these secular term, the solvability condition requires that
hanics
v252
hTK1ū1

hT~2v0M2 j G!u0
. (34)

As a numerical example, consider the axisymmetric spin
system used in@1#. ~The major dimensions and properties can
found in @1#.! The two bearings are identical and symmetric. No
consider the case with both bearings being 10 percent stiffe
one direction than the other Exact solutions can be found by s
ing eigenvalue problem of~2! numerically. Figures 1 and 2 plo
the natural frequencies and mode shapes, when the spin spe
from 0 to 10 Hz, and above 10 Hz, respectively. When the di
spindle system is stationary, the bearing asymmetry splits a pa
repeated rocking modes into two modes with distinct frequenc
When the rotational speed increases from zero, the low-freque
rocking mode evolves into backward precession and the h
frequency rocking mode evolves into forward precession. The p
cession orbits are elliptical. Figure 3 shows the low-speed per
bation. When the rotational speed varies from 0 Hz to 10 Hz,
Fig. 2 Frequency split for spindles with and without bearing asymmetry from
10 to 90 Hz
MARCH 2003, Vol. 70 Õ 301



Analytically Approximate Solutions for
Vibrations of a Long Discrete
Chain

W. Lee
Department of Physics, Chung Yuan Christian University,
Chung-Li, Taiwan 32023, ROC
e-mail: wlee@phys.cycu.edu.tw

This brief note studies small transverse vibrations of a long hang-
ing chain of discrete links. Analytical approximate solutions are
obtained when the number of links is considered large while they
still possess nontrivial rotary inertia. The results imply that the
rotary inertia becomes more significant for higher modes of
vibration. @DOI: 10.1115/1.1526120#
Fig. 3 Natural frequencies obtained from numerical simulation
and low-speed perturbation, when the rotational speed varies
from 0 to 10 Hz
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9,
low-speed perturbation approximates the exact results very
including the veering of the frequency splitting. When the ro
tional speed exceeds 30 Hz~see Fig. 4!, the low-speed perturba
tion ~the thick solid lines in Fig. 4! loses its accuracy and deviate
from the exact solution~the markers in Fig. 4!. Figure 4 also
compares the frequencies predicted from high-speed perturb
~thin solid lines! and the exact frequencies~markers!, when the
spin speed varies from 10 Hz to 90 Hz. The high-speed pertu
tion approximates the exact results from the numerical simula
very well as opposed to the low-speed perturbation.
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Fig. 4 Natural frequencies obtained from numerical simula-
tion, low-speed perturbation, and high-speed perturbation,
when the rotational speed exceeds 10 Hz
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1 Introduction
Previous attempts have been made to investigate the proble

small transverse vibrations of a uniform chain hanging vertica
from one end. Treating such a chain as a continuous system,
noulli first found that the natural frequencies of the chain a
related to the zeros of a power series~Watson@1#! that was later
known as the Bessel function of order zero~Routh@2# and Spiegel
@3#!. Historically, earlier literature adopted the terms ‘‘chain
‘‘string,’’ and ‘‘cable’’ synonymously, inferring a continuous slen
der flexible material without any bending resistance~Wang @4#!.

Small-amplitude transverse vibrations of a hanging chain w
finite number of discrete links have been analyzed~Timoshenko,
Young, and Weaver@5#, McCreech, Goodfellow, and Seville@6#
and Levinson@7#!. Generally speaking, for a fixed chain length,
chain of fewer links possesses a slightly shorter oscillatory per
While the effect of the number of links is essential, numeric
comparisons of natural frequencies indicate that the continu
model, especially for the lower modes, yields very accurate res
for a given chain of a large number of one-dimensional lin
~McCreech, Goodfellow, and Seville@6# and Levinson@7#!. Sujith
and Hodges@8# discussed exact solutions for the free vibration
a hanging cord with a tip mass. Triantafyllou and Howell@9#
studied the ill-posed problem of a perfectly flexible cable wh
the tension becomes negative. They found that the ill-posed p
lem can be resolved through the inclusion of additional dynam
based on physical or theoretical grounds. The relationship
tween a discrete chain and a continuous cable of equal length
been revealed by Weng and Lee@10#, who carried out a straight-
forward derivation of the differential equation of motion of
hanging cable as a special case of a hanging chain of o
dimensional links. It is shown that the natural frequencies o
hanging cable can be obtained from the resulting differential eq
tion that is deduced from the coupled differential equations
scribing the motion of a hanging chain of infinitesimal links. Th
present note studies theoretically another extreme case of s
transverse vibrations of a hanging chain of discrete links, wh
the number of links is considered to be large while they s
possess nontrivial rotary inertia. The motivation of including t
effect of link inertia is clear if one considers the ill-posed proble
of a string with zero tension at an end~Triantafyllou and Howell
@9#!. Instead of making simplifying assumptions initially to tre
the system a hanging massive string with rotary inertia and
rectly generate a differential equation, this brief note intends

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
MECHANICAL ENGINEERSfor publication in the ASME JOURNAL OF APPLIED ME-
CHANICS. Manuscript received by the ASME Applied Mechanics Division, June 1
2001; final revision, July 26, 2002. Associate Editor: A. A. Ferri.
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present explicit derivation steps, beginning from the coup
equations of motion that govern the behaviors of all links in
chain system, to reveal the relationships between a hanging s
with rotary inertia and a hanging chain of two-dimensional link

2 Analysis
Consider a chain of lengthL supported at one end in a uniform

gravitational field and oscillating about stable equilibrium in
vertical plane. The chain is assumed to haveN identical, rectan-
gular links, each of lengthh, massm, and moment of inertiaI,
connected by light pins at their ends as shown in Fig. 1. If
links, lying on the x-axis in equilibrium, are numbered
1,2, . . . ,N beginning at the free end of the chain, then, for t
general nonequilibrium case, the equation of motion for thejth
link may be expressed as

22m(
i 51

j

Ÿi5~2I /h!ü j1~2 j 21!mgu j2mŸj , j 51,2, . . . ,N,

(1)

whereu j andYj represent the angular displacement and transv
displacement of the center of mass of thejth link, respectively.
Because each rectangular link is considered to be a rigid body,
is entitled to write

u j5~yj 212yj !/h (2)

and

Yj5~yj 211yj !/2, (3)

whereyj denotes the transverse displacement of the top pivo
the jth link. ~Note thaty0 denotes the transverse displacement
the free end and thatyN50 at the point of suspension,x5L
5Nh.) Substitution of these expressions into Eq.~1! leads to the
following equations of motion:

~m/2!~ ÿ01 ÿ1!1~2I /h2!~ ÿ02 ÿ1!1~mg/h!~y02y1!50, (4)

and

2mS ÿ012(
i 51

j 21

ÿi1 ÿ j D 5~2I /h2!~ ÿ j 212 ÿ j !1@~2 j 21!mg/h#

3~yj 212yj !2~m/2!~ ÿ j 211 ÿ j !,

j 52,3, . . . ,N. (5)

As N becomes very large orh approaches zero, the term on th
left side of Eq.~5!, based upon the trapezoidal rule of integratio
may be approximated as

2mS ÿ012(
i 51

j 21

ÿi1 ÿ j D '22lE
x0

xj

ÿdx522lE
0

x

ÿdx, (6)

Fig. 1 A hanging chain of discrete links. „a… The coordinate
system and „b… the free body diagram of the jth link. Counter-
clockwise displacement angles are taken positive.
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where the linear mass density along thex-direction is given by
l[m/h andxj is the longitudinal position coordinate of the to
pivot of the jth link and can be written asx. The first term on the
right side of Eq.~5! can be written as

~2I /h2!~ ÿ j 212 ÿ j !5~2I /h!
d2

dt2
@~yj 212yj !/h#

'2~2I /h!
]2

]t2 S ]y

]xD . (7)

Similarly, introducing the tension due to the gravitational force
x given by T5lgx and replacing (2j 21)h with 2x allow the
second term on the right side of Eq.~5! to be expressed as

~2 j 21!mg

h
~yj 212yj !'22TS ]y

]xD . (8)

Finally, the last term of Eq.~5! becomes

2~m/2!~ ÿ j 211 ÿ j !'2lhÿ, (9)

which can be ignored whenh is considered to be infinitesimal.
The equation of motion of a hanging chain with a large num

of links can now be approximated as

lE
0

x

ÿdx2
I

h

]2

]t2 S ]y

]xD2TS ]y

]xD50, (10)

or

l
]2y

]t2
2lk2

]2

]t2 S ]2y

]x2D 2
]

]x S T
]y

]xD50. (11)

Note that if the radius of gyration of a link,k (I[mk2), is taken
to be zero, Eq.~11! would reduce to the well-known equation o
motion governing the small transverse vibration of a hang
cable whose natural frequenciesvn occurs when 2vn(L/g)1/2

5jn , the nth zero of the Bessel function of the first kind,J0
~Weng and Lee@10#!. It is also worth mentioning that one coul
have produced Eq.~11! if the simplifying assumptions had bee
made at the beginning and the system had been seen as a ha
massive string with rotary inertia. As mentioned earlier, th
discrete-to-continuum approach allows one to see the connec
between a hanging string with rotary inertia and a hanging ch
of two-dimensional links.

It is known that, near a position of stable equilibrium, a syst
executes harmonic oscillations. To solve Eq.~11!, one is, there-
fore, justified to assume that the normal modes can be found
solution with harmonic time dependence characterized by an
ponential function with an angular frequencyv. Let f (x) denote
the spatial part ofy(x,t); i.e., the mode-shape function or defle
tion amplitude of the chain of interest andf 8 the first derivative of
the functionf (x). The corresponding equation becomes

~gx2v2k2! f 91g f81v2f 50. (12)

The identity manipulation of change of variables,x5(g/4v2)z2

1(v2k2/g), permits the above homogeneous differential equat
to be obtained in the form of Bessel’s differential equation
order zero,

z2f 91z f81z2f 50, (13)

where f is now considered a function of the variablez given by
z25(4v2/g)(x2v2k2/g) and f 8 denotesd f /dz.

The solution of Eq.~13! subjected to the requirement of finit
displacements is obtained as Bessel function of the first k
of order zero,J0(z). Since J0(z) is an even function, whose
maximum occurs atz50 for all real z, the local maximum am-
plitude of the chain in the section ofv2k2/g<x<L takes place at
x5v2k2/g. The maximum deflection amplitude of the who
MARCH 2003, Vol. 70 Õ 303
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chain occurs actually at the free end (x50) as expected for a
general continuum system. Also, sincez becomes imaginary unde
a certain lower portion of the chain (x,v2k2/g), the mode
shapes on the frequency-dependent regions are to be expr
as the modified Bessel function of the first kind,I 0(z), with
a transition to the Bessel functionJ0(z) above these regions. I
is reminded here that the monotonically increasing funct
I 0(z) equals toJ0( iz) and I 0(0)5J0(0)51. The boundary con-
dition at x5L implies that (4v2/g)(L2v2k2/g)5jn

2, wherejn
52.4048,5.5201,8.6537, . . . , andagain, is thenth root of J0(z)
50. The vibration, therefore, exists for all natural frequenciesvn
that satisfy

vn
25~Lg/2k2!$12@12~k/L !2jn

2#1/2%, (14)

where the first minus sign is chosen for the solutions of the q
dratic equation ofvn

2 to reflect the physical reality concerning th
proper behavior of natural frequencies of an oscillatory syst
Certainly,vn

2 must be real to ensure a free oscillation, indicati
that the number of modes is limited and that the relationshipjn

2

<(L/k)2 sets a constraint on the allowed characteristic frequ
cies for vibrations without dynamical absorption. Figure 2 d
plays a comparison of natural frequencies versus the radiu
gyration of a 2-m long chain. The ordinate denotes the ratio of
angular frequency obtained from Eq.~14! and that of a hanging
cable, (g/4L)jn

2. It is clear from the figure that the deviation be
tween these two types of frequencies becomes less pronounce
higher modes of vibration. Ifk!L, the binomial expansion of the
square root in Eq.~14! yields an approximation forvn

2:

vn
2'~g/4L !jn

2@11~1/4!~k/L !2jn
2#, (15)

where the third and higher powers of (k/L)2jn
2 in the original

expansion have been neglected. Note that this expression red
consistently to the result for a hanging cable by settingk50. It is
rational to expect thatk/L!1 for a reasonable chain. The abov
equation implies that the rotary inertia will only become importa
for higher modes for such a long chain with many links.

It is obvious that, not only is the frequency of an oscillato
chain strongly affected by the chain length, it is also a function
the number of links and the moment of inertia of each link. It
interesting to investigate whether Eq.~15! is applicable or not for
any reasonably realistic case. For a chain made of a large num
of identical, two-dimensional links, it seems reasonable to ob
an approximate model by considering a link rigid while letting
length infinitesimal. On the other hand, it seems necessary to

Fig. 2 A plot of frequency ratio; i.e., the natural frequency of a
chain with rotational inertia divided by that of a hanging cable,
versus the radius of gyration, k, for the first three modes of
vibration. LÄ2 m and gÄ9.8 msÀ2.
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a further explanation for the natural frequencies to increase w
increasing rotary inertia as given in Eq.~15!. It is also essential to
examine whether Eq.~15! would provide a better approximatio
for a real chain than the typical hanging cable approximat
does. Studies along these lines are underway.
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1 Introduction
Recently, the thermally excited mechanical response of st

tures is of increasing interest in engineering science and m
works have been done for the dynamic thermoelastic proble
Sternberg and Chakravorty@1# obtained an exact closed-form so
lution for the dynamic problem of a sudden temperature chang
the surface of a spherical cavity in an infinite solid. Tusi a
Kraus @2# discussed the thermal stress-wave propagation in
arbitrary thick-walled spherical shell due to thermal shock on
internal surface. Zaker@3# investigated the dynamic thermal stre
responses in a spherical shell, which is subjected to arbit
spherically symmetric temperature fields. The technique is ba
on the integral theorem of hyperbolic initial value problem, t
gether with the construction of image temperature fields in
regions outside the actual body. Hata@4–6# obtained the dynamic
thermal stress responses in a uniformly heated isotropic sphe
shell and solid sphere, as well as transversely isotropic s
sphere by the ray theory. Recently, Hata@7# studied the stress
focusing effect due to an instantaneous concentrated heat so
in a sphere, and Wang@8# discussed the thermal stress concent
tion in a spherically isotropic solid sphere.

The dynamic thermoelastic problems are usually solved by
Laplace transform technique~@1,2,4–8#!. But the method will en-
counter the difficulty of inverse transform in some special cas
The ray theory is a good tool to complete the Laplace invers
However, it needs a large number of rays for a very thin spher
shell and hence becomes impractical~@9#!. In this paper, the sepa
ration of variables technique is applied to solve the elastodyna
problems of the solid sphere subjected to arbitrary spheric
thermal and mechanical loads and thus the integral transfor
avoided. Indeed, the method allows avoiding difficulties and in
curacy of the ray theory. First, a new dependent variable is in
duced to rewrite the governing equation, the boundary conditi
as well as the initial conditions. Second, the thermal and mech
cal loads are treated as the inhomogeneous item in the boun
conditions and a special function is introduced to transform
inhomogeneous boundary conditions to the homogeneous o
Third, by using the orthogonal expansion technique, the equa
with respect to the time variable is derived, of which the solut
is easily obtained. Therefore the displacement solution for
dynamic thermoelastic problem of the solid sphere is finally
tained.

Numerical results of a uniformly heated solid sphere, which
also been studied by Hata@5#, are presented by means of th
present method. From the numerical results, we find that the s
responses at the center of the sphere have serious errors in F
and 3 in Hata@5#: ~a! the time histories ofs r* andsu* at the center
~j50.0! are different; and~b! the peak values of the dynami
stresses near the center appear periodically while those at the
ter vary smoothly with the time. The former is apparently unre
sonable. The latter is also difficult to explain physically. In fact,
there are periodical peak values for the dynamic stress respo
of s r* and su* at j50.01, then what will be atj50.001,
0.0001 . . . ? Thereason related to the numerical process was m
tioned by Hata@5#, which implies the results would be great
affected by the error involved in the inverse Laplace transfo
By the present method, however, the integral transform is avo
and the correct results can be obtained.

2 Mathematical Formulations of the Problem
If a spherical coordinate system (r ,u,w) with the origin identi-

cal to the center of the sphere is used, then for the spheric
symmetric problem, we haveuu5uw50, ur5ur(r ,t). So the
strain-displacement relations are

g rr 5
]ur

]r
, guu5gww5

ur

r
, g ru5guw5gwr50, (1)
Journal of Applied Mechanics
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whereg i j are the strain components. For the spherically symm
ric thermoelastic problem of an isotropic solid sphere, the con
tutive equations are

s rr 5~l12m!g rr 12lguu2~3l12m!aT~r ,t !,
(2)

suu5sww5lg rr 12~l1m!guu2~3l12m!aT~r ,t !,

wheres i j andT(r ,t) are the stress components and temperat
increment, respectively.l andm are the Lame´ constants anda is
the coefficient of linear thermal expansion. The equation of m
tion is

]s rr

]r
12

s rr 2suu

r
5r

]2ur

]t2 , (3)

wherer is the mass density. Substituting Eq.~1! into Eq. ~2!, we
obtain

s rr 5~l12m!
]ur

]r
12l

ur

r
2~3l12m!aT~r ,t !,

(4)

suu5sww5l
]ur

]r
12~l1m!

ur

r
2~3l12m!aT~r ,t !.

Substituting Eq.~4! into Eq. ~3!, gives the following governing
equation:

]2ur

]r 2 1
2

r

]ur

]r
22

ur

r 2 5
1

cL
2

]2ur

]t2 1a
~11n!

~12n!

]T~r ,t !

]r
, (5)

wheren is the Poisson’s ratio and

cL5A~l12m!/r. (6)

The boundary conditions are

r 50, ur~0,t !50,
(7)

r 5b, ~l12m!
]ur

]r
12l

ur

r
2~3l12m!T~b,t !5p~ t !,

where b is the radius of the sphere andp(t) is the prescribed
pressure on the external surface. The initial conditions (t50) are

ur~r ,0!5u0~r !, u̇r~r ,0!5v0~r !, (8)

where a dot over the quantity denotes its partial derivative w
respect tot, andu0(r ) andv0(r ) are known functions.

3 The Solving Technique
First, a new dependent variablew(r ,t) is introduced as

ur5r 21/2w~r ,t !. (9)

Then Eqs.~5!, ~7!, and~8! become

]2w

]r 2 1
1

r

]w

]r
2

9

4

w

r 2 5
1

cL
2

]2w

]t2 1g~r ,t !, (10)

r 50, r 21/2w~0,t !50, (11a)

r 5b,
]w

]r
1h

w

r
5pb~ t !, (11b)

w~r ,0!5u1~r !, ẇ~r ,0!5v1~r !, (12)

where

g~r ,t !5bAr
]T~r ,t !

]r
, h5

2l

l12m
2

1

2
,

pb~ t !5
Ab@bT~b,t !1p~ t !#

l12m
, b5a

~11n!

~12n!
, (13)

u1~r !5Aru0~r !, v1~r !5Arv0~r !.
MARCH 2003, Vol. 70 Õ 305
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Second, we transform the inhomogeneous boundary condit
into the homogeneous ones by assuming

w~r ,t !5w1~r ,t !1w2~r ,t !, (14)

wherew2(r ,t) satisfies the inhomogeneous boundary conditio
and it can be taken as

w2~r ,t !5Armpb~ t !, (15)

wherem52, and

A5
1

b~h12!
. (16)

Substituting Eq.~14! into Eqs.~10!–~12! gives

]2w1

]r 2 1
1

r

]w1

]r
2

9

4

w1

r 2 5
1

cL
2

]2w1

]t2 1g1~r ,t !, (17)

r 50, r 21/2w1~0,t !50, (18a)

r 5b,
]w1

]r
1h

w1

r
50, (18b)

w1~r ,0!5u2~r !; ẇ1~r ,0!5v2~r !, (19)

where

g1~r ,t !5g~r ,t !1
1

cL
2

]w2~r ,t !

]t2 1
9

4

w2~r ,t !

r 2 2
1

r

]w2~r ,t !

]r

2
]2w2~r ,t !

]r 2 ,
(20)

u2~r !5u1~r !2w2~r ,0!, v2~r !5v1~r !2ẇ2~r ,0!.

By using the separation of variables technique, the solution
Eq. ~17! can be assumed in the following form:

w1~r ,t !5(
i

J3/2~kir !Fi~ t !, (21)

whereFi(t) are unknown functions oft, andJ3/2( ) is the Bessel
function of the first kind.ki , arranged in an ascending order, are
sequence of positive roots of the following eigenequation:

~h13/2!J1/2~kib!1~h23/2!J5/2~kib!50. (22)

We notice that

lim
r→0

r 21/2J3/2~kir !50. (23)

By virtue of Eqs.~22! and~23!, we know thatw1(r ,t), as given in
Eq. ~21!, satisfies the homogeneous boundary conditions in
~18!.

Substituting Eq.~21! into Eq. ~17!, gives

2cL
2(

i
ki

2Fi~ t !J3/2~kir !5(
i

J3/2~kir !
d2Fi~ t !

dt2
1cL

2g1~r ,t !.

(24)

By virtue of the orthogonal property of Bessel functions

E
0

b

rJ3/2~kir !J3/2~kj r !dr5Nid i j , (25)

whered i j is the Kronecker delta, and

Ni5
1

2ki
2 H b2FdJ3/2~kib!

dr G2

1S ki
2b22

9

4D @J3/2~kib!#2J , (26)

wheredJ3/2(kib)/dr5dJ3/2(kir )/drur 5b , we can derive the fol-
lowing equation from Eq.~24!

d2Fi~ t !

dt2
1v i

2Fi~ t !5qi~ t !, (27)
306 Õ Vol. 70, MARCH 2003
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where

v i5kicL , qi~ t !52
cL

2

Ni
E

0

b

rg1~r ,t !J3/2~kir !dr. (28)

The solution of Eq.~27! is

Fi~ t !5G1i cosv i t1G2i sinv i t1
1

v i
E

0

t

qi~t!sinv i~ t2t!dt,

(29)

where

G1i5
1

Ni
E

0

b

ru2~r !J3/2~kir !dr,

G2i5
1

Niv i
E

0

b

rv2~r !J3/2~kir !dr. (30)

Finally, the radial displacement solution can be obtained as
lows:

ur~r ,t !5r 21/2@w1~r ,t !1w2~r ,t !#. (31)

4 Numerical Results and Discussions

Example 1. The dynamic thermoelastic responses in a u
formly heated solid sphere is considered in this example. T
loads are

T~r ,t !5T0H~ t !, p~ t !50.0, (32)

whereH(t) denotes the Heaviside step function andT0 is a pre-
scribed temperature change. The Poisson’s ratio of the mater
taken as

n50.3. (33)

The following nondimensional quantities will be used:

t* 5
cL

b
t, j5

r

b
, s i* 5

s i i

s0
, ~ i 5r ,u,w!, (34)

where

s05
aET0

122n
. (35)

In the calculation that follows, we takeu0(r )50, v0(r )50 and
the first 40 terms in the series in Eq.~21!.

The dynamic thermal stress responses are shown in Figs.
Comparing Fig. 1 with Fig. 3, we find that, at the center~j50.0!,
the time history ofs r* is the same as that ofsu* , and the peaks of
the dynamic stresses appear periodically at an interval oft* 52.
The first peak values of the dynamic stressess r* and su* at dif-
ferent locations are listed in Table 1. In the table, the peak va
become higher and higher as the position approaches to the ce
and the maximum peak values ofs r* and su* both appear at
j50.0. The stress responses ofs r* andsu* at j50.01, 0.1, and 0.5
are also depicted in Figs. 2 and 4. They are almost the sam
those obtained by Hata@5#, except that the peak values are slight
different.

According to the method presented in the paper, for the u
formly heated sphere, Eq.~15! reads as

w2~r ,t !5E1r 2, E15
bT0

Ab~h12!~l12m!
. (36)

Also Eq. ~20! becomes

g1~r ,t !52
7

4
E1 , u2~r !52E1r 2, v2~r !50. (37)
Transactions of the ASME
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Then qi(t) in Eq. ~28! and Gji ( j 51,2) in Eq. ~30! have the
following forms:

qi~ t !5E2i5
7cL

2

4Ni
E1E

0

b

rJ3/2~kir !dr. (38)

G1i52
E1

Ni
E

0

b

r 3J3/2~kir !dr, G2i50.0. (39)

We then get from Eq.~29!

Fi~ t !5
E2i

v i
2 1S G1i2

E2i

v i
2 D cosv i t. (40)

And Eq. ~31! becomes

ur~r ,t !5r 21/2F(
i

J3/2~kir !Fi~ t !1E1r 2G . (41)

Fig. 1 History of dynamic stress s r* at the center „jÄ0…

Fig. 2 History of dynamic stress s r*
Journal of Applied Mechanics
Utilizing Eq. ~1!, the components of strain at the center are o
tained as follows:

g rr ~0,t !5
]ur~r ,t !

]r U
r 50

5 lim
r→0

H 3

2
E1r 1/21(

i
F r 21/2

dJ3/2~kir !

dr

2
1

2
r 23/2J3/2~kir !GFi~ t !J

5(
i

lim
r→0

@r 23/2J3/2~kir !2kir
21/2J5/2~kir !#Fi~ t !

5(
i

lim
r→0

@r 23/2J3/2~kir !#Fi~ t !

5(
i

1

3
A2

p
ki

3/2FE2i

v i
2 1S G1i2

E2i

v i
2 D cosv i tG

(42)

Fig. 3 History of dynamic stress su* at the center „jÄ0…

Fig. 4 History of dynamic stress su*
MARCH 2003, Vol. 70 Õ 307
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Table 1 The first peak values at different positions

j 0.0 0.0001 0.001 0.005 0.01 0.05 0.10 0.25 0.5

s r* 49.7641 49.7592 49.7251 48.4317 44.5091 14.9455 9.0218 4.2719 2.

su* 49.7641 49.7582 49.7380 48.8329 46.0527 14.2610 7.1121 2.7451 1.
o

e

s

n
s
s

n
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un-
guu~0,t !5gww~0,t !5
ur~r ,t !

r U
r 50

5 lim
r→0

H E1r 1/21(
i

@r 23/2J3/2~kir !#Fi~ t !J
5(

i
lim
r→0

@r 23/2J3/2~kir !#Fi~ t !

5(
i

1

3
A2

p
ki

3/2FE2i

v i
2 1S G1i2

E2i

v i
2 D cosv i tG .

From Eq.~42!, we find that the components of strain at the cen
are the same with each other. Substituting Eq.~42! into Eq. ~2!,
we obtain

s rr ~0,t !5suu~0,t !5sww~0,t !5~3l12m!H(
i

1

3
A2

p
ki

3/2FE2i

v i
2

1S G1i2
E2i

v i
2 D cosv i tG2aT0J . (43)

Obviously, the components of stresses at the center should als
identical to each other. This fact has been well illustrated by
numerical results as shown in Figs. 1 and 3.

Example 2. The elastodynamic responses in a solid sph
subjected to a sudden constant pressure at the external surfa
considered in this example. The loads are

T~r ,t !50.0, p~ t !52p0H~ t !, (44)

wherep0 is a constant pressure. The other parameters for ca
lation and the nondimensional quantities are the same as tho
Example 1 except thats i* 5s i i /p0 , (i 5r ,u,w).

The dynamic responses ofs r* andsu* at the center are show
in Figs. 5 and 6. From the curves, we also find the stress-focu
effect. The analytical expressions for the radial and hoop stre
can also be obtained in this case.

s rr ~0,t !5suu~0,t !5sww~0,t !5~3l12m!H(
i

1

3
A2

p
ki

3/2FE4i

v i
2

1S G3i2
E4i

v i
2 D cosv i tG J , (45)

where

E4i5
7cL

2

4Ni
E3E

0

b

rJ3/2~kir !dr,

G3i52
E3

Ni
E

0

b

r 3J3/2~kir !dr, E35
p0

Ab~h12!~l12m!
.

(46)

It is noted here that the present method also can be applie
study the dynamic problems of spherical shells, for which o
boundary conditions and the eigenequation should be modi
By virtue of such a method, the dynamic stress responses
MARCH 2003
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in a

spherical shell subjected to an instantaneous constant interna
dial pressure and the dynamic thermal stress responses in a
formly heated hollow sphere can also been obtained. The res
agree well with those presented in Refs.@9# and@4#, respectively.
Thus, the validation of the method developed in this paper
additionally supported.
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Fig. 5 History of dynamic stress s r* at the center „jÄ0…

Fig. 6 History of dynamic stress su* at the center „jÄ0…
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On the Nonlinear Generalized Maxwell
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An equation describing a nonlinear generalized Maxwell flu
model is presented. Model behavior, for constant rate elongatio
is investigated. A comparison of the results in this study with th
in the literature has been given. The conclusion of Corr et al. t
the model has two solutions is questionable.
@DOI: 10.1115/1.1544538#

Introduction
In a recent paper,@1#, a nonlinear Maxwell fluid spring-and

dashpot model~Fig. 1! was developed to describe the compl
nonlinear behavior of some viscoelastic materials. The clos
form solution of the model was determined for constant-r
displacement-control testing. In this study, we pursue a somew
different avenue of research. First the differential equation of
load-displacement relationship is presented. Second, a clo
form solution is given for constant rate displacement. Finally
comparison of the results in this study with those in Ref.@1# has
been given. It is pointed out that the argument that ‘‘the clos
form solution of the model has two solutions, corresponding to
positive and negative roots ofB’’ @1#, is questionable.

Model Derivations
From Fig. 1 we have

u̇5 ẋ1 ḋ (1)

F5k1d1k2d2 (2)

ẋ5F/c (3)

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY OF
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CHANICS. Manuscript received by the ASME Applied Mechanics Division, Feb.
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where d and x are the displacement of the springs and dash
from the rest position, respectively,u5x1d is the total displace-
ment, and the overdot denotes differentiation with respect to t
t. Solving Eq.~2! for d gives

d5
6A4k2F1k1

22k1

2k2
. (4)

Obviously, if F50, we should haved50. Therefore, we can only
get

d5
A4k2F1k1

22k1

2k2
. (5)

Substituting Eqs.~3! and ~5! into Eq. ~1! gives

u̇5
Ḟ

A4k2F1k1

1F/c. (6)

Integrating this equation across the pointt50, @2#, we have

A4k2F01k1
252k2u01k1 , (7)

whereu05u(01) andF05F(01).

The Characteristic When u„t…Äu0h„t…¿at. We let

u~ t !5u0h~ t !1at, (8)

wherea is a constant, andh(t) is the Heaviside step function. In
this case, Eq.~6! becomes

Ḟ

A4k2F1k1
2

1F/c5a, (9)

or

dF

~F2ac!A4k2F1k1
2

52dt/c. (10)

Integrating Eq.~10! yields

A4k2F1k1
22k18

A4k2F1k1
21k18

5Ae2k18t/c, (11)

wherek185Ak1
214k2ac andA is an integration constant. Solvin

Eq. ~11! for F gives

F~ t !5ac1
Ak18

2e2k18t/c

k2~12Ae2k18t/c!2
. (12)

Writing Eq. ~11! for t501 and using Eq.~7!, we have
5,

Fig. 1 The nonlinear model, consisting of a parallel arrange-
ment of a linear spring „k 1… and a second-order spring „k 2…, in
series with a linear dashpot „c…
003 by ASME MARCH 2003, Vol. 70 Õ 309
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A5
2k2u01k12k18

2k2u01k11k18
. (13)

Discussion
Substituting Eq.~12! into Eq. ~3!, we obtain

ẋ5a1
Ak18

2e2k18t/c

k2c~12Ae2k18t/c!2
. (14)

Multiplying this equation bydt and integrating gives

x~ t !2x~0!5at1E
0

t Ak18
2e2k18t/cdt

k2c~12Ae2k18t/c!2
. (15)

Applying the initial conditionx(0)50, we find

x~ t !5at1
k18

k2
S 1

12A
2

1

12Ae2k18t/cD . (16)

In order to compare our results with those of Corr et al.@1#, we let
u050. Then, Eq.~13! becomes

A5
k12k18

k11k18
. (17)
310 Õ Vol. 70, MARCH 2003
In this case, we can see that Eqs.~16! and~14! coincide with Eqs.
~14! and ~15! in Ref. @1#, respectively, but we must take

B5~m2Am214ja!/2j5~k12Ak1
2142ac!/2k2 . (18)

When

B5~m1Am214ja!/2j5~k11Ak1
2142ac!/2k2 , (19)

we cannot obtainx(t)5 ẋ(t)50 even ifa50. Our understanding
of physics can simplify our mathematical calculations, and ma
ematical solution should make physical sense. The conclusio
Ref. @1# is questionable that ‘‘the closed-form solution of th
model has two solutions, corresponding to the positive and ne
tive roots ofB.’’
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